1
|
Anwar S, Siddique R, Ahmad S, Haider MZ, Ali H, Sami A, Lucas RS, Shafiq M, Nisa BU, Javed B, Akram J, Tabassum J, Javed MA. Genome wide identification and characterization of Bax inhibitor-1 gene family in cucumber (Cucumis sativus) under biotic and abiotic stress. BMC Genomics 2024; 25:1032. [PMID: 39497028 PMCID: PMC11536926 DOI: 10.1186/s12864-024-10704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/12/2024] [Indexed: 11/06/2024] Open
Abstract
In plants, the BAX inhibitor-1 (BI-1) gene plays a crucial part in controlling cell death under stress conditions. This mechanism of Programmed Cell Death (PCD) is genetically regulated and is crucial for the elimination of unwanted or damaged cells in a controlled manner, which is essential for normal development and tissue maintenance. A study on cucumber identified and characterized five BI-1 genes: CsBI1, CsBI2, CsBI3, CsBI4, and CsBI5. These genes share conserved domains, indicating common evolutionary history and function. Physicochemical analysis revealed their molecular weights and isoelectric points, while subcellular localization showed their presence in different cellular compartments. The phylogenetic analysis highlighted evolutionary relationships with related crops. Chromosomal distribution and synteny analysis suggested segmental or tandem duplications within the gene family. Protein-protein interaction analysis revealed extensive interactions with other cucumber proteins. Cis-regulatory elements in the promoter regions provided insights into potential functions and transcriptional regulation. miRNAs showed diverse regulatory mechanisms, including mRNA cleavage and translational inhibition. The CsBI3, CsBI4 and CsBI5 genes exhibit elevated expression levels during cold stress, suggesting their vital involvement in cucumber plant defense mechanisms. The application of chitosan oligosaccharides externally confirms their distinct expression patterns. The qRT-PCR confirms the upregulation of CsBI genes in ToLCNDV-infected plants, indicating their potential to mitigate biotic and abiotic stresses. The comprehensive genome-wide exploration provides opportunities for the development of cold-tolerant and virus-resistant cucumber variants by traditional breeding or gene.
Collapse
Affiliation(s)
- Samia Anwar
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Riffat Siddique
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water and Agriculture, Riyadh, 14712, Kingdom of Saudi Arabia
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Bader Un Nisa
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Bilal Javed
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Jannat Akram
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| |
Collapse
|
2
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Chen Y, Yang B, Li Z, Yue Y, Tian Q, Chen W, Ali S, Wu J. Immune-Related Genes of Megalurothrips usitatus (Bagrall) Against Beauveria brongniartii and Akanthomyces attenuatus Identified Using RNA Sequencing. Front Physiol 2021; 12:671599. [PMID: 34456741 PMCID: PMC8385781 DOI: 10.3389/fphys.2021.671599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Megalurothrips usitatus (Bagrall) is an important pest of legumes worldwide, causing great economic loss every year. Beauveria brongniartii and Akanthomyces attenuatus have shown considerable pathogenicity against M. usitatus in our previous studies. The medial lethal concentration (LC50) and the sublethal lethal concentration (LC25) of B. brongniartii isolate SB010 against M. usitatus were 8.38 × 105 and 1.73 × 105 conidia mL−1, respectively, whereas those of A. attenuatus isolate SCAUDCL-53 against M. usitatus were 4.37 × 105 and 2.97 × 104 conidia mL−1, respectively. This study reports the transcriptome-based explanation of the stress responses of M. usitatus following the application of B. brongniartii and A. attenuatus. The analysis of the transcriptomic data revealed the expression of 254, 207, 195, and 234 immunity-related unigenes by M. usitatus in response to B. brongniartii LC50 (SB1), B. brongniartii LC25 (SB2), A. attenuatus LC50 (V1), and A. attenuatus LC25 (V2), respectively. The biological function and metabolic pathway analyses showed that these unigenes were mainly related to pattern recognition receptors, information transduction factors, and reaction factors, such as scavenger receptor, cytochrome b5, cuticle protein, lysozyme, and serine protease.
Collapse
Affiliation(s)
- Yueyin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Bo Yang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yang Yue
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingheng Tian
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiyi Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Bano N, Patel P, Chakrabarty D, Bag SK. Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco ( Nicotiana tabacum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1747-1764. [PMID: 34539114 PMCID: PMC8405835 DOI: 10.1007/s12298-021-01042-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED The basic helix-loop-helix (bHLH) is the second-largest TF family in plants that play important roles in plant growth, development, and stress responses. In this study, a total of 100 bHLHs were identified using Hidden Markov Model profiles in the Nicotiana tabacum genome, clustered into 15 major groups (I-XV) based on their conserved domains and phylogenetic relationships. Group VIII genes were found to be the most abundant, with 27 NtbHLH members. The expansion of NtbHLHs in the genome was due to segmental and tandem duplication. The purifying selection was found to have an important role in the evolution of NtHLHs. Subsequent qRT-PCR validation of five selected genes from transcriptome data revealed that NtbHLH3.1, NtbHLH3.2, NtbHLH24, NtbHLH50, and NtbHLH59.2 have higher expressions at 12 and 24 h in comparison to 0 h (control) of chilling stress. The validated results demonstrated that NtbHLH3.2 and NtbHLH24 genes have 3 and fivefold higher expression at 12 h and 2 and threefold higher expression at 24 h than control plant, shows high sensitivity towards chilling stress. Moreover, the co-expression of positively correlated genes of NtbHLH3.2 and NtbHLH24 confirmed their functional significance in chilling stress response. Therefore, suggesting the importance of NtbHLH3.2 and NtbHLH24 genes in exerting control over the chilling stress responses in tobacco. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01042-x.
Collapse
Affiliation(s)
- Nasreen Bano
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Preeti Patel
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sumit Kumar Bag
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
5
|
Karunarathne SD, Han Y, Zhang XQ, Dang VH, Angessa TT, Li C. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:47. [PMID: 37309383 PMCID: PMC10236044 DOI: 10.1007/s11032-021-01239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important macronutrients for crop growth and development. Large amounts of N fertilizers are applied exogenously to improve grain yield and quality, which has led to environmental pollution and high cost of production. Therefore, improvement of N use efficiency (NUE) is a very important aspect for sustainable agriculture. Here, a pilot experiment was firstly conducted with a set of barley genotypes with confirmed NUE to validate the fast NUE screening, using chlorate as an analogue to nitrate. High NUE genotypes were susceptible to chlorate-induced toxicity whereas the low NUE genotypes were tolerant. A total of 180 barley RILs derived from four parents (Compass, GrangeR, Lockyer and La Trobe) were further screened for NUE. Leaf chlorosis induced by chlorate toxicity was the key parameter observed which was later related to low-N tolerance of the RILs. There was a distinct variation in chlorate susceptibility of the RILs with leaf chlorosis in the oldest leaf ranging from 10 to 80%. A genome-wide association study (GWAS) identified 9 significant marker-trait associations (MTAs) conferring high chlorate sensitivity on chromosomes 2H (2), 3H (1), 4H (4), 5H (1) and Un (1). Genes flanking with these markers were retrieved as potential targets for genetic improvement of NUE. Genes encoding Ferredoxin 3, leucine-rich receptor-like protein kinase family protein and receptor kinase are responsive to N stress. MTA4H5468 which exhibits concordance with high NUE phenotype can further be explored under different genetic backgrounds and successfully applied in marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01239-8.
Collapse
Affiliation(s)
- Sakura D. Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Viet Hoang Dang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| |
Collapse
|
6
|
Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7281-7297. [PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|