1
|
Zhang C, Wang Y, Zhang X, Zhang K, Chen F, Fan J, Wang X, Yang X. Maintaining the Mitochondrial Quality Control System Was a Key Event of Tanshinone IIA against Deoxynivalenol-Induced Intestinal Toxicity. Antioxidants (Basel) 2024; 13:121. [PMID: 38247545 PMCID: PMC10812604 DOI: 10.3390/antiox13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xinyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|
2
|
Kang L, Pang J, Zhang X, Liu Y, Wu Y, Wang J, Han D. L-arabinose Attenuates LPS-Induced Intestinal Inflammation and Injury through Reduced M1 Macrophage Polarization. J Nutr 2023; 153:3327-3340. [PMID: 37717628 DOI: 10.1016/j.tjnut.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND L-arabinose has anti-inflammatory and metabolism-promoting properties, and macrophages participate in the alleviation of inflammation; however, the mechanism by which they contribute to the anti-inflammatory effects of L-arabinose is unknown. OBJECTIVES To investigate the involvement of macrophages in the mitigation of L-arabinose in an intestinal inflammation model induced by lipopolysaccharide (LPS). METHODS Five-week-old male C57BL/6 mice were divided into 3 groups: a control and an LPS group that both received normal water supplementation, and an L-arabinose (ARA+LPS) group that received 5% L-arabinose supplementation. Mice in the LPS and ARA+LPS groups were intraperitoneally injected with LPS (10 mg/kg body weight), whereas the control group was intraperitoneally injected with the same volume of saline. Intestinal morphology, cytokines, tight junction proteins, macrophage phenotypes, and microbial communities were profiled at 6 h postinjection. RESULTS L-arabinose alleviated LPS-induced damage to intestinal morphology. L-arabinose down-regulated serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and messenger RNA (mRNA) levels of TNF-α, IL-1β, interferon-γ (IFN-γ), and toll-like receptor-4 in jejunum and colon compared with those of the LPS group (P < 0.05). The mRNA and protein levels of occludin and claudin-1 were significantly increased by L-arabinose (P < 0.05). Interferon regulatory factor-5 (IRF-5) and signal transducer and activator of transcription-1 (STAT-1), key genes characterized by M1 macrophages, were elevated in the jejunum and colon of LPS mice (P < 0.05) but decreased in the ARA+LPS mice (P < 0.05). In vitro, L-arabinose decreased the proportion of M1 macrophages and inhibited mRNA levels of TNF-α, IL-1β, IL-6, IFN-γ, as well as IRF-5 and STAT-1 (P < 0.01). Moreover, L-arabinose restored the abundance of norank_f__Muribaculaceae, Faecalibaculum, Dubosiella, Prevotellaceae_UCG-001, and Paraasutterella compared with those of LPS (P < 0.05) and increased the concentration of short-chain fatty acids (P < 0.05). CONCLUSION The anti-inflammatory effects of L-arabinose are achieved by reducing M1 macrophage polarization, suggesting that L-arabinose could be a candidate functional food or nutritional strategy for intestinal inflammation and injury.
Collapse
Affiliation(s)
- Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
WANG L, FENG J, ZHAN D, WANG J, ZHOU D. Protective effects of tanshinone ⅡA on sepsis-induced multiple organ dysfunction: a literature review. J TRADIT CHIN MED 2023; 43:1040-1046. [PMID: 37679993 PMCID: PMC10465841 DOI: 10.19852/j.cnki.jtcm.20230727.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 09/09/2023]
Abstract
TanshinoneⅡA (TanⅡA) is a noteworthy lipophilic diterpene compound derived from the dried roots of the Traditional Chinese Medicine Danshen () that has various pharmacological properties, including anti-inflammatory, antibacterial, and antioxidative effects. Sepsis is a life-threatening organ dysfunction induced by a dysregulated host response to infection. Recently, increasing attention has been paid to sepsis-induced dysfunction of the intestine, car-diovascular system, lungs, kidneys, liver, and other organs. Experimental studies have shown that TanⅡA has therapeutic potential for sepsis-induced organ dysfunction owing to its anti-inflammatory, anti-apoptotic and regulatory effects on multiple signalling pathways. The purpose of this article is to evaluate the potential multiorgan protective effects of TanⅡA in sepsis.
Collapse
Affiliation(s)
- Lili WANG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ju FENG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Daqian ZHAN
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junshuai WANG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Daixing ZHOU
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q, Zhu W. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol 2023; 118:110111. [PMID: 37028275 DOI: 10.1016/j.intimp.2023.110111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established. METHODS C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting. RESULTS STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1β(IL-1β), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS. CONCLUSIONS The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response.
Collapse
Affiliation(s)
- Ya-Qin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Jie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Hui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Zhang Y, Mu T, Jia H, Yang Y, Wu Z. Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids 2022; 54:353-364. [PMID: 34085156 DOI: 10.1007/s00726-021-03011-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
Intestinal dysfunction is commonly observed in humans and animals. Glycine (Gly) is a functional amino acid with anti-inflammatory and anti-apoptotic properties. The objective of this study was to test the protective effects of Gly against lipopolysaccharide (LPS)-induced intestinal injury. 28 C57BL/6 mice with a body weight (BW) of 18 ± 2 g were randomly assigned into four groups: CON (control), GLY (orally administered Gly, 5 g/kg BW/day for 6 days), LPS (5 mg/kg BW on day 7, i. p.), and GLY + LPS (Gly pretreatment and LPS administration). Histological alterations, inflammatory responses, epithelial cell apoptosis, and changes of the intestinal microbiota were analyzed. Results showed that, compared with the CON group, mice in the LPS treatment group showed decreased villus height, increased crypt depth, and decreased ratio of villus height to crypt depth, which were significantly attenuated by Gly. Neither LPS nor Gly treatment altered morphology of the distal colon tissues. LPS increased the apoptosis of jejunum and colon epithelial cells and protein abundance of cleaved caspase3 in the jejunum, which were markedly abrogated by Gly. LPS also elevated the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88), pro-inflammatory cytokines, and chemokines in the jejunum and colon. These alterations were significantly suppressed by Gly. In addition, Gly supplementation attenuated infiltration of CD4+, CD8+ T-lymphocytes, CD11b+ and F4/80+ macrophages in the colon. Furthermore, Gly increased the relative abundance of Mucispirillum, Lachnospiraceae-NK4A136-group, Anaerotruncus, Faecalibaculum, Ruminococcaceae-UCG-014, and decreased the abundance of Bacteroides at genus level. Supplementation with Gly might be a nutritional strategy to ameliorate LPS-induced intestinal injury in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang S, Luo H, Sun S, Zhang Y, Ma J, Lin Y, Yang L, Tan D, Fu C, Zhong Z, Wang Y. Salvia miltiorrhiza Bge. (Danshen) for Inflammatory Bowel Disease: Clinical Evidence and Network Pharmacology-Based Strategy for Developing Supplementary Medical Application. Front Pharmacol 2022; 12:741871. [PMID: 35126100 PMCID: PMC8807566 DOI: 10.3389/fphar.2021.741871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific colorectal disease caused by multifaceted triggers. Although conventional treatments are effective in the management of IBD, high cost and frequent side effects limit their applications and have turned sufferers toward alternative and complementary approaches. Salvia miltiorrhiza Bge (Danshen) is an herbal medicine that reportedly alleviates the symptoms of IBD. A large body of research, including clinical trials in which Danshen-based products or botanical compounds were used, has unmasked its multiple mechanisms of action, but no review has focused on its efficacy as a treatment for IBD. Here, we discussed triggers of IBD, collected relevant clinical trials and analyzed experimental reports, in which bioactive compounds of Danshen attenuated rodent colitis in the management of intestinal integrity, gut microflora, cell death, immune conditions, cytokines, and free radicals. A network pharmacology approach was applied to describe sophisticated mechanisms in a holistic view. The safety of Danshen was also discussed. This review of evidence will help to better understand the potential benefits of Danshen for IBD treatment and provide insights for the development of innovative applications of Danshen.
Collapse
Affiliation(s)
- Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Shiyi Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yating Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaqi Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang,
| |
Collapse
|
7
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Gao HN, Hu H, Wen PC, Lian S, Xie XL, Song HL, Yang ZN, Ren FZ. Yak milk-derived exosomes alleviate lipopolysaccharide-induced intestinal inflammation by inhibiting PI3K/AKT/C3 pathway activation. J Dairy Sci 2021; 104:8411-8424. [PMID: 34001362 DOI: 10.3168/jds.2021-20175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
Intestinal epithelial cells (IEC) are important parts of the mucosal barrier, whose function can be impaired upon various injury factors such as lipopolysaccharide. Although food-derived exosomes are preventable against intestinal barrier injuries, there have been few studies on the effect of yak milk-derived exosomes and the underlying mechanism that remains poorly understood. This study aimed to characterize the effect of exosomal proteins derived from yak and cow milk on the barrier function of IEC-6 treated with lipopolysaccharide and the relevant mechanism involved. Proteomics study revealed 392 differentially expressed proteins, with 58 higher expressed and 334 lower expressed in yak milk-derived exosomes than those in cow exosomes. Additionally, the top 20 proteins with a relatively consistent higher expression in yak milk exosomes than cow milk exosomes were identified. Protein CD46 was found to be a regulator for alleviating inflammatory injury of IEC-6. In vitro assay of the role of yak milk exosomes on survival of IEC-6 in inflammation by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay confirmed the effectiveness of yak milk exosomes to increase IEC-6 survival up to 18% for 12 h compared with cow milk exosomes (up to 12%), indicating a therapeutic effect of yak milk exosomes in the prevention of intestinal inflammation. Furthermore, yak and cow milk exosomes were shown to activate the PI3K/AKT/C3 signaling pathway, thus promoting IEC-6 survival. Our findings demonstrated an important relationship between yak and cow milk exosomes and intestinal inflammation, facilitating further understanding of the mechanisms of inflammation-driven epithelial homeostasis. Interestingly, compared with cow milk exosomes, yak milk exosomes activated the PI3K/AKT/C3 signaling pathway more to lower the incidence and severity of intestine inflammation, which might represent a potential innovative therapeutic option for intestinal inflammation.
Collapse
Affiliation(s)
- H N Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - P C Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - S Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - X L Xie
- Treasure of Tibet Yak Dairy Co., Ltd., Lhasa 610000, China
| | - H L Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Z N Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - F Z Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Yang L, Zhou G, Liu J, Song J, Zhang Z, Huang Q, Wei F. Tanshinone I and Tanshinone IIA/B attenuate LPS-induced mastitis via regulating the NF-κB. Biomed Pharmacother 2021; 137:111353. [PMID: 33578236 DOI: 10.1016/j.biopha.2021.111353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Mastitis is a common disease occurs in breast-feeding mothers, but published data are poor. This study aimed to study the effects of Tanshinones on treating mastitis. METHODS Clinical trials performed in 58 breast-feeding mothers were carried out. B-ultrasound and blood test were used to measure the size of breast mass and the change of blood cell counts. BALB/c mice were injected with LPS and then treated by Tanshinone I or Tanshinone IIA/B. Myeloperoxidase (MPO) activity and the release of inflammatory cytokines were tested by MPO kit, RT-qPCR and ELISA. Mouse mammary epithelial cells (mMECs) were isolated and the effects of Tanshinones were measured by conducting CCK-8 assay, flow cytometry, RT-qPCR and ELISA. RESULTS Patients treated by Cefprozil combined with Tanshinone got better outcomes than patients treated by Cefprozil alone. In animal trials, Tanshinone I and Tanshinone IIA/B significantly reduced MPO activity, and the levels of TNF-α, IL-1β and IL-6 in serum and mammary gland tissues. In mMECs, Tanshinone I and Tanshinone IIA/B attenuated LPS-induced viability loss and apoptosis. And they effectively inhibited the release of TNF-α, IL-1β and IL-6. Also, Tanshinone I and Tanshinone IIA/B significantly attenuated LPS-evoked NF-κB activation. CONCLUSION Tanshinone I and Tanshinone IIA/B have potentials in treating mastitis. The beneficial effects might be through regulating NF-κB activation.
Collapse
Affiliation(s)
- Lili Yang
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Guanglin Zhou
- Department of Breast Surgery, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Jinghua Liu
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Jinshuang Song
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Zongyu Zhang
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Qi Huang
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China
| | - Fengxiang Wei
- Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, China.
| |
Collapse
|
10
|
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G, Zhang J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front Pharmacol 2020; 11:193. [PMID: 32265690 PMCID: PMC7098175 DOI: 10.3389/fphar.2020.00193] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer is a common malignant disease worldwide with an increasing mortality in recent years. Salvia miltiorrhiza, a well-known traditional Chinese medicine, has been used for the treatment of cardiovascular and cerebrovascular diseases for thousands of years. The liposoluble tanshinones in S. miltiorrhiza are important bioactive components and mainly include tanshinone IIA, dihydrodanshinone, tanshinone I, and cryptotanshinone. Previous studies showed that these four tanshinones exhibited distinct inhibitory effects on tumor cells through different molecular mechanisms in vitro and in vivo. The mechanisms mainly include the inhibition of tumor cell growth, metastasis, invasion, and angiogenesis, apoptosis induction, cell autophagy, and antitumor immunity, and so on. In this review, we describe the latest progress on the antitumor functions and mechanisms of these four tanshinones to provide a deeper understanding of the efficacy. In addition, the important role of tumor immunology is also reviewed.
Collapse
Affiliation(s)
- Li Fu
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Bing Han
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhou
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Wenzhi Cao
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
11
|
Li LQ, Song AX, Yin JY, Siu KC, Wong WT, Wu JY. Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models. Int J Biol Macromol 2020; 149:1042-1050. [PMID: 32035153 DOI: 10.1016/j.ijbiomac.2020.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
This study was to assess the anti-inflammatory potential of exopolysaccharide (EPS) produced by a medicinal fungus Cordyceps sinensis Cs-HK1. The EPS was isolated from the Cs-HK1 mycelial fermentation broth by ethanol precipitation and purified by deproteinization and dialysis. The EPS had a total sugar content of 74.8% and a maximum average molecular weight (MW) over 107 Da, and consisted mainly of glucose and mannose, and a small amount of galactose and ribose. In THP-1 and RAW264.7 cell cultures, EPS significantly inhibited lipopolysaccharide (LPS)-induced inflammatory responses of the cells including the release of NF-κB and several pro-inflammatory factors such as NO, TNF-α and IL-1β. In the murine model of LPS-induced acute intestinal injury, the oral administration of EPS to the animals effectively suppressed the expression of major inflammatory cytokines TNF-α, IL-1β, IL-10 and iNOS and alleviated the intestinal injury. The results suggest that the Cs-HK1 EPS has notable anti-inflammatory activity and can be a potential candidate for further development of new anti-septic therapeutics. To the best of our knowledge, this is the first report on the anti-inflammation of an EPS from C. sinensis fungal fermentation.
Collapse
Affiliation(s)
- Long-Qing Li
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ang-Xin Song
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ka-Chai Siu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Salameh E, Morel FB, Zeilani M, Déchelotte P, Marion-Letellier R. Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention. Nutrients 2019; 11:nu11092233. [PMID: 31527523 PMCID: PMC6770013 DOI: 10.3390/nu11092233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
: Undernutrition is a major public health problem leading to 1 in 5 of all deaths in children under 5 years. Undernutrition leads to growth stunting and/or wasting and is often associated with environmental enteric dysfunction (EED). EED mechanisms leading to growth failure include intestinal hyperpermeability, villus blunting, malabsorption and gut inflammation. As non-invasive methods for investigating gut function in undernourished children are limited, pre-clinical models are relevant to elucidating the pathophysiological processes involved in undernutrition and EED, and to identifying novel therapeutic strategies. In many published models, undernutrition was induced using protein or micronutrient deficient diets, but these experimental models were not associated with EED. Enteropathy models mainly used gastrointestinal injury triggers. These models are presented in this review. We found only a few studies investigating the combination of undernutrition and enteropathy. This highlights the need for further developments to establish an experimental model reproducing the impact of undernutrition and enteropathy on growth, intestinal hyperpermeability and inflammation, that could be suitable for preclinical evaluation of innovative therapeutic intervention.
Collapse
Affiliation(s)
- Emmeline Salameh
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Nutriset SAS, 76770 Malaunay, France.
| | | | | | - Pierre Déchelotte
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Rachel Marion-Letellier
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
| |
Collapse
|
13
|
Liu X, Niu Y, Xie W, Wei D, Du Q. Tanshinone IIA promotes osteogenic differentiation of human periodontal ligament stem cells via ERK1/2-dependent Runx2 induction. Am J Transl Res 2019; 11:340-350. [PMID: 30787991 PMCID: PMC6357334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) of the dental or craniofacial origin include Human periodontal ligament stem cells (hPDLSCs), which are able to readily differentiate into osteoblasts. Tanshinone IIA (TSA) is a diterpene quinone compound that is derived from Danshen (also known as Salvia miltiorrhiza) used frequently in the context of traditional Chinese medicine (TCM). This study sought to assess how TSA affects the osteogenic differentiation of hPDLSCs. We found that TSA promotes both this differentiation and hPDLSC maturation. This was dependent on TSA-mediated activation of the ERK1/2 signaling pathway, and ERK1/2 inhibition disrupted TSA-induced Runx2 expression. From these results, we conclude that TSA can induce hPDLSC osteogenesis through the ERK1/2-Runx2 axis, suggesting that TSA is a viable therapeutic option for regenerative medical approaches aimed at the treatment of periodontitis.
Collapse
Affiliation(s)
- Xin Liu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Yumei Niu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Weili Xie
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Daqing Wei
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| | - Qing Du
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| |
Collapse
|