1
|
Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol 2023; 11:1181619. [PMID: 37363728 PMCID: PMC10285172 DOI: 10.3389/fcell.2023.1181619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease that affects approximately 500 million people worldwide. Unfortunately, there is currently no effective treatment available to stop or delay the degenerative progression of joint disease. Wnt signaling pathways play fundamental roles in the regulation of growth, development, and homeostasis of articular cartilage. This review aims to summarize the role of Wnt pathways in joint development during embryonic stages and in cartilage maintenance throughout adult life. Specifically, we focus on aberrant mechanical loading and inflammation as major players in OA progression. Excessive mechanical load activates Wnt pathway in chondrocytes, resulting in chondrocyte apoptosis, matrix destruction and other osteoarthritis-related changes. Additionally, we discuss emerging Wnt-related modulators and present an overview of emerging treatments of OA targeting Wnt signaling. Ultimately, this review provides valuable insights towards discovering new drugs or gene therapies targeting Wnt signaling pathway for diagnosing and treating osteoarthritis and other degenerative joint diseases.
Collapse
Affiliation(s)
- Xinyan Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Han
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimiao Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Feng
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
da Silva ZA, Melo WWP, Ferreira HHN, Lima RR, Souza-Rodrigues RD. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J Funct Biomater 2023; 14:103. [PMID: 36826902 PMCID: PMC9965396 DOI: 10.3390/jfb14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Temporomandibular disorder (TMD) is an umbrella term used to describe various conditions that affect temporomandibular joints, masticatory muscles, and associated structures. Although the most conservative and least invasive treatment is preferable, more invasive therapies should be employed to refractory patients. Tissue engineering has been presented as a promising therapy. Our study aimed to investigate trends and point out future research directions on TMD and stem cells. A comprehensive search was carried out in the Web of Science Core Collection (WoS-CC) in October 2022. The bibliometric parameters were analyzed through descriptive statistics and graphical mapping. Thus, 125 papers, published between 1992 and 2022 in 65 journals, were selected. The period with the highest number of publications and citations was between 2012 and 2022. China has produced the most publications on the subject. The most frequently used keywords were "cartilage", "temporomandibular joint", "mesenchymal stem cells", and "osteoarthritis". Moreover, the primary type of study was in vivo. It was noticed that using stem cells to improve temporomandibular joint repair and regeneration is a significant subject of investigation. Nonetheless, a greater understanding of the biological interaction and the benefits of using these cells in patients with TMD is required.
Collapse
Affiliation(s)
| | | | | | | | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
3
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
4
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
5
|
Basudan AM, Aziz MA, Yang Y. Implications of zonal architecture on differential gene expression profiling and altered pathway expressions in mandibular condylar cartilage. Sci Rep 2021; 11:16915. [PMID: 34413358 PMCID: PMC8376865 DOI: 10.1038/s41598-021-96071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Mandibular condylar cartilage (MCC) is a multi-zonal heterogeneous fibrocartilage containing different types of cells, but the factors/mechanisms governing the phenotypic transition across the zones have not been fully understood. The reliability of molecular studies heavily rely on the procurement of pure cell populations from the heterogeneous tissue. We used a combined laser-capture microdissection and microarray analysis approach which allowed identification of differential zone-specific gene expression profiling and altered pathways in the MCC of 5-week-old rats. The bioinformatics analysis demonstrated that the MCC cells clearly exhibited distinguishable phenotypes from the articular chondrocytes. Additionally, a set of genes has been determined as potential markers to identify each MCC zone individually; Crab1 gene showed the highest enrichment while Clec3a was the most downregulated gene at the superficial layer, which consists of fibrous (FZ) and proliferative zones (PZ). Ingenuity Pathway Analysis revealed numerous altered signaling pathways; Leukocyte extravasation signaling pathway was predicted to be activated at all MCC zones, in particular mature and hypertrophic chondrocytes zones (MZ&HZ), when compared with femoral condylar cartilage (FCC). Whereas Superpathway of Cholesterol Biosynthesis showed predicted activation in both FZ and PZ as compared with deep MCC zones and FCC. Determining novel zone-specific differences of large group of potential genes, upstream regulators and pathways in healthy MCC would improve our understanding of molecular mechanisms on regional (zonal) basis, and provide new insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Aisha M Basudan
- Division of Orthodontics, Dental Services Department, KAMC/KAIMRC/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia.
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Colorectal Cancer Research Program, MNGHA, Riyadh, 11426, Saudi Arabia
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, SAR, China
| |
Collapse
|
6
|
Yi Y, Zhou X, Xiong X, Wang J. Neuroimmune interactions in painful TMD: Mechanisms and treatment implications. J Leukoc Biol 2021; 110:553-563. [PMID: 34322892 DOI: 10.1002/jlb.3mr0621-731rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanisms and treatment of painful temporomandibular disorders (TMDs) are important but understudied topics in craniofacial research. As a group of musculoskeletal diseases, the onset of painful TMD is proved to be a result of disturbance of multiple systems. Recently, emerging evidence has revealed the involvement of neuroimmune interactions in painful TMD. Inflammatory factors play an important role in peripheral sensitization of temporomandibular joint (TMJ), and neurogenic inflammation in turn enhances TMJs dysfunction in TMD. Furthermore, centralized neuroimmune communications contribute to neuron excitability amplification, leading to pain sensitization, and is also responsible for chronic TMD pain and other CNS symptoms. Therapeutics targeting neuroimmune interactions may shed light on new approaches for treating TMD. In this review, we will discuss the role of neuroimmune interactions in the onset of painful TMD from the peripheral and centralized perspectives, and how understanding this mechanism could provide new treatment options. Insights into the neuroimmune interactions within TMJs and painful TMD would broaden the knowledge of mechanisms and treatments of this multifactorial disease.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|