1
|
Shi L, Ju P, Meng X, Wang Z, Yao L, Zheng M, Cheng X, Li J, Yu T, Xia Q, Yan J, Zhu C, Zhang X. Intricate role of intestinal microbe and metabolite in schizophrenia. BMC Psychiatry 2023; 23:856. [PMID: 37978477 PMCID: PMC10657011 DOI: 10.1186/s12888-023-05329-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The brain-gut axis has gained increasing attention due to its contribution to the etiology of various central nervous system disorders. This study aims to elucidate the hypothesis that schizophrenia is associated with disturbances in intestinal microflora and imbalance in intestinal metabolites. By exploring the intricate relationship between the gut and the brain, with the goal of offering fresh perspectives and valuable insights into the potential contribution of intestinal microbial and metabolites dysbiosis to the etiology of schizophrenia. METHODS In this study, we used a 16S ribosomal RNA (16S rRNA) gene sequence-based approach and an untargeted liquid chromatography-mass spectrometry-based metabolic profiling approach to measure the gut microbiome and microbial metabolites from 44 healthy controls, 41 acute patients, and 39 remission patients, to evaluate whether microbial dysbiosis and microbial metabolite biomarkers were linked with the severity of schizophrenic symptoms. RESULTS Here, we identified 20 dominant disturbances in the gut microbial composition of patients compared with healthy controls, with 3 orders, 4 families, 9 genera, and 4 species. Several unique bacterial taxa associated with schizophrenia severity. Compared with healthy controls, 145 unusual microflora metabolites were detected in the acute and remission groups, which were mainly involved in environmental information processing, metabolism, organismal systems, and human diseases in the Kyoto encyclopedia of genes and genomes pathway. The Sankey diagram showed that 4 abnormal intestinal and 4 anomalous intestinal microbial metabolites were associated with psychiatric clinical symptoms. CONCLUSIONS These findings suggest a possible interactive influence of the gut microbiota and their metabolites on the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Li Shi
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China
| | - Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | | | - Lihui Yao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Mingming Zheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Xialong Cheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Jingwei Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Tao Yu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Junwei Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China.
- Anhui Mental Health Center, Hefei, 230000, China.
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China.
- Anhui Mental Health Center, Hefei, 230000, China.
| |
Collapse
|
2
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
3
|
Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology 2023; 223:109318. [PMID: 36334762 DOI: 10.1016/j.neuropharm.2022.109318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
The microbiota-gut-brain axis (MGBA) refers to the bidirectional communication between the brain and the gut microbiota and recent studies have linked the MGBA to health and disease. Research has so far investigated this axis mainly from microbiota to brain but less is known about the other direction. One approach to examine the MGBA from brain to microbiota is through understanding if and how neuromodulation might impact microbiota. Neuromodulation encompasses a wide range of stimulation techniques and is used to treat neurological, psychiatric and metabolic disorders, like Parkinson's Disease, depression and obesity. Here, we performed a systematic review to investigate whether neuromodulation is associated with subsequent changes in the gut microbiota. Searches in PsycINFO and MEDLINE were performed up to March 2022. Included studies needed to be clinical or preclinical studies comparing the effects of deep brain stimulation, electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation or vagal nerve stimulation on the gut microbiota before and after treatment or between active and control groups. Seven studies were identified. Neuromodulation was associated with changes in relative bacterial abundances, but not with (changes in) α-diversity or β-diversity. Summarizing, currently reported findings suggest that neuromodulation interventions are associated with moderate changes in the gut microbiome. However, findings remain inconclusive due to the limited number and varying quality of included studies, as well as the large heterogeneity between studies. More research is required to more conclusively establish whether, and if so, via which mechanism(s) of action neuromodulation interventions might influence the gut microbiota.
Collapse
|
4
|
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17:7. [PMID: 34158061 PMCID: PMC8218443 DOI: 10.1186/s12993-021-00180-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism. There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota–schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
Collapse
Affiliation(s)
- Enrico Patrono
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| | - Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| |
Collapse
|
5
|
Zhu C, Zheng M, Ali U, Xia Q, Wang Z, Chenlong, Yao L, Chen Y, Yan J, Wang K, Chen J, Zhang X. Association Between Abundance of Haemophilus in the Gut Microbiota and Negative Symptoms of Schizophrenia. Front Psychiatry 2021; 12:685910. [PMID: 34393849 PMCID: PMC8362742 DOI: 10.3389/fpsyt.2021.685910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence indicates an interaction between dysbiosis of the microbiota and the pathogenesis of schizophrenia. However, limited information is available on the specific microbial communities associated with symptoms of schizophrenia. Therefore, this study aimed to investigate gut microbiota dysbiosis and its relationship with psychopathologies in schizophrenia. We recruited 126 participants and divided them into three groups according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria-acute group (patients with acute schizophrenia), remission group (patients with schizophrenia in remission), and control group (healthy controls). Psychotic symptoms were evaluated using the Positive and Negative Syndrome Scale. Microbiota compositions, diversity and community structure were evaluated using 16S rRNA sequencing. Pearson's correlation analysis was used to evaluate the association between bacterial taxa and psychotic symptoms. The beta-diversity of microbiota composition in the acute group was distinct from that in the remission and control groups (PC1 = 21.11% vs. PC2 = 12.86%, P = 0.021). Furthermore, Pearson's correlation analysis revealed that abundance of Haemophilus was positively correlated with negative psychiatric symptoms (r = 0.303, P = 0.021), while abundance of Coprococcus was negatively correlated with negative psychiatric symptoms (r = -0.285, P = 0.025). Moreover, abundance of Haemophilus was positively correlated with cognition (r = 0.428, P = 0.009), excitement (r = 0.266, P = 0.037), and depression (r = 0.295, P = 0.020). The study findings suggest that alterations in certain gut microbiota may interfere with psychological symptoms in schizophrenia. Our results provide evidence that may help in the development of therapeutic strategies using microbial-based targets. The data that support the findings of this study have been deposited in the NCBI (https://submit.ncbi.nlm.nih.gov/) with accession number SUB9453991.
Collapse
Affiliation(s)
- Cuizhen Zhu
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Mingming Zheng
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Usman Ali
- Shanghai key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingrong Xia
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Zhongxian Wang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Chenlong
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Lihui Yao
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Chen
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Junwei Yan
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Keming Wang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Jinghong Chen
- Shanghai key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xulai Zhang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| |
Collapse
|
6
|
Microbiome and Schizophrenia: Current Evidence and Future Challenges. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|