1
|
Pandey S, Kaur G, Rana N, Chopra S, Rather I, Kumar R, Laroiya I, Chadha VD, Satz S, Stabin MG, Mittal BR, Shukla J. Advancing Cancer Theranostics Through Integrin αVβ3-Targeted Peptidomimetic IAC: From Bench to Bedside. Cancer Biother Radiopharm 2024. [PMID: 38977419 DOI: 10.1089/cbr.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Introduction: The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. Methodology: Radiolabeling of DOTAGA [2,2',2" -{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [68Ga]Ga, [177Lu]Lu, and [225Ac]Ac was optimized. The binding affinity (Kd) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [177Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [68Ga]Ga-DOTAGA-IAC and [18F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [68Ga]Ga-DOTAGA-IAC and [18F]FDG in these patients. Results: Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). Kd and Bmax measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [177Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [68Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUVmax) of 3.94 ± 0.58 compared with [18F]FDG (SUVmax 13.8 ± 6.53). Conclusion: The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [68Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.
Collapse
Affiliation(s)
- Somit Pandey
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Gurvinder Kaur
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Nivedita Rana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sejal Chopra
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Imran Rather
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Rajender Kumar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ishita Laroiya
- Department of Surgery, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Vijayta D Chadha
- Center for Nuclear Medicine, Panjab University, Chandigarh, India
| | - Stanley Satz
- Advanced Innovative Partners, Inc., Miami, Florida, USA
| | | | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Tayanloo-Beik A, Nikkhah A, Alaei S, Goodarzi P, Rezaei-Tavirani M, Mafi AR, Larijani B, Shouroki FF, Arjmand B. Brown adipose tissue and alzheimer's disease. Metab Brain Dis 2023; 38:91-107. [PMID: 36322277 DOI: 10.1007/s11011-022-01097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-β (Aβ) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Comparison of Diagnostic Value for Chronic Kidney Disease between 640-Slice Computed Tomography Kidney Scan and Conventional Computed Tomography Scan. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6587617. [PMID: 36082054 PMCID: PMC9433217 DOI: 10.1155/2022/6587617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the diagnostic value for chronic kidney disease (CKD) between 640-slice computed tomography (CT) kidney scan and conventional CT scan. Methods A total of 120 CKD patients who received kidney plain scan plus enhanced examination in the CT room of the Medical Imaging Department of our hospital from June 2019 to September 2019 were selected and randomly divided into the experimental group (n = 60) and the control group (n = 60). Patients in the control group received the conventional CT plain scan and enhanced scan, and for patients in the experimental group, CT plain scan was performed first, the range of 640-slice CT dynamic volume scan was determined, and after bolus injection of contrast agent, dynamic volume scan was performed for scanning in the cortical phase, myeloid phase, and secretory phase. The imaging quality and effective scanning dose were compared between the two modalities, and the relationship between CT values obtained from 640-slice CT scan and conventional CT scan and the renal impairment was analyzed. Results Compared with the control group, the image quality of 640-slice CT scan conducted in the experimental group was significantly better (P < 0.05); the effective radiation doses of the experimental group and the control group were, respectively, (1.89 ± 0.32) mSv and (3.26 ± 0.47) mSv, indicating that the dose was significantly lower in the experimental group than in the control group (t = 18.664, P < 0.001), and the correlation analysis showed that the relationship between the sum of CT values in the cortical phase of both kidneys and kidney injury in the experimental group was r = 0.835, P < 0.001. Conclusion Both 640-slice CT kidney scan and conventional CT scan can be used in the diagnosis of CKD. 640-slice CT has a lower radiation dose, better image quality, and higher application value.
Collapse
|
4
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
5
|
Hoffman JM, Valencak TG. Sex differences and aging: Is there a role of brown adipose tissue? Mol Cell Endocrinol 2021; 531:111310. [PMID: 33989715 PMCID: PMC8195864 DOI: 10.1016/j.mce.2021.111310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
In every population across the world, women live significantly longer than men; however, the underlying physiological processes that drive these sex differences in age-specific mortality are largely unknown. Recently, the role of adipose tissue in aging and longevity has been a focus of biomedical research in both humans and rodent models. Specifically, brown adipose tissue, a thermoregulatory tissue originally thought to not exist past infancy in humans, has been shown to potentially play a role in health throughout the lifespan. Females have larger adult brown adipose depots that are not just larger in size but also more efficient in non-shivering thermogenesis. This improved functioning of the brown adipose tissue may potentially lead to improved female health, and we hypothesize that this advantage may be of even bigger significance in the older population. Here, we briefly review what is known about sex differences in aging and how sex differences in brown adipose tissue may be contributing to the female lifespan advantage. These questions have usually been addressed in large experimental studies in rodents as a translational model of human aging. Overall, we propose that a better understanding of the thermogenesis-metabolism nexus is necessary in biomedical research, and sex differences in these factors may contribute to the female longevity bias seen in human populations.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294, USA.
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, 310058, Hangzhou, PR China.
| |
Collapse
|
6
|
Ji L, Zhao Y, He L, Zhao J, Gao T, Liu F, Qi B, Kang F, Wang G, Zhao Y, Guo H, He Y, Li F, Huang Q, Xing J. AKAP1 Deficiency Attenuates Diet-Induced Obesity and Insulin Resistance by Promoting Fatty Acid Oxidation and Thermogenesis in Brown Adipocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002794. [PMID: 33747723 PMCID: PMC7967052 DOI: 10.1002/advs.202002794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Altering the balance between energy intake and expenditure is a major strategy for treating obesity. Nonetheless, despite the progression in antiobesity drugs on appetite suppression, therapies aimed at increasing energy expenditure are limited. Here, knockout ofAKAP1, a signaling hub on outer mitochondrial membrane, renders mice resistant to diet-induced obesity.AKAP1 knockout significantly enhances energy expenditure and thermogenesis in brown adipose tissues (BATs) of obese mice. Restoring AKAP1 expression in BAT clearly reverses the beneficial antiobesity effect in AKAP1-/- mice. Mechanistically, AKAP1 remarkably decreases fatty acid β-oxidation (FAO) by phosphorylating ACSL1 to inhibit its activity in a protein-kinase-A-dependent manner and thus inhibits thermogenesis in brown adipocytes. Importantly, AKAP1 peptide inhibitor effectively alleviates diet-induced obesity and insulin resistance. Altogether, the findings demonstrate that AKAP1 functions as a brake of FAO to promote diet-induced obesity, which may be used as a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Lele Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
- National Demonstration Center for Experimental Preclinical Medicine EducationFourth Military Medical UniversityXi'anShaanxi710032China
| | - Ya Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
- Laboratory Animal CenterFourth Military Medical UniversityXi'anShaanxi710032China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Tian Gao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fengzhou Liu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bingchao Qi
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fei Kang
- Department of Nuclear MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Gang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuanfang He
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Fei Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
7
|
Darcy J, Tseng YH. ComBATing aging-does increased brown adipose tissue activity confer longevity? GeroScience 2019; 41:285-296. [PMID: 31230192 DOI: 10.1007/s11357-019-00076-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Brown and its related beige adipose tissue (BAT) play a definitive role in maintaining body temperature by producing heat through uncoupling protein 1 (UCP1), which acts by dissociating oxidative phosphorylation from ATP production, resulting in the release of heat. Therefore, in order to maintain high thermogenic capacity, BAT must act as a metabolic sink by taking up vast amounts of circulating glucose and lipids for oxidation. This, along with the rediscovery of BAT in adult humans, has fueled the study of BAT as a putative therapeutic approach to manage the growing rates of obesity and metabolic syndromes. Notably, many of the beneficial consequences of BAT activity overlap with metabolic biomarkers of extended lifespan and healthspan. In this review, we provide background about BAT including the thermogenic program, BAT's role as a secretory organ, and differences between BAT in mice and humans. We also provide details on BAT during aging, and perspectives on the potential of targeting BAT to promote lifespan and healthspan.
Collapse
Affiliation(s)
- Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|