1
|
Hou S, Yang B, Chen Q, Xu Y, Li H. Potential biomarkers of recurrent FSGS: a review. BMC Nephrol 2024; 25:258. [PMID: 39134955 PMCID: PMC11318291 DOI: 10.1186/s12882-024-03695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a clinicopathological condition characterized by nephrotic-range proteinuria, has a high risk of progression to end-stage renal disease (ESRD). Meanwhile, the recurrence of FSGS after renal transplantation is one of the main causes of graft loss. The diagnosis of recurrent FSGS is mainly based on renal puncture biopsy transplants, an approach not widely consented by patients with early mild disease. Therefore, there is an urgent need to find definitive diagnostic markers that can act as a target for early diagnosis and intervention in the treatment of patients. In this review, we summarize the domestic and international studies on the pathophysiology, pathogenesis and earliest screening methods of FSGS and describe the functions and roles of specific circulating factors in the progression of early FSGS, in order to provide a new theoretical basis for early diagnosis of FSGS recurrence, as well as aid the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Bo Yang
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| | - Haiyang Li
- Hepatological surgery department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
2
|
Ekrikpo U, Obiagwu P, Chika-Onu U, Yadla M, Karam S, Tannor EK, Bello AK, Okpechi IG. Epidemiology and Outcomes of Glomerular Diseases in Low- and Middle-Income Countries. Semin Nephrol 2023; 42:151316. [PMID: 36773418 DOI: 10.1016/j.semnephrol.2023.151316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Glomerular diseases account for a significant proportion of chronic kidney disease in low-income and middle-income countries (LMICs). The epidemiology of glomerulonephritis is characterized inadequately in LMICs, largely owing to unavailable nephropathology services or uncertainty of the safety of the kidney biopsy procedure. In contrast to high-income countries where IgA nephropathy is the dominant primary glomerular disease, focal segmental glomerulosclerosis is common in large populations across Latin America, Africa, Middle East, and South East Asia, while IgA nephropathy is common in Chinese populations. Despite having a high prevalence of known genetic and viral risk factors that trigger focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis also is common in adults and children in some African countries. Treatment of glomerular diseases in adults and children in LMICs largely is dependent on corticosteroids in combination with other immunosuppressive therapy, which often is cyclophosphamide because of its ready availability and low cost of treatment, despite significant adverse effects. Partial and/or complete remission status reported from studies of glomerular disease subtypes vary across LMIC regions, with high rates of kidney failure, mortality, and disease, and treatment complications often reported. Improving the availability of nephropathology services and ensuring availability of specific therapies are key measures to improving glomerular disease outcomes in LMICs.
Collapse
Affiliation(s)
- Udeme Ekrikpo
- Department of Medicine, University of Uyo, Uyo, Nigeria
| | - Patience Obiagwu
- Department of Paediatrics, Bayero University, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Ugochi Chika-Onu
- Department of Medicine, College of Medicine, University of Nigeria, Ituku-Ozalla, Enugu, Nigeria
| | - Manjusha Yadla
- Department of Nephrology, Gandhi Medical College, Hyderabad, Telangana, India
| | - Sabine Karam
- Division of Nephrology, University of Minnesota, Minnesota, MN; Division of Nephrology, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand, Lebanon
| | - Elliot K Tannor
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aminu K Bello
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ikechi G Okpechi
- Department of Medicine, University of Alberta, Edmonton, Canada; Division of Nephrology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
4
|
Anti-apoptosis mechanism of triptolide based on network pharmacology in focal segmental glomerulosclerosis rats. Biosci Rep 2021; 40:222639. [PMID: 32285909 PMCID: PMC7189607 DOI: 10.1042/bsr20192920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Triptolide (TPL), the active component of Tripterygium wilfordii, exhibits anti-cancer and antioxidant functions. We aimed to explore the anti-apoptosis mechanism of TPL based on network pharmacology and in vivo and in vitro research validation using a rat model of focal segmental glomerulosclerosis (FSGS). The chemical structures and pharmacological activities of the compounds reported in T. wilfordii were determined and used to perform the network pharmacology analysis. The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was then used to identify the network targets for 16 compounds from Tripterygium wilfordii. Our results showed that 47 overlapping genes obtained from the GeneCards and OMIM databases were involved in the occurrence and development of FSGS and used to construct the protein–protein interaction (PPI) network using the STRING database. Hub genes were identified via the MCODE plug-in of the Cytoscape software. IL4 was the target gene of TPL in FSGS and was mainly enriched in the cell apoptosis term and p53 signaling pathway, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. TPL inhibited FSGS-induced cell apoptosis in rats and regulated IL4, nephrin, podocin, and p53 protein levels via using CCK8, TUNEL, and Western blot assays. The effects of IL4 overexpression, including inhibition of cell viability and promotion of apoptosis, were reversed by TPL. TPL treatment increased the expression of nephrin and podocin and decreased p53 expression in rat podocytes. In conclusion, TPL inhibited podocyte apoptosis by targeting IL4 to alleviate kidney injury in FSGS rats.
Collapse
|
5
|
Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021; 49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.
Collapse
Affiliation(s)
- Leslie A Obert
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Daniela Ennulat
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | | |
Collapse
|
6
|
da Silva CA, Monteiro MLGDR, Araújo LS, Urzedo MG, Rocha LB, dos Reis MA, Machado JR. In situ evaluation of podocytes in patients with focal segmental glomerulosclerosis and minimal change disease. PLoS One 2020; 15:e0241745. [PMID: 33147279 PMCID: PMC7641434 DOI: 10.1371/journal.pone.0241745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury in focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) results from the imbalance between adaptive responses that maintain homeostasis and cellular dysfunction that can culminate in cell death. Therefore, an in situ analysis was performed to detect morphological changes related to cell death and autophagy in renal biopsies from adult patients with podocytopathies. Forty-nine renal biopsies from patients with FSGS (n = 22) and MCD (n = 27) were selected. In situ expression of Wilms Tumor 1 protein (WT1), light chain microtubule 1-associated protein (LC3) and caspase-3 protein were evaluated by immunohistochemistry. The foot process effacement and morphological alterations related to podocyte cell death and autophagy were analyzed with transmission electronic microscopy. Reduction in the density of WT1-labeled podocytes was observed for FSGS and MCD cases as compared to controls. Foot process width (FPW) in control group was lower than in cases of podocytopathies. In FSGS group, FPW was significantly higher than in MCD group and correlated with proteinuria. A density of LC3-labeled podocytes and the number of autophagosomes in podocytes/ pedicels were higher in the MCD group than in the FSGS group. The number of autophagosomes correlated positively with the estimated glomerular filtration rate in cases of MCD. The density of caspase-3-labeled podocytes in FSGS and MCD was higher than control group, and a higher number of podocytes with an evidence of necrosis was detected in FSGS cases than in MCD and control cases. Podocytes from patients diagnosed with FSGS showed more morphological and functional alterations resulting from a larger number of lesions and reduced cell adaptation.
Collapse
Affiliation(s)
- Crislaine Aparecida da Silva
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria Luíza Gonçalves dos Reis Monteiro
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Liliane Silvano Araújo
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Monise Gini Urzedo
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lenaldo Branco Rocha
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antônia dos Reis
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Araújo LS, Torquato BGS, da Silva CA, Dos Reis Monteiro MLG, Dos Santos Martins ALM, da Silva MV, Dos Reis MA, Machado JR. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol 2020; 21:308. [PMID: 32723296 PMCID: PMC7389446 DOI: 10.1186/s12882-020-01960-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Inflammatory mediators have been implicated in the pathogenesis of DN, thus considered an inflammatory disease. However, further studies are required to assess the renal damage caused by the action of these molecules. Therefore, the objective of this study was to analyze the expression of cytokines and chemokines in renal biopsies from patients with DN and to correlate it with interstitial inflammation and decreased renal function. METHODS Forty-four native renal biopsies from patients with DN and 23 control cases were selected. In situ expression of eotaxin, MIP-1α (macrophage inflammatory protein-1α), IL-8 (interleukin-8), IL-4, IL-10, TNF-α (tumor necrosis factor-α), TNFR1 (tumor necrosis factor receptor-1), IL-1β, and IL-6 were evaluated by immunohistochemistry. RESULTS The DN group showed a significant increase in IL-6 (p < 0.0001), IL-1β (p < 0.0001), IL-4 (p < 0.0001) and eotaxin (p = 0.0012) expression, and a decrease in TNFR1 (p = 0.0107) and IL-8 (p = 0.0262) expression compared to the control group. However, there were no significant differences in IL-10 (p = 0.4951), TNF-α (p = 0.7534), and MIP-1α (p = 0.3816) expression among groups. Regarding interstitial inflammation, there was a significant increase in IL-6 in scores 0 and 1 compared to score 2 (p = 0.0035), in IL-10 in score 2 compared to score 0 (p = 0.0479), and in eotaxin in score 2 compared to scores 0 and 1 (p < 0.0001), whereas IL-8 (p = 0.0513) and MIP-1α (p = 0.1801) showed no significant differences. There was a tendency for negative correlation between eotaxin and estimated glomerular filtration rate (eGFR) (p = 0.0566). CONCLUSIONS Our results indicated an increased in situ production of cytokines and chemokines in DN, including IL-6, IL-1β, IL-4, and eotaxin. It was observed that, possibly, eotaxin may have an important role in the progression of interstitial inflammation in DN and in eGFR decrease of these patients.
Collapse
Affiliation(s)
- Liliane Silvano Araújo
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Bianca Gonçalves Silva Torquato
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Crislaine Aparecida da Silva
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Maria Luíza Gonçalves Dos Reis Monteiro
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Ana Luisa Monteiro Dos Santos Martins
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Av. Getúlio Guaritá, n° 130, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marlene Antônia Dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil.
| |
Collapse
|