1
|
Klepinowski T, Skonieczna-Żydecka K, Pala B, Stachowska E, Sagan L. Gut microbiome in intracranial aneurysm growth, subarachnoid hemorrhage, and cerebral vasospasm: a systematic review with a narrative synthesis. Front Neurosci 2023; 17:1247151. [PMID: 37928732 PMCID: PMC10620726 DOI: 10.3389/fnins.2023.1247151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Intracranial aneurysms (IA) are the most common cerebral vascular pathologies. Their rupture leads to the most dangerous subtype of stroke-aneurysmal subarachnoid hemorrhage (aSAH), which may be followed by cerebral vasospasm and ischemic sequelae. Recently, an imbalance within the intestinal microbiota, referred to as dysbiosis, was suggested to play a role in the formation, progression, and rupture of IA. As no systematic review on this topic exists, considering the significance of this matter and a lack of effective prophylaxis against IA or cerebral vasospasm, we aim to sum up the current knowledge regarding their associations with intestinal microbiome, identify the gaps, and determine future prospects. Scientific databases were systematically and independently searched by two authors from inception to 1st May 2023 for original articles regarding the role of intestinal microbiota in intracranial aneurysmal growth, aSAH occurrence, as well as in cerebral vasospasm following aSAH. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist was followed in an abstraction process. The STROBE tool was applied to assess the risk of bias. This research was funded by the National Science Centre, Poland (grant number 2021/41/N/NZ2/00844). Of 302 records, four studies were included that fully met eligibility criteria. Studies reported (1) that the relative abundance of Hungatella hathewayi is a protective factor against aneurysm growth and rupture, resulting from the reduced inflammation and extracellular matrix remodeling in the cerebral arterial wall and from reduced metalloproteinase-mediated degradation of smooth muscle cells in cerebral vessels. (2) Relative abundance of Campylobacter ureolyticus is associated with aSAH. (3) No article has evaluated microbiota in relation to cerebral vasospasm following aSAH although there is an ongoing study. We concluded that intestinal microbiota might be a potential target for diagnostic and therapeutic tools to improve the management of cerebral aneurysms. However, more studies of prospective design are needed.
Collapse
Affiliation(s)
- Tomasz Klepinowski
- Department of Neurosurgery, Pomeranian Medical University, Szczecin, Poland
| | | | - Bartłomiej Pala
- Department of Neurosurgery, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
3
|
Chang YS, Li CW, Chen L, Wang XA, Lee MS, Chao YH. Early Gut Microbiota Profile in Healthy Neonates: Microbiome Analysis of the First-Pass Meconium Using Next-Generation Sequencing Technology. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1260. [PMID: 37508757 PMCID: PMC10377966 DOI: 10.3390/children10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Gut microbiome development during early life has significant long-term effects on health later in life. The first-pass meconium is not sterile, and it is important to know the initial founder of the subsequent gut microbiome. However, there is limited data on the microbiota profile of the first-pass meconium in healthy neonates. To determine the early gut microbiota profile, we analyzed 39 samples of the first-pass meconium from healthy neonates using 16S rRNA sequencing. Our results showed a similar profile of the microbiota composition in the first-pass meconium samples. Pseudomonas was the most abundant genus in most samples. The evenness of the microbial communities in the first-pass meconium was extremely poor, and the average Shannon diversity index was 1.31. An analysis of the relationship between perinatal characteristics and the meconium microbiome revealed that primigravidae babies had a significantly higher Shannon diversity index (p = 0.041), and the Bacteroidales order was a biomarker for the first-pass meconium of these neonates. The Shannon diversity index was not affected by the mode of delivery, maternal intrapartum antibiotic treatment, prolonged rupture of membranes, or birth weight. Our study extends previous research with further characterization of the gut microbiome in very early life.
Collapse
Affiliation(s)
- Yi-Sheng Chang
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Ling Chen
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Xing-An Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Maw-Sheng Lee
- Department of Obstetrics and Gynecology, Lee Women's Hospital, Taichung 406, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
4
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|
5
|
The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci 2023; 24:ijms24032399. [PMID: 36768722 PMCID: PMC9917289 DOI: 10.3390/ijms24032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Collapse
|
6
|
Muacevic A, Adler JR, Rizwan S, Mohamed AE, Elshafey AE, Khadka A, Mosuka EM, Thilakarathne KN, Mohammed L. Role of Gut Microbiome in Cardiovascular Events: A Systematic Review. Cureus 2022; 14:e32465. [PMID: 36644080 PMCID: PMC9835843 DOI: 10.7759/cureus.32465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome helps maintain homeostasis in the body, but what if the gut experiences imbalance? It would lead to dysbiosis - which is involved in multiple diseases, including but not limited to cardiovascular diseases, the most common cause of mortality around the globe. This research paper aims to explain all the possible mechanisms known linking the gut microbiome to the contribution of worsening cardiovascular events. PubMed and Google Scholar were thoroughly explored to learn the role of the gut microbiome in cardiovascular events. A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to analyze the possible pathways and the metabolites included in the study. Thirteen review articles were selected based on the assessment of multiple systematic reviews (AMSTAR) and the scale for the assessment of non-systematic review articles (SANRA) checklist scores. In this article, we have discussed the role of the gut microbiome in atherosclerosis, hypertension, metabolic disorders such as diabetes and obesity, coronary artery disease, etc. Various pathways to modify the gut microbiome are also discussed, along with the use of probiotics. Finally, we discussed the role of trimethylamine N-oxide (TMAO), a gut microbiome metabolite, as a biomarker for the prognosis of various diseases. This study concluded that the gut microbiome does play a crucial role in the worsening of cardiovascular diseases and the metabolites of which can be used as biomarkers in the prognosis of cardiovascular events.
Collapse
|
7
|
Muradi A, Jasirwan COM, Simanjuntak CD, Pratama D, Suhartono R, Darwis P, Kekalih A. The Correlation of Short-Chain Fatty Acids with Peripheral Arterial Disease in Diabetes Mellitus Patients. Life (Basel) 2022; 12:life12101464. [PMID: 36294898 PMCID: PMC9605079 DOI: 10.3390/life12101464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD). PAD affects 20% of DM patients over 40 and has increased by 29% in the last 50 years. The gut microbiota produces short-chain fatty acids (SCFAs) that affect atherosclerosis. SCFA inhibits inflammation, which contributes to atherosclerosis. This study tried to link feces SCFA levels to atherosclerosis in people with diabetes with peripheral arterial disease (PAD). The study included 53 people with diabetes and PAD: gas chromatography-mass spectrometry measured acetate, butyrate, and propionate levels in feces samples (GC-MS). There was a positive correlation between random blood glucose (RBG) levels, peak systolic velocity (PSV), volume flow (VF), plaque, relative and absolute acetate, relative valerate, butyrate, and propionate. This supports the idea that elevated SCFA levels in type 2 diabetic (T2D) patients reduce adipose tissue inflammation and cholesterol metabolism, contributing to atherosclerosis pathogenesis. We conclude that increased fecal SCFA excretion is linked to cardiovascular disease. To determine the causal effect correlation of the SCFA with clinical and laboratory parameters for PAD in DM patients, compare the SCFA in plasma and feces, and account for confounding variables, a specific method with larger sample sizes and more extended follow-up periods is required.
Collapse
Affiliation(s)
- Akhmadu Muradi
- Vascular and Endovascular Surgery Division, Medical Staff Group of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
- Correspondence:
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| | - Charley D. Simanjuntak
- Vascular and Endovascular Surgery Division, Medical Staff Group of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| | - Dedy Pratama
- Vascular and Endovascular Surgery Division, Medical Staff Group of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| | - Raden Suhartono
- Vascular and Endovascular Surgery Division, Medical Staff Group of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| | - Patrianef Darwis
- Vascular and Endovascular Surgery Division, Medical Staff Group of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| | - Aria Kekalih
- Artificial Intelligence in Medicine & Digital Health, Medical Instrumentation & Simulators Research Group, Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
8
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
9
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
10
|
Biscetti F, Cecchini AL, Rando MM, Nardella E, Gasbarrini A, Massetti M, Flex A. Principal predictors of major adverse limb events in diabetic peripheral artery disease: A narrative review. ATHEROSCLEROSIS PLUS 2021; 46:1-14. [PMID: 36643723 PMCID: PMC9833249 DOI: 10.1016/j.athplu.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023]
Abstract
Background and aims The increasing prevalence of diabetes mellitus is causing a massive growth of peripheral artery disease incidences, a disabling complication of diabetic atherosclerosis, which leads often to the amputation of the affected limb. Critical limb ischemia is the terminal disease stage, which requires a prompt intervention to relieve pain and save limbs. However, patients undergoing revascularization often suffer from cardiovascular, cerebrovascular and major adverse limb events with poor outcomes. Furthermore, the same procedure performed in apparently similar patients has various outcomes and lack of an outcome predictive support causes a high lower limb arterial revascularization rate with disastrous effects for patients. We collected the main risk factors of major adverse limb events in a more readable and immediate format of the topic, to propose an overview of parameters to manage effectively peripheral artery disease patients and to propose basics of a new predictive tool to prevent from disabling vascular complications of the disease. Methods Most recent and updated literature about the prevalence of major adverse limb events in peripheral artery disease was reviewed to identify possible main predictors. Results In this article, we summarized major risk factors of limb revascularization failure and disabling vascular complications collecting those parameters principally responsible for major adverse limb events, which provides physio-pathological explanation of their role in peripheral artery disease. Conclusion We evaluated and listed a panel of possible predictors of MALE (Major Adverse Limb Event) in order to contribute to the development of a predictive score, based on a summary of the main risk factors reported in scientific articles, which could improve the management of peripheral artery disease by preventing vascular accidents.
Collapse
Affiliation(s)
- Federico Biscetti
- Internal and Cardiovascular Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy,Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy,Corresponding author. Internal and Cardiovascular Medicine Unit. Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, Rome, 00168, Italy.
| | | | - Maria Margherita Rando
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elisabetta Nardella
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Universitá Cattolica del Sacro Cuore, Roma, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Flex
- Internal and Cardiovascular Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy,Department of Medical and Surgical Sciences, Universitá Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
11
|
Kumar P, Lee JH, Lee J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc 2021; 96:2522-2545. [PMID: 34137156 PMCID: PMC9290978 DOI: 10.1111/brv.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Indole and its derivatives are widespread across different life forms, functioning as signalling molecules in prokaryotes and with more diverse roles in eukaryotes. A majority of indoles found in the environment are attributed to bacterial enzymes converting tryptophan into indole and its derivatives. The involvement of indoles among lower organisms as an interspecies and intraspecies signal is well known, with many reports showing that inter‐kingdom interactions involving microbial indole compounds are equally important as they influence defence systems and even the behaviour of higher organisms. This review summarizes recent advances in our understanding of the functional properties of indole and indole derivatives in diverse eukaryotes. Furthermore, we discuss current perspectives on the role of microbial indoles in human diseases such as diabetes, obesity, atherosclerosis, and cancers. Deciphering the function of indoles as biomarkers of metabolic state will facilitate the formulation of diet‐based treatments and open unique therapeutic opportunities.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
12
|
Meleshko TV. EDIBLE FRUITS EXTRACTS AFFECT INTESTINAL MICROBIOTA ISOLATED FROM PATIENTS WITH NONCOMMUNICABLE DISEASES ASSOCIATED WITH CHRONIC INFLAMMATION. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.05.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was to investigate the gut microbiota in patients with noncommunicable diseases associated with chronic inflammation, namely obesity, type 2 diabetes, atherosclerosis, and cardiovascular disease as well as to find out potential ability of edible plants’ fruits extracts to inhibit the growth of selected conditionally pathogenic microorganisms. Limited clinical trial was performed and gut microbiota analysis was done using routine methods and by qPCR. The antibacterial properties of edible plants’ fruits in relation to the selected potentially pathogenic microorganisms were studied. The composition of the intestinal microbiota of obese patients was characterized by an increase in the number of Enterococcus spp. and Lactobacillus spp. along with a decrease in the amount of Escherichia coli. Decreases in E. coli and lactobacilli were observed in patients with type 2 diabetes. In atherosclerosis, an increase in streptococci, enterococci, and enterobacteria was observed, whereas in patients with cardiovascular disease there was an additional increase in staphylococci and candida along with a decrease in E. coli. Decreases in Bifidobacterium spp., Bacteroides spp., Roseburia intestinalis and Akkermansia muciniphila were observed in patients of all groups. The growth of Klebsiella spp. was inhibited by red currant (Ribes rubrum) and plum (Prunus domestica) extracts; Enterobacter spp. – cherry (Prunus avium) extract; Proteus spp. – extracts of blueberry (Vaccinium myrtillus) and dogwood (Cornus mas); Staphylococcus spp. – the extracts of black currant (Ribes nigrum), cherry (Prunus avium), plum (Prunus domestica), jostaberry (Ribes nigrum × Ribes divaricatum × Ribes uva-crispa), cherry plum (Prunus cerasifera) and dogwood (Cornus mas) The obtained data can be used for early diagnosis of noncommunicable diseases and for their prevention with the help of personalized nutrition.
Collapse
|
13
|
Loffredo L, Ivanov V, Ciobanu N, Deseatnicova E, Gutu E, Mudrea L, Ivanov M, Nocella C, Cammisotto V, Orlando F, Pannunzio A, Palumbo I, Cosenza M, Bartimoccia S, Carnevale R, Violi F. Is There an Association Between Atherosclerotic Burden, Oxidative Stress, and Gut-Derived Lipopolysaccharides? Antioxid Redox Signal 2020; 33:761-766. [PMID: 32336107 DOI: 10.1089/ars.2020.8109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Recent studies hypothesized a role of gut microbiota favoring atherosclerosis via an increased oxidative stress, but data in peripheral artery disease (PAD) have not been provided yet. The aim of this study was to assess serum lipopolysaccharide (LPS) as well as oxidative stress in PAD patients and controls (CT). Furthermore, we wanted to analyze the relationship between LPS and the severity of atherosclerosis in the lower limb arteries. Results: Eighty consecutive subjects, including 40 PAD patients and 40 CT were recruited. A cross-sectional study was performed to compare serum LPS, soluble Nox2-derived peptide (sNox2-dp), hydrogen peroxide (H2O2), H2O2 breakdown activity (HBA) and ankle brachial index (ABI) in these two groups. Serum zonulin was used to assess gut permeability. Compared with CT, PAD patients had significant higher values of LPS, zonulin, sNox2-dp, and H2O2; conversely ABI and HBA were significantly lower in PAD patients. LPS serum levels were associated with atherosclerotic burden as depicted by the inverse correlation with ABI. LPS was also associated with oxidative stress as shown by its direct correlation with markers of oxidative stress such as sNox2-dp, serum H2O2, and HBA. Finally, we found a significant correlation between LPS and zonulin. A multiple linear regression analysis showed that LPS was significantly associated only with ABI. Innovation and Conclusion: These findings suggest that LPS is elevated in PAD patients with a close association with the atherosclerotic burden and oxidative stress. The correlation between LPS and zonulin suggests that changes in gut permeability could be a potential trigger of LPS translocation in the peripheral circulation.
Collapse
Affiliation(s)
- Lorenzo Loffredo
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Victoria Ivanov
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Nicolae Ciobanu
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Elena Deseatnicova
- Department of Rheumatology and Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova, Chisinau, Republic of Moldova
| | - Evgenii Gutu
- 3rd Department of General Surgery, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova, Chisinau, Republic of Moldova
| | - Ludmila Mudrea
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Mihaela Ivanov
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Cristina Nocella
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Federica Orlando
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Pannunzio
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Palumbo
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Mattia Cosenza
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Francesco Violi
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
14
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|