1
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
2
|
Zhang B, Su L, Chen Z, Wu M, Wei J, Lin Y. Exosomes derived from Baicalin-pretreated bone mesenchymal stem cells improve Th17/Treg imbalance after hepatic ischemia-reperfusion via FGF21 and the JAK2/STAT3 pathway. IUBMB Life 2024; 76:534-547. [PMID: 38380586 DOI: 10.1002/iub.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024]
Abstract
Baicalin is an active compound extracted from Scutellaria baicalensis with antioxidant and anti-inflammatory properties. Bone mesenchymal stem cells (BMSCs)-derived exosomes have shown promise for the treatment of hepatic ischemia-reperfusion (I/R) injury. This study aims to investigate the role of Baicalin-pretreated BMSCs-derived exosomes in hepatic I/R injury and its mechanisms. BMSCs were pretreated with or without Baicalin, and their exosomes (Ba-Exo and Exo) were collected and characterized. These exosomes were administered to mice via tail vein injection. Treatment with Exo and Ba-Exo significantly suppressed the elevation of ALT and AST induced by hepatic injury. Additionally, both Exo and Ba-Exo treatments resulted in a reduction in the liver weight-to-body weight ratio. RT-PCR results revealed a significant downregulation of pro-inflammatory cytokines with Exo and Ba-Exo treatment. Both Exo and Ba-Exo treatment improved the Th17/Treg cell imbalance induced by I/R and reduced hepatic injury. Additionally, exosomes were cocultured with normal liver cells, and the expression of fibroblast growth factor 21 (FGF21) in liver cells was elevated through Ba-Exo treatment. After treatment, the JAK2/STAT3 pathway was inhibited, and FOXO1 expression was upregulated. Finally, recombinant FGF21 was injected into mouse tail veins to assess its effects. Recombinant FGF21 injection further inhibited the JAK2/STAT3 pathway, increased FOXO1 expression, and improved the Th17/Treg cell imbalance. In conclusion, this study confirms the protective effects of Exo and Ba-Exo against hepatic I/R injury. Ba-Exo mitigates hepatic I/R injury, achieved through inducing FGF21 expression in liver cells, inhibiting the JAK2/STAT3 pathway, and activating FOXO1 expression. Therefore, baicalin pretreatment emerges as a promising strategy to enhance the therapeutic capability of BMSCs-derived exosomes for hepatic I/R.
Collapse
Affiliation(s)
- Baoyan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Linfeng Su
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Zhichao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Min Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jianfeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Yonghua Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
El-Sayed ME, Atwa A, Sofy AR, Helmy YA, Amer K, Seadawy MG, Bakry S. Mesenchymal stem cell transplantation in burn wound healing: uncovering the mechanisms of local regeneration and tissue repair. Histochem Cell Biol 2024; 161:165-181. [PMID: 37847258 PMCID: PMC10822811 DOI: 10.1007/s00418-023-02244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Burn injuries pose a significant healthcare burden worldwide, often leading to long-term disabilities and reduced quality of life. To explore the impacts of the transplantation of mesenchymal stem cells (MSCs) on the healing of burns and the levels of serum cytokines, 60 fully grown Sprague-Dawley rats were randomly divided into three groups (n = 20 each): group I (control), group II (burn induction), and group III (burn induction + bone marrow (BM)-MSC transplantation). Groups II and III were further divided into four subgroups (n = 5 each) based on euthanasia duration (7, 14, 21, and 28 days post transplant). The experiment concluded with an anesthesia overdose for rat death. After 7, 14, 21, and 28 days, the rats were assessed by clinical, laboratory, and histopathology investigations. The results revealed significant improvements in burn healing potentiality in the group treated with MSC. Furthermore, cytokine levels were measured, with significant increases in interleukin (IL)-6 and interferon alpha (IFN) observed, while IL-10 and transforming growth factor beta (TGF-β) decreased at 7 days and increased until 28 days post burn. Also, the group that underwent the experiment exhibited increased levels of pro-inflammatory cytokines and the anti-inflammatory cytokine IL-10 when compared to the control group. Histological assessments showed better re-epithelialization, neovascularization, and collagen deposition in the experimental group, suggesting that MSC transplantation in burn wounds may promote burn healing by modulating the immune response and promoting tissue regeneration.
Collapse
Affiliation(s)
- Mohamed E El-Sayed
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biological Prevention Department, Ministry of Defense, Cairo, 11766, Egypt
| | - Ahmed Atwa
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed R Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Yasser A Helmy
- Department of Plastic & Reconstructive Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine, ECRRM, 3A Ramses Extension St., Cairo, 11759, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Ministry of Defense, Cairo, 11766, Egypt
| | - Sayed Bakry
- Center for Genetic Engineering- Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
4
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
5
|
Yang H, Chen J, Li J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure. Front Immunol 2023; 14:1243220. [PMID: 37744328 PMCID: PMC10513107 DOI: 10.3389/fimmu.2023.1243220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Acute liver failure (ALF) is a high-mortality syndrome for which liver transplantation is considered the only effective treatment option. A shortage of donor organs, high costs and surgical complications associated with immune rejection constrain the therapeutic effects of liver transplantation. Recently, mesenchymal stem cell (MSC) therapy was recognized as an alternative strategy for liver transplantation. Bone marrow mesenchymal stem cells (BMSCs) have been used in clinical trials of several liver diseases due to their ease of acquisition, strong proliferation ability, multipotent differentiation, homing to the lesion site, low immunogenicity and anti-inflammatory and antifibrotic effects. In this review, we comprehensively summarized the harvest and culture expansion strategies for BMSCs, the development of animal models of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF and the challenge of clinical application.
Collapse
Affiliation(s)
| | | | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Yasen A, Feng J, Xie XM, Li K, Cai YH, Liao ZH, Liang RB, Dai TX, Wang GY. Exosomes derived from TGF-β1-pretreated mesenchymal stem cells alleviate biliary ischemia-reperfusion injury through Jagged1/Notch1/SOX9 pathway. Int Immunopharmacol 2023; 119:110253. [PMID: 37156030 DOI: 10.1016/j.intimp.2023.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND This study aimed to evaluate the efficacy of exosomes (EXO) derived from TGF-β1-pretreated mesenchymal stem cells (MSCs) on biliary ischemia reperfusion injury (IRI) and further reveal the possible mechanisms. METHODS Bone marrow-derived MSCs were treated with exogenous TGF-β1, Jagged1/Notch1/SOX9 pathway inhibitor LY450139, or their combination. Then, EXO were isolated from the culture supernatants and further characterized. After establishing IRI model of biliary epithelial cells (EpiCs), EXO derived from differently-treated MSCs were applied to detect their protective effects on EpiCs, and LY450139 was applied in EpiCs to detect the possible mechanisms after treatment with MSCs-EXO. EXO derived from differently-treated MSCs were further injected into the hepatic artery immediately after establishment of intrahepatic biliary IRI for animal studies. RESULTS Pretreatment with TGF-β1 significantly enhanced MSCs-EXO production and elevated the levels of massive miRNAs associated with anti-apoptosis and tissue repair, which were evidently decreased after TGF-β1 plus LY450139 cotreatment. Notable improvement was observed in EpiCs after MSCs-EXO treatment, evidenced by reduced cellular apoptosis, increased cellular proliferation and declined oxidative stress, which were more evident in EpiCs that were treated with EXO derived from TGF-β1-pretreated MSCs. However, application of EXO derived from TGF-β1 plus LY450139-cotreated MSCs reversely enhanced cellular apoptosis, decreased cellular proliferation and anti-oxidants production. Interestingly, LY450139 application in EpiCs after treatment with MSCs-EXO also reversed the declined cellular apoptosis and enhanced oxidative stress induced by TGF-β1 pretreatment. In animal studies, administration of EXO derived from TGF-β1-pretreated MSCs more effectively attenuated biliary IRI through reducing oxidative stress, apoptosis, inflammation and enhancing the expression levels of TGF-β1 and Jagged1/Notch1/SOX9 pathway-related markers, which were reversed after administration of EXO derived from TGF-β1 plus LY450139-cotreated MSCs. CONCLUSION Our results provided a vital insight that TGF-β1 pretreatment endowed MSCs-EXO with stronger protective effects to improve biliary IRI via Jagged1/Notch1/SOX9 pathway.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China.
| | - Jun Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Xing-Ming Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China.
| | - Kai Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Yu-Hong Cai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Zhi-Hong Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Run-Bin Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China.
| | - Tian-Xing Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Guo-Ying Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China.
| |
Collapse
|
7
|
Volkova MV, Boyarintsev VV, Trofimenko AV, Kovaleva EV, Othman AA, Melerzanov AV, Filkov GI, Rybalkin SP, Durymanov MO. Local injection of bone-marrow derived mesenchymal stromal cells alters a molecular expression profile of a contact frostbite injury wound and improves healing in a rat model. Burns 2023; 49:432-443. [PMID: 35610075 DOI: 10.1016/j.burns.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Frostbite is a traumatic injury of the tissues upon low temperature environment exposure, which is characterized by direct cell injury due to freezing-thawing followed by development of an acute inflammatory process. Severe frostbite can lead to necrosis of soft tissues and loss of a limb. Mesenchymal stromal cells (MSCs) have a unique ability to modulate pathogenic immune response by secretion of paracrine factors, which suppress inflammation and mediate more efficient tissue regeneration. It should be noted that potential of stem cell therapy for frostbite injury treatment has not been investigated so far. Here, we evaluated a healing capacity of bone-marrow derived MSCs for the treatment of contact frostbite injury wound in a rat model. METHODS Cold-contact injury in a Wistar rat model was induced by 1-minute tight application of the cooled probe (-196 ⁰C) to the skin surface of the left hip. Rat bone marrow MSCs were phenotypically characterized and used for local injections into non-damaged tissues surrounding the wound of animals from the experimental group. The second group of rats was treated in the same manner with 1 mL of isotonic sodium chloride solution. Analysis of cytokine and growth factor expression profile in сold-contact injury wounds was performed on days 5, 9, and 16 using immunoblotting and enzyme-linked immunosorbent assay. Animal recovery in MSC-treated and vehicle-treated groups was evaluated by several criteria including body weight recording, determination of eschar desquamation and re-epithelialization terms, assessment of wound closure kinetics, and histological scoring of the wounds on day 23. RESULTS It turned out that a single subcutaneous administration of MSCs around the wound site resulted in elevated expression of pro-survival and pro-angiogenic VEGF-A and PDGF and 3-5-fold decrease in pro-inflammatory IL-1β as compared with the frostbite wound treated with a vehicle. Moreover, treatment with MSCs caused accelerated wound re-epithelialization (p < 0.05) as well as a better histological score of the MSC-treated wounds. CONCLUSIONS Thus, our data suggested that the use of MSCs is a promising therapeutic strategy for the treatment of cold-induced injury wounds.
Collapse
Affiliation(s)
- Marina V Volkova
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Valery V Boyarintsev
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander V Trofimenko
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Elena V Kovaleva
- Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Dashkovka, Serpukhov district, Moscow Region 142253, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander V Melerzanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Gleb I Filkov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Sergey P Rybalkin
- Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Dashkovka, Serpukhov district, Moscow Region 142253, Russia
| | - Mikhail O Durymanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia.
| |
Collapse
|
8
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
9
|
Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun 2022; 635:194-202. [PMID: 36279681 DOI: 10.1016/j.bbrc.2022.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) by causing histopathological changes is considered one of the most important causes of liver failure and dysfunction after surgery which affect graft outcomes. Stem cells are new promising approaches to treating different diseases. One of the critical strategies to improve their function is the preconditioning of their culture medium. This study compared the effect of NaHS-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice. METHODS Human umbilical cord-derived MSC (MSC) cultured in a 75 cm3 flask and when confluency reached about 80%, the culture medium replaced with a serum-free medium, and 48 h later supernatants collected, concentrated, and then MSC-Exo extracted. To obtain H2S-Exo, MSC was treated with NaHS (1 μmol),the supernatant collected after 48 h, concentrated and exosomes extracted. Twenty-four male mice were randomly divided into four groups (n = 6) including: 1-ischemia, 2-sham-operated, 3- MSC-Exo, and 4- H2S-Exo. To induce ischemia, the hepatic artery and portal vein clamped using an atraumatic clip for 60 min followed by 3 h of reperfusion. Just upon ending the time of ischemia (removal of clamp artery), animals in MSC-Exo, and H2S-Exo groups received 100 μg exosomes in 100 μl PBS via tail vein. At the end of reperfusion, blood, and liver samples were collected for further serological, molecular, and histological analyses. RESULTS Administration of both MSC-Exo and H2S-Exo improved liver function by reducing inflammatory cytokines, cellular apoptosis, liver levels of total oxidant status, and liver aminotransferases. The results showed that protecting effect of MSC exosomes enhanced following NaHS preconditioning of cell culture medium. CONCLUSION MSC-Exo and H2S-Exo had hepato-protective effects against injuries induced by ischemia-reperfusion in mice. NaHS preconditioning of mesenchymal stem cells could enhance the therapeutic effects of MSC-derived exosomes.
Collapse
Affiliation(s)
- Maryam J Sameri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Feryal Savari
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Khojasteh Hoseinynejad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Owen A, Patten D, Vigneswara V, Frampton J, Newsome PN. PDGFRα/Sca-1 Sorted Mesenchymal Stromal Cells Reduce Liver Injury in Murine Models of Hepatic Ischemia-Reperfusion Injury. Stem Cells 2022; 40:1056-1070. [PMID: 35999023 PMCID: PMC9707286 DOI: 10.1093/stmcls/sxac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Liver transplantation is an effective therapy, but increasing demand for donor organs has led to the use of marginal donor organs with increased complication rates. Mesenchymal stromal cells (MSC) pleiotropically modulate aberrant immune-mediated responses and represent a potential therapy to target the inflammation seen post-transplant with marginal donor livers. To avoid the confounding effects of xenotransplantation seen in studies with human MSC, a PDGFRα/Sca-1 (PaS) sorted MSC population was used which was analogous to human MSC populations (LNGFR+Thy-1+VCAM-1Hi). PaS MSC are a well-described population that demonstrate MSC properties without evidence of clonal mutation during expansion. We demonstrate their anti-inflammatory properties herein through their suppression of T-lymphocyte proliferation in vitro and secretion of anti-inflammatory cytokines (IL-10 and OPG) after stimulation (P = .004 and P = .003). The MDR2-/- model of biliary injury and hepatic ischemia-reperfusion (HIR) injury models were used to replicate the non-anastomotic biliary complications seen following liver transplantation. Systemic MSC therapy in MDR2-/- mice led to reduced liver injury with an increase in restorative macrophages (5913 ± 333.9 vs 12 597 ± 665.8, P = .002, n = 7) and a change in lymphocyte ratios (3.55 ± 0.37 vs 2.59 ± 0.139, P = .023, n = 17), whereas subcutaneous administration of MSC showed no beneficial effect. MSC also reduced cell death in the HIR model assessed by Periodic acid-Schiff (PAS) staining (91.7% ± 2.8 vs 80.1% ± 4.6, P = .03). Systemically administered quantum dot-labeled MSC were tracked using single-cell resolution CryoViz imaging which demonstrated their sequestration in the lungs alongside retention/redistribution to injured liver tissue. MSC represent a potential novel therapy in marginal organ transplantation which warrants further study.
Collapse
Affiliation(s)
| | | | | | | | - Philip N Newsome
- Corresponding author: Philip N. Newsome, Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
Khosravi-Farsani S, Zaminy A, Kazemi S, Hashemzadeh-Chaleshtori M. Mesenchymal stem cells versus their conditioned medium in the treatment of ischemia/reperfusion injury: Evaluation of efficacy and hepatic specific gene expression in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:799-807. [PMID: 36033951 PMCID: PMC9392563 DOI: 10.22038/ijbms.2022.62642.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Objectives The mechanisms underlying the beneficial effects of MSCs on hepatic I/R injury are still poorly described, especially the changes in hepatocyte gene expression. In this study, the effect of bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (AMSCs) and their conditioned medium on hepatocyte gene expression resulted by I/R shock were investigated. Materials and Methods Liver ischemia models were induced by clamping in experimental groups. Experimental groups received MSCs or conditioned medium treatments and the control group received Dulbecco's Modified Eagle Medium (DMEM). During 1, 24 hr, and 1 week after treatment, the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) enzymes and tissue catalase activity (CAT) were measured. Gene expression of a number of hepatocyte-specific genes (Alb, Afp, and Ck8) and Icam-1 which is upregulated under inflammatory conditions were also evaluated in 5, 24 hr, and 1-week intervals after I/R insult. Results In this study, liver enzymes showed a much more shift in the control group than treated groups and it was more noticeable 5 hr post-treatment. Moreover, gene expression pattern of the control group underwent changes after I/R injury. However, treated groups gene expression analysis met a steady trend after I/R insult. Conclusion Our finding shows that stem cell treatment has better curative effects than conditioned medium. BMSCs, AMSCs or BMSC and AMSC-derived bioactive molecules injection have potential to be considered as a therapeutic approach for treating acute liver injury.
Collapse
Affiliation(s)
- Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Zaminy
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sedigheh Kazemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Morteza Hashemzadeh-Chaleshtori. Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33331471;
| |
Collapse
|
12
|
Wu L, Tian X, Zuo H, Zheng W, Li X, Yuan M, Tian X, Song H. miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts. J Nanobiotechnology 2022; 20:196. [PMID: 35459211 PMCID: PMC9026664 DOI: 10.1186/s12951-022-01407-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Steatotic livers tolerate ischemia–reperfusion injury (IRI) poorly, increasing the risk of organ dysfunction. Ferroptosis is considered the initiating factor of organ IRI. Heme oxygenase oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) (HO-1/BMMSCs) can reduce hepatic IRI; however, the role of ferroptosis in IRI of steatotic grafts and the effect of HO-1/BMMSCs-derived exosomes (HM-exos) on ferroptosis remain unknown. Methods A model of rat liver transplantation (LT) with a severe steatotic donor liver and a model of hypoxia and reoxygenation (H/R) of steatotic hepatocytes were established. Exosomes were obtained by differential centrifugation, and the differentially expressed genes (DEGs) in liver after HM-exo treatment were detected using RNA sequencing. The expression of ferroptosis markers was analyzed. microRNA (miRNA) sequencing was used to analyze the miRNA profiles in HM-exos. Results We verified the effect of a candidate miRNA on ferroptosis of H/R treated hepatocytes, and observed the effect of exosomes knockout of the candidate miRNA on hepatocytes ferroptosis. In vitro, HM-exo treatment reduced the IRI in steatotic grafts, and enrichment analysis of DEGs suggested that HM-exos were involved in the regulation of the ferroptosis pathway. In vitro, inhibition of ferroptosis by HM-exos reduced hepatocyte injury. HM-exos contained more abundant miR-124-3p, which reduced ferroptosis of H/R-treated cells by inhibiting prostate six transmembrane epithelial antigen 3 (STEAP3), while overexpression of Steap3 reversed the effect of mir-124-3p. In addition, HM-exos from cell knocked out for miR-124-3p showed a weakened inhibitory effect on ferroptosis. Similarly, HM-exo treatment increased the content of miR-124-3p in grafts, while decreasing the level of STEAP3 and reducing the degree of hepatic ferroptosis. Conclusion Ferroptosis is involved in the IRI during LT with a severe steatotic donor liver. miR-124-3p in HM-exos downregulates Steap3 expression to inhibit ferroptosis, thereby attenuating graft IRI, which might be a promising strategy to treat IRI in steatotic grafts. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01407-8.
Collapse
Affiliation(s)
- Longlong Wu
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xuan Tian
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Xiang Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China.
| |
Collapse
|
13
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
15
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Chen K, Obara H, Matsubara Y, Fukuda K, Yagi H, Ono-Uruga Y, Matsubara K, Kitagawa Y. Adipose-Derived Mesenchymal Stromal/Stem Cell Line Prevents Hepatic Ischemia/Reperfusion Injury in Rats by Inhibiting Inflammasome Activation. Cell Transplant 2022; 31:9636897221089629. [PMID: 35438583 PMCID: PMC9021522 DOI: 10.1177/09636897221089629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown potential in the treatment of degenerative diseases, including ischemia/reperfusion injury (IRI), which occurs during organ transplantation and represents the main cause of post-transplant graft dysfunction. However, MSCs have heterogeneous characteristics, and studies of MSCs therapy have shown a variety of outcomes. To establish a new effective MSCs therapy, we developed an adipose-derived mesenchymal stromal/stem cell line (ASCL) and compared its therapeutic effects on primary adipose-derived MSCs (ASCs) using a hepatocyte co-culture model of hypoxia/reoxygenation in vitro and a rat model of hepatic IRI in vivo. The results showed that both ASCL and ASCs protect against hypoxia by improving hepatocyte viability, inhibiting reactive oxygen species release, and upregulating transforming growth factor-β in vitro. In vivo, ASCL or ASCs were infused into the spleen 24 h before the induction of rat hepatic IRI. The results showed that ASCL significantly improved the survival outcomes compared with the control (normal saline infusion) with the significantly decreased serum levels of liver enzymes and less damage to liver tissues compared with ASCs. Both ASCL and ASCs suppressed NOD-like receptor family pyrin domain-containing 3 inflammasome activation and subsequently reduced the release of activated IL-1β and IL-18, which is considered an important mechanism underlying ASCL and ASCs infusion in hepatic IRI. In addition, ASCL can promote the release of interleukin-1 receptor antagonist, which was previously reported as a key factor in hampering the inflammatory cascade during hepatic IRI. Our results suggest ASCL as a new candidate for hepatic IRI treatment due to its relatively homogeneous characteristics.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yumiko Matsubara
- Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukako Ono-Uruga
- Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
18
|
Wang Y, Liu Y. Neutrophil-Induced Liver Injury and Interactions Between Neutrophils and Liver Sinusoidal Endothelial Cells. Inflammation 2021; 44:1246-1262. [PMID: 33649876 DOI: 10.1007/s10753-021-01442-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Neutrophils are the most abundant type of leukocytes with diverse functions in immune defense including production of reactive oxygen species, bacteriocidal proteins, neutrophil extracellular traps, and pro-inflammatory mediators. However, aberrant accumulation of neutrophils in host tissues and excessive release of bacteriocidal compounds can lead to unexpected injury to host organs. Neutrophil-mediated liver injury has been reported in various types of liver diseases including liver ischemia/reperfusion injury, nonalcoholic fatty liver disease, endotoxin-induced liver injury, alcoholic liver disease, and drug-induced liver injury. Yet the mechanisms of neutrophil-induced hepatotoxicity in different liver diseases are complicated. Current knowledge of these mechanisms are summarized in this review. In addition, a substantial body of evidence has emerged showing that liver sinusoidal endothelial cells (LSECs) participate in several key steps of neutrophil-mediated liver injury including neutrophil recruitment, adhesion, transmigration, and activation. This review also highlights the current understanding of the interactions between LSECs and neutrophils in liver injury. The future challenge is to explore new targets for selectively interfering neutrophil-induced liver injury without impairing host defense function against microbial infection. Further understanding the role of LSECs in neutrophil-induced hepatotoxicity would aid in developing more selective therapeutic approaches for liver disease.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
19
|
He X, Hong W, Yang J, Lei H, Lu T, He C, Bi Z, Pan X, Liu Y, Dai L, Wang W, Huang C, Deng H, Wei X. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine. Signal Transduct Target Ther 2021; 6:270. [PMID: 34262012 PMCID: PMC8280232 DOI: 10.1038/s41392-021-00688-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-mediated immunomodulation has been harnessed for the treatment of human diseases, but its underlying mechanism has not been fully understood. Dead cells, including apoptotic cells have immunomodulatory properties. It has been repeatedly reported that the proportion of nonviable MSCs in a MSC therapeutic preparation varied from 5~50% in the ongoing clinical trials. It is conceivable that the nonviable cells in a MSC therapeutic preparation may play a role in the therapeutic effects of MSCs. We found that the MSC therapeutic preparation in the present study had about 5% dead MSCs (DMSCs), characterized by apoptotic cells. Namely, 1 × 106 MSCs in the preparation contained about 5 × 104 DMSCs. We found that the treatment with even 5 × 104 DMSCs alone had the equal therapeutic effects as with 1 × 106 MSCs. This protective effect of the dead MSCs alone was confirmed in four mouse models, including concanavalin A (ConA)- and carbon tetrachloride (CCl4)-induced acute liver injury, LPS-induced lung injury and spinal cord injury. We also found that the infused MSCs died by apoptosis in vivo. Furthermore, the therapeutic effect was attributed to the elevated level of phosphatidylserine (PS) upon the injection of MSCs or DMSCs. The direct administration of PS liposomes (PSLs) mimic apoptotic cell fragments also exerted the protective effects as MSCs and DMSCs. The Mer tyrosine kinase (MerTK) deficiency or the knockout of chemokine receptor C-C motif chemokine receptor 2 (CCR2) reversed these protective effects of MSCs or DMSCs. These results revealed that DMSCs alone in the therapeutic stem cell preparation or the apoptotic cells induced in vivo may exert the same immunomodulatory property as the "living MSCs preparation" through releasing PS, which was further recognized by MerTK and participated in modulating immune cells.
Collapse
Affiliation(s)
- Xuemei He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.488387.8Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan People’s Republic of China
| | - Weiqi Hong
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Jingyun Yang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hong Lei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Tianqi Lu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Cai He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Zhenfei Bi
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Yu Liu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Wei Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Canhua Huang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hongxin Deng
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
20
|
Lv H, Yuan X, Zhang J, Lu T, Yao J, Zheng J, Cai J, Xiao J, Chen H, Xie S, Ruan Y, An Y, Sui X, Yi H. Heat shock preconditioning mesenchymal stem cells attenuate acute lung injury via reducing NLRP3 inflammasome activation in macrophages. Stem Cell Res Ther 2021; 12:290. [PMID: 34001255 PMCID: PMC8127288 DOI: 10.1186/s13287-021-02328-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Acute lung injury (ALI) remains a common cause of morbidity and mortality worldwide, and to date, there is no effective treatment for ALI. Previous studies have revealed that topical administration of mesenchymal stem cells (MSCs) can attenuate the pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance the survival and function of cells. The present study aimed to assess whether HS-pretreated MSCs could enhance immunomodulation and recovery from ALI. MATERIALS AND METHODS HS pretreatment was performed at 42 °C for 1 h, and changes in biological characteristics and secretion functions were detected. In an in vivo mouse model of ALI, we intranasally administered pretreated umbilical cord-derived MSCs (UC-MSCs), confirmed their therapeutic effects, and detected the phenotypes of the macrophages in bronchoalveolar lavage fluid (BALF). To elucidate the underlying mechanisms, we cocultured pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in the macrophages were assessed. RESULTS The data showed that UC-MSCs did not exhibit significant changes in viability or biological characteristics after HS pretreatment. The administration of HS-pretreated UC-MSCs to the ALI model improved the pathological changes and lung damage-related indexes, reduced the proinflammatory cytokine levels, and modulated the M1/M2 macrophage balance. Mechanistically, both the in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs, which negatively modulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in alveolar macrophages. These effects were partially reversed by knocking down HSP70 expression. CONCLUSION HS pretreatment can enhance the beneficial effects of UC-MSCs in inhibiting NLRP3 inflammasome activation in macrophages during ALI. The mechanism may be related to the upregulated expression of HSP70.
Collapse
Affiliation(s)
- Haijin Lv
- Department of Surgical Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaofeng Yuan
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tongyu Lu
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianye Cai
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shujuan Xie
- Vaccine Research Institute of Sun Yat-sen University, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Ruan
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuling An
- Department of Surgical Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xin Sui
- Department of Surgical Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Huimin Yi
- Department of Surgical Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
22
|
Zhou JH, Lu X, Yan CL, Sheng XY, Cao HC. Mesenchymal stromal cell-dependent immunoregulation in chemically-induced acute liver failure. World J Stem Cells 2021; 13:208-220. [PMID: 33815670 PMCID: PMC8006015 DOI: 10.4252/wjsc.v13.i3.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI), which refers to liver damage caused by a drug or its metabolites, has emerged as an important cause of acute liver failure (ALF) in recent years. Chemically-induced ALF in animal models mimics the pathology of DILI in humans; thus, these models are used to study the mechanism of potentially effective treatment strategies. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties, and they alleviate acute liver injury and decrease the mortality of animals with chemically-induced ALF. Here, we summarize some of the existing research on the interaction between MSCs and immune cells, and discuss the possible mechanisms underlying the immuno-modulatory activity of MSCs in chemically-induced ALF. We conclude that MSCs can impact the phenotype and function of macrophages, as well as the differentiation and maturation of dendritic cells, and inhibit the proliferation and activation of T lymphocytes or B lymphocytes. MSCs also have immuno-modulatory effects on the production of cytokines, such as prostaglandin E2 and tumor necrosis factor-alpha-stimulated gene 6, in animal models. Thus, MSCs have significant benefits in the treatment of chemically-induced ALF by interacting with immune cells and they may be applied to DILI in humans in the near future.
Collapse
Affiliation(s)
- Jia-Hang Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xuan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Cui-Lin Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Yu Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
23
|
Li S, Liang C, Jiang W, Deng J, Gu R, Li W, Tian F, Tang L, Sun H. Tissue-Specific Hydrogels Ameliorate Hepatic Ischemia/Reperfusion Injury in Rats by Regulating Macrophage Polarization via TLR4/NF-κB Signaling. ACS Biomater Sci Eng 2021; 7:1552-1563. [PMID: 33683856 DOI: 10.1021/acsbiomaterials.0c01610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injectable acellular matrix hydrogels are proven to be potential translational materials to facilitate the repairment in various tissues. However, their potential to repair hepatic ischemia/reperfusion injury (IRI) has not been explored. In this work, we made hepatic acellular matrix (HAM) hydrogels based on the decellularized process and evaluated the biocompatibility and hepatoprotective effects in a rat IRI model. HAM hydrogels supported viability, proliferation, and attachment of hepatocytes in vitro. Treatment with HAM hydrogels significantly attenuated hepatic damage caused by IRI, as evidenced by hepatic biochemistry, histology, and inflammatory responses. Importantly, HAM hydrogels inhibited macrophage M1 (CD68/CCR7) differentiation but promoted M2 (CD68/CD206) differentiation. Additionally, TLR4/NF-κB signaling was found to be involved in the hepatoprotective effect of HAM hydrogels. Collectively, our study reveals that HAM hydrogels ameliorate hepatic IRI by facilitating M2 polarization via TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Chengxiao Liang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wen Jiang
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Jie Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610083, China.,Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Rui Gu
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wei Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fuzhou Tian
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| |
Collapse
|
24
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Cai F, Chen J. Combination of mesenchymal stromal cells and machine perfusion is a novel strategy for organ preservation in solid organ transplantation. Cell Tissue Res 2021; 384:13-23. [PMID: 33439348 PMCID: PMC8016762 DOI: 10.1007/s00441-020-03406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
Organ preservation is a prerequisite for an urgent increase in the availability of organs for solid organ transplantation (SOT). An increasing amount of expanded criteria donor (ECD) organs are used clinically. Currently, the paradigm of organ preservation is shifting from simple reduction of cellular metabolic activity to maximal simulation of an ex vivo physiological microenvironment. An ideal organ preservation technique should not only preserve isolated organs but also offer the possibility of rehabilitation and evaluation of organ function prior to transplantation. Based on the fact that mesenchymal stromal cells (MSCs) possess strong regeneration properties, the combination of MSCs with machine perfusion (MP) is expected to be superior to conventional preservation methods. In recent years, several studies have attempted to use this strategy for SOT showing promising outcomes. With better organ function during ex vivo preservation and the potential of utilization of organs previously deemed untransplantable, this strategy is meaningful for patients with organ failure to help overcome organ shortage in the field of SOT.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
25
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
26
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The Role of Ischemia/Reperfusion Injury in Early Hepatic Allograft Dysfunction. Liver Transpl 2020; 26:1034-1048. [PMID: 32294292 DOI: 10.1002/lt.25779] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT) is the only available curative treatment for patients with end-stage liver disease. Early allograft dysfunction (EAD) is a life-threatening complication of LT and is thought to be mediated in large part through ischemia/reperfusion injury (IRI). However, the underlying mechanisms linking IRI and EAD after LT are poorly understood. Most previous studies focused on the clinical features of EAD, but basic research on the underlying mechanisms is insufficient, due, in part, to a lack of suitable animal models of EAD. There is still no consensus on definition of EAD, which hampers comparative analysis of data from different LT centers. IRI is considered as an important risk factor of EAD, which can induce both damage and adaptive responses in liver grafts. IRI and EAD are closely linked and share several common pathways. However, the underlying mechanisms remain largely unclear. Therapeutic interventions against EAD through the amelioration of IRI is a promising strategy, but most approaches are still in preclinical stages. To further study the mechanisms of EAD and promote collaborations between LT centers, optimized animal models and unified definitions of EAD are urgently needed. Because IRI and EAD are closely linked, more attention should be paid to the underlying mechanisms and the fundamental relationship between them. Ischemia/reperfusion-induced adaptive responses may play a crucial role in the prevention of EAD, and more preclinical studies and clinical trials are urgently needed to address the current limitation of available therapeutic interventions.
Collapse
Affiliation(s)
- Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom.,Cambridge National Institute of Health Research Biomedical research Centre, Cambridge, United Kingdom
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
28
|
Owen A, Newsome PN. Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation? Front Immunol 2020; 11:1306. [PMID: 32636850 PMCID: PMC7318292 DOI: 10.3389/fimmu.2020.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
In response to the global burden of liver disease there has been a commensurate increase in the demand for liver transplantation. However, due to a paucity of donor organs many centers have moved toward the routine use of marginal allografts, which can be associated with a greater risk of complications and poorer clinical outcomes. Mesenchymal stromal cells (MSC) are a multi-potent progenitor cell population that have been utilized to modulate aberrant immune responses in acute and chronic inflammatory conditions. MSC exert an immunomodulatory effect on innate and adaptive immune systems through the release of both paracrine soluble factors and extracellular vesicles. Through these routes MSC can switch the regulatory function of the immune system through effects on macrophages and T regulatory cells enabling a switch of phenotype from injury to restoration. A key benefit seems to be their ability to tailor their response to the inflammatory environment without compromising the host ability to fight infection. With over 200 clinical trials registered to examine MSC therapy in liver disease and an increasing number of trials of MSC therapy in solid organ transplant recipients, there is increasing consideration for their use in liver transplantation. In this review we critically appraise the potential role of MSC therapy in the context of liver transplantation, including their ability to modulate reperfusion injury, their role in the reduction of medium term complications in the biliary tree and their potential to enhance tolerance in transplanted organs.
Collapse
Affiliation(s)
- Andrew Owen
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
29
|
Schofield ZV, Wu MCL, Hansbro PM, Cooper MA, Woodruff TM. Acetate protects against intestinal ischemia‐reperfusion injury independent of its cognate free fatty acid 2 receptor. FASEB J 2020; 34:10418-10430. [DOI: 10.1096/fj.202000960r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zoe V. Schofield
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Mike C. L. Wu
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| | - Philip M. Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matthew A. Cooper
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
30
|
Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA, Hassanzadeh A, Zamani M, Javidi K, Naimi A. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol 2020; 235:9185-9210. [PMID: 32452052 DOI: 10.1002/jcp.29803] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Jahangiryan
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran, Iran
| | - Faezeh Jadidi
- Student Research Committee, Zarand School of Nursing, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammd Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
31
|
Al-Hakami A, Alqhatani SQ, Shaik S, Jalfan SM, Dhammam MSA, Asiri W, Alkahtani AM, Devaraj A, Chandramoorthy HC. Cytokine physiognomies of MSCs from varied sources confirm the regenerative commitment post-coculture with activated neutrophils. J Cell Physiol 2020; 235:8691-8701. [PMID: 32385929 DOI: 10.1002/jcp.29713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
The interaction of mesenchymal stromal cells (MSCs) with paracrine signals and immunological cells, and their responses and regenerative commitment thereafter, is understudied. In the current investigation, we compared MSCs from the umbilical cord blood (UCB), dental pulp (DP), and liposuction material (LS) on their ability to respond to activated neutrophils. Cytokine profiling (interleukin-1α [IL-1α], IL-2, IL-4, IL-6, IL-8, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], transforming growth factor-β [TGF-β]), cellular proliferation and osteogenic differentiation patterns were assessed. The results showed largely comparable cytokine profiles with higher TNF-α and IFN-γ levels in LSMSCs owing to their mature cellular phenotype. The viability and proliferation between LS/DP/UCB MSCs were comparable in the coculture group, while direct activation of MSCs with lipopolysaccharide (LPS) showed comparable proliferation with significant cell death in UCB MSCs and slightly higher cell death in the other two types of MSC. Furthermore, when MSCs post-neutrophil exposure were induced for osteogenic differentiation, though all the MSCs devoid of the sources differentiated, we observed rapid and significant turnover of DPMSCs positive of osteogenic markers rather than LS and UCB MSCs. We further observed a significant turnover of IL-1α and TGF-β at mRNA and cytokine levels, indicating the commitment of MSCs to differentiate through interacting with immunological cells or bacterial products like neutrophils or LPS, respectively. Taken together, these results suggest that MSCs have more or less similar cytokine responses devoid of their anatomical niche. They readily switch over from the cytokine responsive cell phenotype at the immunological microenvironment to differentiate and regenerate tissue in response to cellular signals.
Collapse
Affiliation(s)
- Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saad Qaddah Alqhatani
- Department of Surgery, Plastic Surgery Division, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sharaz Shaik
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Saaed Mohammed Jalfan
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Wejdan Asiri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Misfer Alkahtani
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
Enhanced Effect of IL-1 β-Activated Adipose-Derived MSCs (ADMSCs) on Repair of Intestinal Ischemia-Reperfusion Injury via COX-2-PGE 2 Signaling. Stem Cells Int 2020; 2020:2803747. [PMID: 32377202 PMCID: PMC7183531 DOI: 10.1155/2020/2803747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) have been used for treating tissue injury, and preactivation enhances their therapeutic effect. This study is aimed at investigating the therapeutic effect of activated ADMSCs by IL-1β on the intestinal ischaemia-reperfusion (IR) injury and exploring potential mechanisms. ADMSCs were pretreated with IL-1β in vitro, and activation of ADMSCs was assessed by α-SMA and COX-2 expressions and secretary function. Activated ADMSCs was transplanted into IR-injured intestine in a mouse model, and therapeutic effect was evaluated. In addition, to explore underlying mechanisms, COX-2 expression was silenced to investigate its role in activated ADMSCs for treatment of intestinal IR injury. When ADMSCs were pretreated with 50 ng/ml IL-1β for 24 hr, expressions of α-SMA and COX-2 were significantly upregulated, and secretions of PGE2, SDF-1, and VEGF were increased. When COX-2 was silenced, the effect of IL-1β treatment was abolished. Activated ADMSCs with IL-1β significantly suppressed inflammation and apoptosis and enhanced healing of intestinal IR injury in mice, and these effects were impaired by COX-2 silencing. The results of RNA sequencing suggested that compared with the IR injury group activated ADMSCs induced alterations in mRNA expression and suppressed the activation of the NF-κB-P65, MAPK-ERK1/2, and PI3K-AKT pathways induced by intestinal IR injury, whereas silencing COX-2 impaired the suppressive effect of activated ADMSCs on these pathway activations induced by IR injury. These data suggested that IL-1β pretreatment enhanced the therapeutic effect of ADMSCs on intestinal IR injury repairing via activating ADMSC COX-2-PGE2 signaling axis and via suppressing the NF-κB-P65, MAPK-ERK1/2, and PI3K-AKT pathways in the intestinal IR-injured tissue.
Collapse
|
33
|
Soto G, Rodríguez MJ, Fuentealba R, Treuer AV, Castillo I, González DR, Zúñiga-Hernández J. Maresin 1, a Proresolving Lipid Mediator, Ameliorates Liver Ischemia-Reperfusion Injury and Stimulates Hepatocyte Proliferation in Sprague-Dawley Rats. Int J Mol Sci 2020; 21:ijms21020540. [PMID: 31952110 PMCID: PMC7014175 DOI: 10.3390/ijms21020540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Maresin-1 (MaR1) is a specialized pro-resolving mediator, derived from omega-3 fatty acids, whose functions are to decrease the pro-inflammatory and oxidative mediators, and also to stimulate cell division. We investigated the hepatoprotective actions of MaR1 in a rat model of liver ischemia-reperfusion (IR) injury. MaR1 (4 ng/gr body weight) was administered prior to ischemia (1 h) and reperfusion (3 h), and controls received isovolumetric vehicle solution. To analyze liver function, transaminases levels and tissue architecture were assayed, and serum cytokines TNF-α, IL-6, and IL-10, mitotic activity index, and differential levels of NF-κB and Nrf-2 transcription factors, were analyzed. Transaminase, TNF-α levels, and cytoarchitecture were normalized with the administration of MaR1 and associated with changes in NF-κB. IL-6, mitotic activity index, and nuclear translocation of Nrf-2 increased in the MaR1-IR group, which would be associated with hepatoprotection and cell proliferation. Taken together, these results suggest that MaR1 alleviated IR liver injury, facilitated by the activation of hepatocyte cell division, increased IL-6 cytokine levels, and the nuclear localization of Nrf-2, with a decrease of NF-κB activity. All of them were related to an improvement of liver injury parameters. These results open the possibility of MaR1 as a potential therapeutic tool in IR and other hepatic pathologies.
Collapse
Affiliation(s)
- Gonzalo Soto
- Escuela de Tecnología Medica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - María José Rodríguez
- Programa de Doctorado en Ciencias mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (R.F.)
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile
| | - Roberto Fuentealba
- Programa de Doctorado en Ciencias mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (R.F.)
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
| | - Adriana V. Treuer
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
- Centro de Bioinformática, Simulación y Modelado, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-71-2201667
| |
Collapse
|
34
|
Oliva J. Therapeutic Properties of Mesenchymal Stem Cell on Organ Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20215511. [PMID: 31694240 PMCID: PMC6862572 DOI: 10.3390/ijms20215511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
The shortage of donor organs is a major global concern. Organ failure requires the transplantation of functional organs. Donor’s organs are preserved for variable periods of warm and cold ischemia time, which requires placing them into a preservation device. Ischemia and reperfusion damage the organs, due to the lack of oxygen during the ischemia step, as well as the oxidative stress during the reperfusion step. Different methodologies are developed to prevent or to diminish the level of injuries. Preservation solutions were first developed to maximize cold static preservation, which includes the addition of several chemical compounds. The next chapter of organ preservation comes with the perfusion machine, where mechanical devices provide continuous flow and oxygenation ex vivo to the organs being preserved. In the addition of inhibitors of mitogen-activated protein kinase and inhibitors of the proteasome, mesenchymal stem cells began being used 13 years ago to prevent or diminish the organ’s injuries. Mesenchymal stem cells (e.g., bone marrow stem cells, adipose derived stem cells and umbilical cord stem cells) have proven to be powerful tools in repairing damaged organs. This review will focus upon the use of some bone marrow stem cells, adipose-derived stem cells and umbilical cord stem cells on preventing or decreasing the injuries due to ischemia-reperfusion.
Collapse
Affiliation(s)
- Joan Oliva
- Emmaus Medical, Inc., 21250 Hawthorne Blvd, Suite 800, Torrance, CA 90503, USA
| |
Collapse
|
35
|
Anger F, Camara M, Ellinger E, Germer CT, Schlegel N, Otto C, Klein I. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Liver Regeneration After Ischemia Reperfusion Injury in Mice. Stem Cells Dev 2019; 28:1451-1462. [PMID: 31495270 DOI: 10.1089/scd.2019.0085] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI) remains a major obstacle in liver resection and transplantation surgery, especially in diseased organs. Human mesenchymal stromal cells (MSCs) are reported to acutely alleviate hepatic IRI in mice by releasing bioactive membrane-enclosed extracellular vesicles (EVs), but the long-term effects of MSC-derived EV on hepatic IRI are unknown. Given the considerable differentiation capacity of fibroblasts (FBs) during wound healing and their morphological similarities with MSC, the present study aimed to investigate the potential of these two cell types and their cell-derived EV in attenuating liver damage after IRI. EVs were isolated and purified from the supernatant of MSC and FB cultures and, subsequently, characterized by electron microscopy, nanoparticle tracking analysis, and western blot. Liver injury and organ regeneration in a murine in vivo model of IRI were assessed by serum transaminase levels, histopathology, and immunohistochemistry. Changes in expression of inflammation-associated genes within liver tissue were evaluated by reverse transcriptase quantitative polymerase chain reaction. MSC, MSC-derived EV, FB, and FB-derived EV were systemically administered before hepatic IRI. We found that MSC and MSC-derived EV decreased serum transaminase levels, reduced hepatic necrosis, increased the amount of Ki67-positive hepatocytes, and repressed the transcription of inflammation-associated genes. Although they had no impact on organ damage, FB and FB-derived EV showed some regenerative potential in the late phase of hepatic IRI. Compared to FB, MSC and their derived EV had a stronger potential to attenuate liver damage and improve organ regeneration after hepatic IRI. These results suggest that the key therapeutic factors are located within EV.
Collapse
Affiliation(s)
- Friedrich Anger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Monika Camara
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Elisabeth Ellinger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|