1
|
Akiyama M, Alshehri W, Ishigaki S, Saito K, Kaneko Y. Human T follicular helper cells and their impact on IgE and IgG4 production across allergy, malignancy, and IgG4-related disease. Allergol Int 2025; 74:25-32. [PMID: 39164143 DOI: 10.1016/j.alit.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Human T follicular helper (Tfh) cells play a crucial role in orchestrating B cell differentiation, maturation, and immunoglobulin class switching. Recent studies have underscored the presence of Bcl-6 + Tfh cells not only in secondary lymphoid organs but also within tertiary lymphoid structures at inflammatory sites, emphasizing their pivotal role in disease pathogenesis. Furthermore, Tfh cells have been found to transit between lesion sites, lymph nodes, and peripheral blood, as revealed by T cell receptor repertoire analysis. Among Tfh subsets, Tfh2 cells have emerged as central orchestrators in driving the production of IgE and IgG4 from B cells. Their critical role in diseases such as allergy, malignancy, and IgG4-related disease highlights their profound impact on balancing inflammation and immune tolerance. Our current review provides the molecular characteristics of human Tfh cells, the differentiation pathways of Tfh subsets, mechanisms by which Tfh subsets induce IgE and IgG4 production, and their clinical implications in allergy, malignancy, and IgG4-related disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
3
|
Sun J, Tian Y, Yang C. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03346-7. [PMID: 39158733 DOI: 10.1007/s00210-024-03346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), a newly discovered checkpoint, is characterized by its elevated expression on CD4 + T cells, CD8 + T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). Research to date has been shown that TIGIT has been linked to exhaustion of NK cell both and T cells in numerous cancers. CD155, being the specific ligand of TIGIT in humans, emerges as a key target for immunotherapy owing to its crucial interaction with TIGIT. Furthermore, numerous studies have demonstrated that the combination of TIGIT with other immune checkpoint inhibitors (ICIs) and/or traditional treatments elicits a potent antitumor response in colorectal cancer (CRC). This review provides an overview of the structure, function, and signaling pathways associated with TIGIT across multiple immune system cell types. Additionally, focusing on the role of TIGIT in the progression of CRC, this study reviewed various studies exploring TIGIT-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yan Tian
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
4
|
Perales O, Jilaveanu L, Adeniran A, Su DG, Hurwitz M, Braun DA, Kluger HM, Schoenfeld DA. TIGIT expression in renal cell carcinoma infiltrating T cells is variable and inversely correlated with PD-1 and LAG3. Cancer Immunol Immunother 2024; 73:192. [PMID: 39105820 PMCID: PMC11303630 DOI: 10.1007/s00262-024-03773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Immune checkpoint inhibitors have revolutionized the treatment of renal cell carcinoma (RCC), but many patients do not respond to therapy and the majority develop resistant disease over time. Thus, there is increasing need for alternative immunomodulating agents. The co-inhibitory molecule T-cell immunoglobulin and ITIM domain (TIGIT) may play a role in resistance to approved immune checkpoint inhibitors and is being investigated as a potential therapeutic target. The purpose of this study was to quantify TIGIT positivity in tumor-infiltrating T cells in RCC. METHODS We employed tissue microarrays containing specimens from primary RCC tumors, adjacent normal renal tissue, and RCC metastases to quantify TIGIT within tumor-infiltrating CD3+ T cells using quantitative immunofluorescent analysis. We also compared these results to TIGIT+ CD3+ levels in four other tumor types (melanoma, non-small cell lung, cervical, and head and neck cancers). RESULTS We did not observe significant differences in TIGIT positivity between primary RCC tumors and patient-matched metastatic samples. We found that the degree of TIGIT positivity in RCC is comparable to that in lung cancer but lower than that in melanoma, cervical, and head and neck cancers. Correlation analysis comparing TIGIT positivity to previously published, patient-matched spatial proteomic data by our group revealed a negative association between TIGIT and the checkpoint proteins PD-1 and LAG3. CONCLUSION Our findings support careful evaluation of TIGIT expression on T cells in primary or metastatic RCC specimens for patients who may be treated with TIGIT-targeting antibodies, as increased TIGIT positivity might be associated with a greater likelihood of response to therapy.
Collapse
Affiliation(s)
| | - Lucia Jilaveanu
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, FMP120, New Haven, CT, 06520, USA
| | | | - David G Su
- Division of General Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michael Hurwitz
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, FMP120, New Haven, CT, 06520, USA
| | - David A Braun
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, FMP120, New Haven, CT, 06520, USA
| | - Harriet M Kluger
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, FMP120, New Haven, CT, 06520, USA
| | - David A Schoenfeld
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, FMP120, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
La Salvia A, Meyer ML, Hirsch FR, Kerr KM, Landi L, Tsao MS, Cappuzzo F. Rediscovering immunohistochemistry in lung cancer. Crit Rev Oncol Hematol 2024; 200:104401. [PMID: 38815876 DOI: 10.1016/j.critrevonc.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome 00161, Italy
| | - May-Lucie Meyer
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Kerr
- Aberdeen University School of Medicine & Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lorenza Landi
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Federico Cappuzzo
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy.
| |
Collapse
|
6
|
Webb GM, Pessoa CT, McCullen AJ, Hwang JM, Humkey MC, Thormin-Odum R, Kukula KA, Smedley J, Fischer M, Sciurba J, Bochart RM, Shriver-Munsch C, Ndhlovu LC, Sacha JB. Immune restoration by TIGIT blockade is insufficient to control chronic SIV infection. J Virol 2024; 98:e0027324. [PMID: 38775481 PMCID: PMC11237531 DOI: 10.1128/jvi.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
TIGIT is a negative immune checkpoint receptor associated with T cell exhaustion in cancer and HIV. TIGIT upregulation in virus-specific CD8+ T cells and NK cells during HIV/SIV infection results in dysfunctional effector capabilities. In vitro studies targeting TIGIT on CD8+ T cells suggest TIGIT blockade as a viable strategy to restore SIV-specific T cell responses. Here, we extend these studies in vivo using TIGIT blockage in nonhuman primates in an effort to reverse T cell and NK cell exhaustion in the setting of SIV infection. We demonstrate that in vivo administration of a humanized anti-TIGIT monoclonal antibody (mAb) is well tolerated in both cynomolgus macaques and rhesus macaques. Despite sustained plasma concentrations of anti-TIGIT mAb, we observed no consistent improvement in NK or T cell cytolytic capacity. TIGIT blockade minimally enhanced T cell proliferation and virus-specific T cell responses in both magnitude and breadth though plasma viral loads in treated animals remained stable indicating that anti-TIGIT mAb treatment alone was insufficient to increase anti-SIV CD8+ T cell function. The enhancement of virus-specific T cell proliferative responses observed in vitro with single or dual blockade of TIGIT and/or PD-1 highlights TIGIT as a potential target to reverse T cell dysfunction. Our studies, however, reveal that targeting the TIGIT pathway alone may be insufficient in the setting of viremia and that combining immune checkpoint blockade with other immunotherapeutics may be a future path forward for improved viral control or elimination of HIV.IMPORTANCEUpregulation of the immune checkpoint receptor TIGIT is associated with HIV-mediated T cell dysfunction and correlates with HIV disease progression. Compelling evidence exists for targeting immune checkpoint receptor pathways that would potentially enhance immunity and refocus effector cell efforts toward viral clearance. In this report, we investigate TIGIT blockade as an immunotherapeutic approach to reverse immune exhaustion during chronic SIV/SHIV infection in a nonhuman primate model of HIV infection. We show that interfering with the TIGIT signaling axis alone is insufficient to improve viral control despite modest improvement in T cell immunity. Our data substantiate the use of targeting multiple immune checkpoint receptors to promote synergy and ultimately eliminate HIV-infected cells.
Collapse
Affiliation(s)
- Gabriela M. Webb
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Cleiton T. Pessoa
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Allyson J. McCullen
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Joseph M. Hwang
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Matthew C. Humkey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Raymond Thormin-Odum
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kaitlyn A. Kukula
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Joseph Sciurba
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Jonah B. Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
7
|
Lonsdorf AS, Edelmann D, Albrecht T, Brobeil A, Labrenz J, Johanning M, Schlenk RF, Goeppert B, Enk AH, Toberer F. Differential Immunoexpression of Inhibitory Immune Checkpoint Molecules and Clinicopathological Correlates in Keratoacanthoma, Primary Cutaneous Squamous Cell Carcinoma and Metastases. Acta Derm Venereol 2024; 104:adv13381. [PMID: 38323498 PMCID: PMC10863621 DOI: 10.2340/actadv.v104.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
Beyond established anti-programmed cell death protein 1/programmed cell death ligand 1 immunotherapy, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) and its ligand CD155 are promising novel inhibitory immune checkpoint targets in human malignancies. Yet, in cutaneous squamous cell carcinoma, evidence on the collective expression patterns of these inhibitory immune checkpoints is scarce. Complete tumour sections of 36 cutaneous squamous cell carcinoma, 5 cutaneous metastases and 9 keratoacanthomas, a highly-differentiated, squamoproliferative tumour, with disparately benign biologic behaviour, were evaluated by immunohistochemistry for expression of programmed cell death ligand 1 (Tumor Proportion Score, Immune Cell Score), TIGIT, CD155 and CD8+ immune infiltrates. Unlike keratoacanthomas, cutaneous squamous cell carcinoma displayed a strong positive correlation of programmed cell death ligand 1 Tumor Proportion Score and CD115 expression (p < 0.001) with significantly higher programmed cell death ligand 1 Tumor Proportion Score (p < 0.001) and CD155 expression (p < 0.01) in poorly differentiated G3-cutaneous squamous cell carcinoma compared with keratoacanthomas. TIGIT+ infiltrates were significantly increased in programmed cell death ligand 1 Immune Cell Score positive primary tumours (p = 0.05). Yet, a strong positive correlation of TIGIT expression with CD8+ infiltrates was only detected in cutaneous squamous cell carcinoma (p < 0.01), but not keratoacanthomas. Providing a comprehensive overview on the collective landscape of inhibitory immune checkpoint expression, this study reveals associations of novel inhibitory immune checkpoint with CD8+ immune infiltrates and tumour differentiation and highlights the TIGIT/CD155 axis as a potential new target for cutaneous squamous cell carcinoma immunotherapy.
Collapse
Affiliation(s)
- Anke S Lonsdorf
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Dominic Edelmann
- German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Jannik Labrenz
- German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Johanning
- German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
| | - Richard F Schlenk
- German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Germany
| | - Alexander H Enk
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ferdinand Toberer
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Müller JH, Plage H, Elezkurtaj S, Mandelkow T, Huang Z, Lurati MCJ, Raedler JB, Debatin NF, Vettorazzi E, Samtleben H, Hofbauer S, Furlano K, Neymeyer J, Goranova I, Ralla B, Weinberger S, Horst D, Roßner F, Schallenberg S, Marx AH, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Hallmann S, Koch S, Adamini N, Lennartz M, Minner S, Simon R, Sauter G, Zecha H, Schlomm T, Bady E. Loss of TROP2 and epithelial cell adhesion molecule expression is linked to grade progression in pTa but unrelated to disease outcome in pT2-4 urothelial bladder carcinomas. Front Oncol 2024; 13:1342367. [PMID: 38282671 PMCID: PMC10811247 DOI: 10.3389/fonc.2023.1342367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Trophoblast cell surface antigen 2 (TROP2; EpCAM2) is a transmembrane glycoprotein which is closely related to EpCAM (EpCAM; EpCAM1). Both proteins share partial overlapping functions in epithelial development and EpCAM expression but have not been comparatively analyzed together in bladder carcinomas. TROP2 constitutes the target for the antibody-drug conjugate Sacituzumab govitecan (SG; TrodelvyTM) which has been approved for treatment of metastatic urothelial carcinoma by the United States Food and Drug administration (FDA) irrespective of its TROP2 expression status. Methods To evaluate the potential clinical significance of subtle differences in TROP2 and EpCAM expression in urothelial bladder cancer, both proteins were analyzed by multiplex fluorescence immunohistochemistry in combination with a deep-learning based algorithm for automated cell detection on more than 2,700 urothelial bladder carcinomas in a tissue microarray (TMA) format. Results The staining pattern of TROP2 and EpCAM were highly similar. For both proteins, the staining intensity gradually decreased from pTa G2 low grade (TROP2: 68.8±36.1; EpCAM: 21.5±11.7) to pTa G2 high grade (64.6±38.0; 19.3±12.2) and pTa G3 (52.1±38.7; 16.0±13.0, p<0.001 each). In pT2-4 carcinomas, the average TROP2 and EpCAM staining intensity was intermediate (61.8±40.9; 18.3±12.3). For both proteins, this was significantly lower than in pTa G2 low grade (p<0.001 each) but also higher than in pTa G3 tumors (p=0.022 for TROP2, p=0.071 for EpCAM). Within pT2-4 carcinomas, the TROP2 and EpCAM staining level was unrelated to pT, grade, UICC-category, and overall or tumor-specific patient survival. The ratio TROP2/EpCAM was unrelated to malignant phenotype and patient prognosis. Conclusion Our data show that TROP2 and EpCAM expression is common and highly interrelated in urothelial neoplasms. Despite of a progressive loss of TROP2/EpCAM during tumor cell dedifferentiation in pTa tumors, the lack of associations with clinicopathological parameters in pT2-4 cancer argues against a major cancer driving role of both proteins for the progression of urothelial neoplasms.
Collapse
Affiliation(s)
- Jan H. Müller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Plage
- Department of Urology, Charité Berlin, Berlin, Germany
| | | | - Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zhihao Huang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magalie C. J. Lurati
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas B. Raedler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Nicolaus F. Debatin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Samtleben
- Department of Urology, Academic Hospital Fuerth, Fuerth, Germany
| | | | - Kira Furlano
- Department of Urology, Charité Berlin, Berlin, Germany
| | - Jörg Neymeyer
- Department of Urology, Charité Berlin, Berlin, Germany
| | | | | | | | - David Horst
- Insitute of Pathology, Charité Berlin, Berlin, Germany
| | | | | | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology, University Hospital Stettin, Stettin, Poland
| | | | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Zecha
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | | | - Elena Bady
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Weng D, Guo R, Zhu Z, Gao Y, An R, Zhou X. Peptide-based PET imaging agent of tumor TIGIT expression. EJNMMI Res 2023; 13:38. [PMID: 37129788 PMCID: PMC10154443 DOI: 10.1186/s13550-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating studies have demonstrated that elevated TIGIT expression in tumor microenvironment correlates with better therapeutic response to TIGIT-based immunotherapy in pre-clinical studies. Therefore, a non-invasive method to detect tumor TIGIT expression is crucial to predict the therapeutic effect. METHODS In this study, a peptide-based PET imaging agent, 68Ga-DOTA-DTBP-3, was developed to non-invasively detect TIGIT expression by micro-PET in tumor-bearing BALB/c mice. DTBP-3, a D-peptide comprising of 12 amino acids, was radiolabeled with 68Ga through a DOTA chelator. In vitro studies were performed to evaluate the affinity of 68Ga-DOTA-DTBP-3 to TIGIT and its stability in fetal bovine serum. In vivo studies were assessed by micro-PET, biodistribution, and immunohistochemistry on tumor-bearing BALB/c mice. RESULTS The in vitro studies showed the equilibrium dissociation constant of 68Ga-DOTA-DTBP-3 for TIGIT was 84.21 nM and its radiochemistry purity was 89.24 ± 1.82% in FBS at 4 h in room temperature. The results of micro-PET, biodistribution and immunohistochemistry studies indicated that 68Ga-DOTA-DTBP-3 could be specifically targeted in 4T1 tumor-bearing mice, with a highest uptake at 0.5 h. CONCLUSION 68Ga-DOTA-DTBP-3 holds potential for non-invasively detect tumor TIGIT expression and for timely assessment of the therapeutic effect of immune checkpoint blockade.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), SunYat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
11
|
Pescia C, Pini G, Olmeda E, Ferrero S, Lopez G. TIGIT in Lung Cancer: Potential Theranostic Implications. Life (Basel) 2023; 13:life13041050. [PMID: 37109579 PMCID: PMC10145071 DOI: 10.3390/life13041050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
TIGIT (T cell immunoreceptor with Ig and ITIM domains) is a co-inhibitory receptor expressed on various immune cells, including T cells, NK cells, and dendritic cells. TIGIT interacts with different ligands, such as CD155 and CD112, which are highly expressed on cancer cells, leading to the suppression of immune responses. Recent studies have highlighted the importance of TIGIT in regulating immune cell function in the tumor microenvironment and its role as a potential therapeutic target, especially in the field of lung cancer. However, the role of TIGIT in cancer development and progression remains controversial, particularly regarding the relevance of its expression both in the tumor microenvironment and on tumor cells, with prognostic and predictive implications that remain to date essentially undisclosed. Here, we provide a review of the recent advances in TIGIT-blockade in lung cancer, and also insights on TIGIT relevance as an immunohistochemical biomarker and its possible theranostic implications.
Collapse
Affiliation(s)
- Carlo Pescia
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giuditta Pini
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Edoardo Olmeda
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
12
|
Rousseau A, Parisi C, Barlesi F. Anti-TIGIT therapies for solid tumors: a systematic review. ESMO Open 2023; 8:101184. [PMID: 36933320 PMCID: PMC10030909 DOI: 10.1016/j.esmoop.2023.101184] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
Programmed death-ligand 1[PD-(L)1], cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) inhibitors are recent breakthroughs in cancer treatment, however not all patients benefit from it. Thus new therapies are under investigation, such as anti-TIGIT [anti-T-cell immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domains] antibodies. TIGIT is an immune checkpoint inhibiting lymphocyte T cells by several mechanisms. In vitro models showed its inhibition could restore antitumor response. Furthermore, its association with anti-PD-(L)1 therapies could synergistically improve survival. We carried out a review of the clinical trial about TIGIT referenced in the PubMed database, finding three published clinical trials on anti-TIGIT therapies. Vibostolimab was evaluated in a phase I alone or in combination with pembrolizumab. The combination had an objective response rate of 26% in patients with a non-small-cell lung cancer (NSCLC) naïve of anti-programmed cell death protein 1 (anti-PD-1). Etigilimab was tested in a phase I alone or in combination with nivolumab, but the study was stopped due to business reasons. In the phase II CITYSCAPE trial, tiragolumab demonstrated higher objective response rate and progression-free survival in combination with atezolizumab than atezolizumab alone in advanced PD-L1-high NSCLC. The ClinicalTrials.gov database references 70 trials of anti-TIGIT in patients with cancer, 47 of them with ongoing recruitment. Only seven were phase III, including five about patients with NSCLC, mostly with combination therapy. Data from phase I-II trials highlighted that targeting TIGIT represents a safe therapeutic approach, with an acceptable toxicity profile maintained when adding anti-PD-(L)1 antibodies. Frequent adverse events were pruritus, rash, and fatigue. Grade 3-4 adverse events were reported in nearly one in three patients. Anti-TIGIT antibodies are under development as a novel immunotherapy approach. A promising research area includes the combination with anti-PD-1 therapies in advanced NSCLCs.
Collapse
Affiliation(s)
- A Rousseau
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - C Parisi
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - F Barlesi
- Medical Oncology Department, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| |
Collapse
|
13
|
Wen Z, Wang S, Yang DM, Xie Y, Chen M, Bishop J, Xiao G. Deep learning in digital pathology for personalized treatment plans of cancer patients. Semin Diagn Pathol 2023; 40:109-119. [PMID: 36890029 DOI: 10.1053/j.semdp.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Nonredundant Upregulation of CD112R (PVRIG) and PD-1 on Cytotoxic T Lymphocytes Located in T Cell Nests of Colorectal Cancer. Mod Pathol 2023; 36:100089. [PMID: 36788088 DOI: 10.1016/j.modpat.2022.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Focal T lymphocyte aggregates commonly occur in colorectal cancer; however, their biological significance is unknown. To study focal aggregates of T lymphocytes, a deep learning-based framework for automated identification of T cell accumulations (T cell nests) was developed using CD8, PD-1, CD112R, and Ki67 multiplex fluorescence immunohistochemistry. To evaluate the clinical significance of these parameters, a cohort of 523 colorectal cancers with clinical follow-up data was analyzed. Spatial analysis of locally enriched CD8+ T cell density and cell-to-cell contacts identified T cell nests in the tumor microenvironment of colorectal cancer. CD112R and PD-1 expressions on CD8+ T cells located in T cell nests were found to be elevated compared with those on CD8+ T cells in all other tumor compartments (P < .001 each). Although the highest mean CD112R expression on CD8+ T cells was observed at the invasive margin, the PD-1 expression on CD8+ T cells was elevated in the center of the tumor (P < .001 each). Across all tissue compartments, proliferating CD8+ T cells showed higher relative CD112R and PD-1 expressions than those shown by non-proliferating CD8+ T cells (P < .001 each). Integration of all available spatial and immune checkpoint expression parameters revealed a superior predictive performance for overall survival (area under the curve, 0.65; 95% CI, 0.60-0.70) compared with the commonly used CD8+ tumor-infiltrating lymphocyte density (area under the curve, 0.57; 95% CI, 0.53-0.61; P < .001). Cytotoxic T cells with elevated CD112R and PD-1 expression levels are orchestrated in T cell nests of colorectal cancer and predict favorable patient outcomes, and the spatial nonredundancy underlies fundamental differences between both inhibitory immune checkpoints that provide a rationale for dual anti-CD112R/PD-1 immune checkpoint therapy.
Collapse
|
15
|
Zhao K, Jiang L, Si Y, Zhou S, Huang Z, Meng X. TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunol Immunother 2023; 72:193-209. [PMID: 35794399 DOI: 10.1007/s00262-022-03227-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Blockade of the T cell immunoreceptor with the immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) can enhance innate and adaptive tumor immunity and radiotherapy (RT) can enhance anti-tumor immunity. However, our data suggest that TIGIT-mediated immune suppression may be an impediment to such goals. Herein, we report on the synergistic effects of RT combined with anti-TIGIT therapy and the mechanism of their interaction. Treatment efficacy was assessed by measuring primary and secondary tumor growth, survival, and immune memory capacity. The function of CD103 + dendritic cells (DCs) under the combined treatment was assessed in wild-type and BATF3-deficient (BATF3-/-) mice. FMS-like tyrosine kinase 3 ligand (Flt3L) was used to confirm the role of CD103 + DCs in RT combined with anti-TIGIT therapy. TIGIT was upregulated in immune cells following RT in both esophageal squamous cell carcinoma patients and mouse models. Administration of the anti-TIGIT antibody enhanced the efficacy of RT through a CD8 + T cell-dependent mechanism. It was observed that RT and the anti-TIGIT antibody synergistically enhanced the accumulation of tumor-infiltrating DCs, which activated CD8 + T cells. The efficacy of the combination therapy was negated in the BATF3-/- mouse model. CD103 + DCs were required to promote the anti-tumor effects of combination therapy. Additionally, Flt3L therapy enhanced tumor response to RT combined with TIGIT blockade. Our study demonstrated TIGIT blockade can synergistically enhance anti-tumor T cell responses to RT via CD8 + T cells (dependent on CD103 + DCs), suggesting the clinical potential of targeting the TIGIT pathway and expanding CD103 + DCs in RT.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Liyang Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Youjiao Si
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shujie Zhou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
16
|
Li S, Li L, Pan T, Li X, Tong Y, Jin Y. Prognostic value of TIGIT in East Asian patients with solid cancers: A systematic review, meta-analysis and pancancer analysis. Front Immunol 2022; 13:977016. [PMID: 36211383 PMCID: PMC9532506 DOI: 10.3389/fimmu.2022.977016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background T-cell immunoreceptor with Ig and ITIM domains (TIGIT) participates in tumor immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the prognostic value of TIGIT and its immunological function in solid cancers. Methods Three databases were searched for relevant articles. The main endpoints were overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS). Hazard ratios (HR) were pooled by using fixed-effects or random-effects models. Pancancer analysis of TIGIT was performed based on public online databases, mainly The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and UCSC Xena. The possible relationships between TIGIT expression and the tumor microenvironment (TME), infiltration of immune cells, immune-related genes, tumor mutation burden (TMB), and microsatellite instability (MSI) were revealed in this article. Results Sixteen studies met the inclusion criteria. High expression of TIGIT was associated with worse OS [HR= 1.73, 95% confidence interval (CI) 1.50, 1.99], PFS (HR = 1.53, 95% CI [1.25, 1.88]), RFS (HR = 2.40, 95% CI [1.97, 2.93]), and DFS (HR= 6.57, 95% CI [0.73, 59.16]) in East Asian patients with solid cancers. TIGIT expression was positively correlated with immune infiltration scores and infiltration of CD8 T lymphocytes in all of the cancers included. TIGIT was found to be coexpressed with the genes encoding immunostimulators, immunoinhibitors, chemokines, chemokine receptors, and major histocompatibility complex (MHC), especially in gastroesophageal cancer. TMB and MSI were also associated with TIGIT upregulation in diverse kinds of cancers. Conclusion High expression of TIGIT is associated with poorer prognosis in East Asian patients with solid cancers. TIGIT is a novel prognostic biomarker and immunotherapeutic target for various solid cancers because of its activity in cancer immunity and tumorigenesis.
Collapse
Affiliation(s)
- Sicong Li
- School of Pharmacy, Peking University Health Science Centre, Beijing, China
| | - Lanxing Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianyan Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqun Li
- Center of Disease Prevention Treatment, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yujia Tong
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yongdong Jin
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
18
|
Arnouk S, De Groof TW, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev 2022; 184:114239. [PMID: 35351469 DOI: 10.1016/j.addr.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The important role of tumor microenvironmental elements in determining tumor progression and metastasis has been firmly established. In particular, the presence and activity profile of tumor-infiltrating immune cells may be associated with the outcome of the disease and may predict responsiveness to (immuno)therapy. Indeed, while some immune cell types, such as macrophages, support cancer cell outgrowth and mediate therapy resistance, the presence of activated CD8+ T cells is usually indicative of a better prognosis. It is therefore of the utmost interest to obtain a full picture of the immune infiltrate in tumors, either as a prognostic test, as a way to stratify patients to maximize therapeutic success, or as therapy follow-up. Hence, the non-invasive imaging of these cells is highly warranted, with biologics being prime candidates to achieve this goal.
Collapse
|
19
|
Cui G. Towards a precision immune checkpoint blockade immunotherapy in patients with colorectal cancer: Strategies and perspectives. Biomed Pharmacother 2022; 149:112923. [PMID: 36068782 DOI: 10.1016/j.biopha.2022.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
|
20
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004711. [PMID: 35379739 PMCID: PMC8981293 DOI: 10.1136/jitc-2022-004711] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Recent advances in understanding the roles of immune checkpoints in allowing tumors to circumvent the immune system have led to successful therapeutic strategies that have fundamentally changed oncology practice. Thus far, immunotherapies against only two checkpoint targets have been approved, CTLA-4 and PD-L1/PD-1. Antibody blockade of these targets enhances the function of antitumor T cells at least in part by relieving inhibition of the T cell costimulatory receptor CD28. These successes have stimulated considerable interest in identifying other pathways that may bte targeted alone or together with existing immunotherapies. One such immune checkpoint axis is comprised of members of the PVR/nectin family that includes the inhibitory receptor T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT). Interestingly, TIGIT acts to regulate the activity of a second costimulatory receptor CD226 that works in parallel to CD28. There are currently over two dozen TIGIT-directed blocking antibodies in various phases of clinical development, testament to the promise of modulating this pathway to enhance antitumor immune responses. In this review, we discuss the role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - Ira Mellman
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
22
|
Boukouris AE, Theochari M, Stefanou D, Papalambros A, Felekouras E, Gogas H, Ziogas DC. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit Rev Oncol Hematol 2022; 173:103663. [PMID: 35351582 DOI: 10.1016/j.critrevonc.2022.103663] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
The long-term remissions induced by immune-checkpoint inhibitors (ICIs) in many types of cancers have opened up the possibility of a broader use of immunotherapy in less immunogenic but genetically heterogeneous tumours. Regarding metastatic colorectal cancer (mCRC), in first-line setting, pembrolizumab has been approved as preferred option and nivolumab, alone or in combination with ipilimumab as alternative option for patients with mismatch-repair-deficient and microsatellite instability-high (dMMR/MSI-H) disease, independently of their eligibility for intensive chemotherapy. In subsequent lines, both these immunotherapeutic regimens (e.g., pembrolizumab and nivolumab+/-ipilimumab) as well as dostarlimab-gxly are currently recommended for patients with dMMR/MSI-H chemo-resistant mCRC who have not previously received an ICI. Beginning from the rationale behind the immune-mediated interplay in the dMMR/MSI-H bowel microenvironment, we provide here an update on the evolution status of all available, approved or not, ICIs in mCRC, describing their efficacy and toxicity profile with an emphasis on the pivotal trials supporting current colorectal indications. For each ICI agent, the results from combinations under investigation, particularly for those being upgraded in clinical phasing, the perspectives but also the limitations of main ongoing trials are thoroughly discussed. In the close future, upcoming data are expected to confirm the clinical benefit of ICIs and to further expand their role in mCRC.
Collapse
Affiliation(s)
- Aristeidis E Boukouris
- First Department of Internal Medicine, Korgialeneion-Benakeion General Hospital, Athens, Greece.
| | - Maria Theochari
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
23
|
Gorzo A, Galos D, Volovat SR, Lungulescu CV, Burz C, Sur D. Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life (Basel) 2022; 12:229. [PMID: 35207516 PMCID: PMC8878674 DOI: 10.3390/life12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer is the third most prevalent malignancy in Western countries and a major cause of death despite recent improvements in screening programs and early detection methods. In the last decade, a growing effort has been put into better understanding how the immune system interacts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1, anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/- ipilimumab recently obtained the Food and Drug Administration approval. This review aims to highlight the body of knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms of resistance and future strategies to extend its use.
Collapse
Affiliation(s)
- Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Diana Galos
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | | | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Allergology and Immunology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| |
Collapse
|
24
|
Implications of the accumulation of CXCR5 + NK cells in lymph nodes of HIV-1 infected patients. EBioMedicine 2022; 75:103794. [PMID: 34973625 PMCID: PMC8728057 DOI: 10.1016/j.ebiom.2021.103794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients. Methods Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry. Findings CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13—the ligand of CXCR5—was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells. Interpretation During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
Collapse
|
25
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
26
|
Gusak A, Fedorova L, Lepik K, Volkov N, Popova M, Moiseev I, Mikhailova N, Baykov V, Kulagin A. Immunosuppressive Microenvironment and Efficacy of PD-1 Inhibitors in Relapsed/Refractory Classic Hodgkin Lymphoma: Checkpoint Molecules Landscape and Macrophage Populations. Cancers (Basel) 2021; 13:cancers13225676. [PMID: 34830831 PMCID: PMC8616219 DOI: 10.3390/cancers13225676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma contains rare malignant Hodgkin/Reed–Sternberg cells and abundant reactive populations in the tumor microenvironment. Many aspects of the interaction between tumor cells and immune cells remain unclear. Nevertheless, the microenvironment is believed to play a crucial role in tumor resistance and progression. Current knowledge about the role and dynamics of the tumor microenvironment in Hodgkin lymphoma during anti-PD-1 treatment is limited. The aim of this study was to identify possible predictive and prognostic morphological markers in the treatment of patients with relapsed or refractory classic Hodgkin lymphoma treated with nivolumab and to assess the variability of reactive cell populations after nivolumab therapy. The study was aimed to optimize therapeutic strategy in patients with relapsed or refractory classic Hodgkin lymphoma. Abstract To date, the impact of the tumor microenvironment on the prognosis of patients with classic Hodgkin lymphoma (cHL) during anti-PD-1 therapy has been studied insufficiently. This retrospective study included 61 primary samples of lymph nodes from patients who had relapsed/refractory (r/r) cHL and were treated with nivolumab. Repeated samples were obtained in 15 patients at relapse or disease progression after immunotherapy. Median follow-up was 55 (13–63) months. The best overall response rate and progression-free survival (PFS) were analyzed depending on the expression of CD68, CD163, PD-1, LAG-3, TIM-3, CTLA-4, TIGIT, CD163/c-maf in the tumor microenvironment in primary and sequential biopsies. The combination of CD163/c-maf antibodies was used for the identification of M2 macrophages (M2). A low number of macrophages in primary samples was associated with inferior PFS during nivolumab treatment (for CD163-positive cells p = 0.0086; for CD68-positive cells p = 0.037), while a low number of M2 with higher PFS (p = 0.014). Complete response was associated with a lower level of M2 (p = 0.011). In sequential samples (before and after nivolumab therapy) an increase in PD-1 (p = 0.011) and LAG-3 (p = 0.0045) and a depletion of CD68 (p = 0.057) and CD163 (p = 0.0049)-positive cells were observed. The study expands understanding of the cHL microenvironment structure and dynamics during nivolumab therapy in patients with r/r cHL.
Collapse
|
27
|
Recent Advances in Understanding the Role of TIGIT+ Follicular Helper T Cells in IgG4-Related Disease. IMMUNO 2021. [DOI: 10.3390/immuno1040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is a fibro-inflammatory disease characterized by elevated serum IgG4 levels and massive infiltration of IgG4+plasma cells. Although storiform fibrosis, obliterative phlebitis and IgG4+plasma cell infiltration are well described pathological features in this disease, the excessive formation of tertiary lymphoid organs (TLOs), particularly in the early phase of the disease lesions, has gained much attention. TLOs of IgG4-RD are orchestrated by specific immune cell subsets including follicular helper T cells (Tfh), CD20+ B cells, and CD21+ follicular dendritic cells (FDCs). Tfh is the key player of this disease because recent studies have suggested the pathological role of this immune cell subset in formation of TLOs, helping IgG4+plasma cell differentiation, inducing storiform fibrosis by secreting interleukin-4, and activating cytotoxic T cells by secreting interleukin-21. We have recently identified a new Tfh subset which expresses T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT). TIGIT+Tfh efficiently produces interleukin-21 through OX40 signal, and the increase in peripheral TIGIT+Tfh cells reflects disease activity in IgG4-RD. TIGIT is important to mediate the retention and positioning of TIGIT+Tfh within TLOs through interaction with CD155 expressed on CD21+ FDCs. In this review, we summarize and discuss recent progress in understanding the pathogenesis of IgG4-RD, focusing on TIGIT+Tfh.
Collapse
|
28
|
Kvistad D, Pallikkuth S, Sirupangi T, Pahwa R, Kizhner A, Petrovas C, Villinger F, Pahwa S. IL-21 enhances influenza vaccine responses in aged macaques with suppressed SIV infection. JCI Insight 2021; 6:e150888. [PMID: 34491910 PMCID: PMC8564910 DOI: 10.1172/jci.insight.150888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Natural aging and HIV infection are associated with chronic low-grade systemic inflammation, immune senescence, and impaired antibody responses to vaccines such as the influenza (flu) vaccine. We investigated the role of IL-21, a CD4+ T follicular helper cell (Tfh) regulator, on flu vaccine antibody response in nonhuman primates (NHPs) in the context of age and controlled SIV mac239 infection. Three doses of the flu vaccine with or without IL-21–IgFc were administered at 3-month intervals in aged SIV+ NHPs following virus suppression with antiretroviral therapy. IL-21–treated animals demonstrated higher day 14–postboost antibody responses, which associated with expanded CD4+ T central memory cells and peripheral Tfh–expressing (pTfh–expressing) T cell immunoreceptor with Ig and ITIM domains (TIGIT), expanded activated memory B cells, and contracted CD11b+ monocytes. Draining lymph node (LN) tissue from IL-21–treated animals revealed direct association between LN follicle Tfh density and frequency of circulating TIGIT+ pTfh cells. We conclude that IL-21 enhances flu vaccine–induced antibody responses in SIV+ aged rhesus macaques (RMs), acting as an adjuvant modulating LN germinal center activity. A strategy to supplement IL-21 in aging could be a valuable addition in the toolbox for improving vaccine responses in an aging HIV+ population.
Collapse
Affiliation(s)
- Daniel Kvistad
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Tirupataiah Sirupangi
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexander Kizhner
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Francois Villinger
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for Immunotherapy of Cancer: Update on Clinical Development. Biomedicines 2021; 9:1277. [PMID: 34572463 PMCID: PMC8472042 DOI: 10.3390/biomedicines9091277] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint blockers have dramatically improved the chances of survival in patients with metastatic cancer, but only a subset of the patients respond to treatment. Search for novel targets that can improve the responder rates and overcome the limitations of adverse events commonly seen with combination therapies, like PD-1 plus CTLA-4 blockade and PD-1/PD-L1 plus chemotherapy, led to the development of monoclonal antibodies blocking T-cell immunoglobulin and ITIM domain (TIGIT), a inhibitory checkpoint receptor expressed on activated T cells and NK cells. The strategy showed potential in pre-clinical and early clinical studies, and 5 molecules are now in advanced stages of evaluation (phase II and above). This review aims to provide an overview of clinical development of anti-TIGIT antibodies and describes the factors considered and thought process during early clinical development. Critical aspects that can decide the fate of clinical programs, such as origin of the antibody, Ig isotype, FCγR binding, and the dose as well as dosing schedule, are discussed along with the summary of available efficacy and safety data from clinical studies and the challenges in the development of anti-TIGIT antibodies, such as identifying patients who can benefit from therapy and getting payer coverage.
Collapse
Affiliation(s)
- Anand Rotte
- Arcellx, Gaithersburg, MD 20878, USA
- Doloxe, Santa Clara, CA 95050, USA
| | | | | |
Collapse
|
30
|
Yaegashi LB, Baldavira CM, Prieto TG, Machado-Rugolo J, Velosa APP, da Silveira LKR, Assato A, Ab'Saber AM, Falzoni R, Takagaki T, Silva PL, Teodoro WR, Capelozzi VL. In Situ Overexpression of Matricellular Mechanical Proteins Demands Functional Immune Signature and Mitigates Non-Small Cell Lung Cancer Progression. Front Immunol 2021; 12:714230. [PMID: 34484217 PMCID: PMC8415570 DOI: 10.3389/fimmu.2021.714230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a complex cancer biome composed of malignant cells embedded in a sophisticated tumor microenvironment (TME) combined with different initiating cell types, including immune cells and cancer-associated fibroblasts (CAFs), and extracellular matrix (ECM) proteins. However, little is known about these tumors’ immune-matricellular relationship as functional and mechanical barriers. This study investigated 120 patients with NSCLC to describe the immune-matricellular phenotypes of their TME and their relationship with malignant cells. Immunohistochemistry (IHC) was performed to characterize immune checkpoints (PD-L1, LAG-3, CTLA-4+, VISTA 1), T cells (CD3+), cytotoxic T cells (CD8+, Granzyme B), macrophages (CD68+), regulatory T cells (FOXP3+, CD4+), natural killer cells (CD57+), and B lymphocytes (CD20+), whereas CAFs and collagen types I, III, and V were characterized by immunofluorescence (IF). We observed two distinct functional immune-cellular barriers—the first of which showed proximity between malignant cells and cytotoxic T cells, and the second of which showed distant proximity between non-cohesive nests of malignant cells and regulatory T cells. We also identified three tumor-associated matricellular barriers: the first, with a localized increase in CAFs and a low deposition of Col V, the second with increased CAFs, Col III and Col I fibers, and the third with a high amount of Col fibers and CAFs bundled and aligned perpendicularly to the tumor border. The Cox regression analysis was designed in two steps. First, we investigated the relationship between the immune-matricellular components and tumor pathological stage (I, II, and IIIA), and better survival rates were seen in patients whose tumors expressed collagen type III > 24.89 fibers/mm². Then, we included patients who had progressed to pathological stage IV and found an association between poor survival and tumor VISTA 1 expression > 52.86 cells/mm² and CD3+ ≤ 278.5 cells/mm². We thus concluded that differential patterns in the distribution of immune-matricellular phenotypes in the TME of NSCLC patients could be used in translational studies to predict new treatment strategies and improve patient outcome. These data raise the possibility that proteins with mechanical barrier function in NSCLC may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction, which can otherwise be targeted effectively with immunotherapy or collagen therapy.
Collapse
Affiliation(s)
| | | | | | - Juliana Machado-Rugolo
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil.,Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Aline Assato
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Roberto Falzoni
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
31
|
Immune Microenvironment Features and Dynamics in Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13143634. [PMID: 34298847 PMCID: PMC8304929 DOI: 10.3390/cancers13143634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary As happens in all neoplasms, the many reciprocal interactions taking place between neoplastic cells and the other reactive cells impact the course of the disease. Hodgkin Lymphoma is an haematologic malignancy where most of the pathological tissue is indeed composed by reactive cells and few neoplastic cells. Consequently, it represents an interesting subject for the description of the neoplastic and non-neoplastic cells interaction. In this review we report and discuss the more recent findings of microenvironmental studies about this disease. Abstract Classical Hodgkin’s lymphoma (cHL) accounts for 10% of all lymphoma diagnosis. The peculiar feature of the disease is the presence of large multinucleated Reed–Sternberg and mononuclear Hodgkin cells interspersed with a reactive microenvironment (ME). Due to the production of a large number of cytokines, Hodgkin cells (HCs) and Hodgkin Reed–Sternberg cells (HRSCs) attract and favour the expansion of different immune cell populations, modifying their functional status in order to receive prosurvival stimuli and to turn off the antitumour immune response. To this purpose HRSCs shape a biological niche by organizing the spatial distribution of cells in the ME. This review will highlight the contribution of the ME in the pathogenesis and prognosis of cHL and its role as a possible therapeutic target.
Collapse
|
32
|
Challenges and Opportunities in the Statistical Analysis of Multiplex Immunofluorescence Data. Cancers (Basel) 2021; 13:cancers13123031. [PMID: 34204319 PMCID: PMC8233801 DOI: 10.3390/cancers13123031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Immune modulation is considered a hallmark of cancer initiation and progression, and has offered promising opportunities for therapeutic manipulation. Multiplex immunofluorescence (mIF) technology has enabled the tumor immune microenvironment (TIME) to be studied at an increased scale, in terms of both the number of markers and the number of samples. Another benefit of mIF technology is the ability to measure not only the abundance but also the spatial location of multiple cells types within a tissue sample simultaneously, allowing for assessment of the co-localization of different types of immune markers. Thus, the use of mIF technologies have enable researchers to characterize patient, clinical, and tumor characteristics in the hope of identifying patients whom might benefit from immunotherapy treatments. In this review we outline some of the challenges and opportunities in the statistical analyses of mIF data to study the TIME. Abstract Immune modulation is considered a hallmark of cancer initiation and progression. The recent development of immunotherapies has ushered in a new era of cancer treatment. These therapeutics have led to revolutionary breakthroughs; however, the efficacy of immunotherapy has been modest and is often restricted to a subset of patients. Hence, identification of which cancer patients will benefit from immunotherapy is essential. Multiplex immunofluorescence (mIF) microscopy allows for the assessment and visualization of the tumor immune microenvironment (TIME). The data output following image and machine learning analyses for cell segmenting and phenotyping consists of the following information for each tumor sample: the number of positive cells for each marker and phenotype(s) of interest, number of total cells, percent of positive cells for each marker, and spatial locations for all measured cells. There are many challenges in the analysis of mIF data, including many tissue samples with zero positive cells or “zero-inflated” data, repeated measurements from multiple TMA cores or tissue slides per subject, and spatial analyses to determine the level of clustering and co-localization between the cell types in the TIME. In this review paper, we will discuss the challenges in the statistical analysis of mIF data and opportunities for further research.
Collapse
|
33
|
Blessin NC, Abu-Hashem R, Mandelkow T, Li W, Simon R, Hube-Magg C, Möller-Koop C, Witt M, Schmidt A, Büscheck F, Fraune C, Luebke AM, Möller K, Jacobsen F, Lutz F, Lennartz M, Steurer S, Sauter G, Höflmayer D, Tsourlakis MC, Hinsch A, Burandt E, Wilczak W, Minner S, Clauditz TS. Prevalence of proliferating CD8 + cells in normal lymphatic tissues, inflammation and cancer. Aging (Albany NY) 2021; 13:14590-14603. [PMID: 34083496 PMCID: PMC8221353 DOI: 10.18632/aging.203113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
CD8+ cytotoxic T-lymphocytes are essential components of the anti-tumor immunity. To better understand the expansion of CD8+ T-cells we used multiplex fluorescence immunohistochemistry to study Ki67+CD8+ cells in normal lymphoid tissues, selected inflammatory diseases and cancers in 41 large sections/ microenvironment tissue microarrays (TMAs) as well as 765 samples in a conventional TMA format. The evaluation of more than 20 different compartments of normal lymphoid tissues revealed that the percentage of proliferating (ki67+) CD8+ cells did commonly not exceed 3%. In inflammations, the percentage of Ki67+CD8+ cells was more variable and higher compared to normal tissues. In cancers, the percentage of Ki67+CD8+ cells was higher in the tumor center than at the invasive margin. In the tumor center of 765 colorectal cancers, the density of Ki67+CD8+ cells and the percentage of proliferating CD8+ cytotoxic T-cells was significantly associated with microsatellite instability (p<0.0001), pT (p<0.0002) and pN category (p<0.0098). In summary, these data show that the percentage of Ki67+CD8+ cells is usually at a baseline proliferation rate below 3% in healthy secondary lymphoid organs. This rate is often markedly higher in inflammatory and neoplastic diseases compared to normal tissues. The striking link with unfavorable tumor features in colorectal cancer suggest a potential clinical utility of assessing the percentage of Ki67+CD8+ cells to predict patients outcome.
Collapse
Affiliation(s)
- Niclas C Blessin
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Raed Abu-Hashem
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Wenchao Li
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Melanie Witt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Alice Schmidt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | | | - Andrea Hinsch
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg D-20246, Germany
| |
Collapse
|
34
|
Prognostic Role of Immune Checkpoint Regulators in Cholangiocarcinoma: A Pilot Study. J Clin Med 2021; 10:jcm10102191. [PMID: 34069452 PMCID: PMC8159105 DOI: 10.3390/jcm10102191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes.
Collapse
|
35
|
Kaur J, Singh P, Enzler T, Sahai V. Emerging antibody therapies for pancreatic adenocarcinoma: a review of recent phase 2 trials. Expert Opin Emerg Drugs 2021; 26:103-129. [PMID: 33734833 DOI: 10.1080/14728214.2021.1905795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pancreatic adenocarcinoma is now the third-leading cause of cancer-related deaths in the US which can be attributed to rising incidence, diagnosis at advanced stages and early development of metastasis. Systemic therapy remains palliative with early development of resistance possibly related to the constitutive activation of 'undruggable' KRAS, immunosuppressive microenvironment, and intense desmoplasia. The advancements in molecular biology has led to the development and investigation of targeted and immune therapeutics.Areas covered: This study provides a comprehensive review of the literature to further the understanding of molecular targets with their respective antibody-based therapies in clinical development in pancreatic cancer. PubMed was systematically searched for English-language articles discussing antibody-based therapies under phase 2 clinical trial investigation in pancreatic adenocarcinoma.Expert opinion: PDAC remains highly resistant to chemotherapy with no significant improvement in survival for patients with advanced or metastatic cancer. Unfortunately, the majority of the antibody-based targeted and immune therapeutics have failed to meet their primary efficacy endpoints in early phase trials. However, there are a few promising antibody-based drugs with intriguing preliminary data that merit further investigation, while many more continue to be developed and investigated preclinically, and in early phase trials.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Internal Medicine, Saint Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Paramveer Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Enzler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Ostroumov D, Duong S, Wingerath J, Woller N, Manns MP, Timrott K, Kleine M, Ramackers W, Roessler S, Nahnsen S, Czemmel S, Dittrich-Breiholz O, Eggert T, Kühnel F, Wirth TC. Transcriptome Profiling Identifies TIGIT as a Marker of T-Cell Exhaustion in Liver Cancer. Hepatology 2021; 73:1399-1418. [PMID: 32716559 DOI: 10.1002/hep.31466] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Programmed death 1 (PD-1) checkpoint inhibition has shown promising results in patients with hepatocellular carcinoma, inducing objective responses in approximately 20% of treated patients. The roles of other coinhibitory molecules and their individual contributions to T-cell dysfunction in liver cancer, however, remain largely elusive. APPROACH AND RESULTS We performed a comprehensive mRNA profiling of cluster of differentiation 8 (CD8) T cells in a murine model of autochthonous liver cancer by comparing the transcriptome of naive, functional effector, and exhausted, tumor-specific CD8 T cells. Subsequently, we functionally validated the role of identified genes in T-cell exhaustion. Our results reveal a unique transcriptome signature of exhausted T cells and demonstrate that up-regulation of the inhibitory immune receptor T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitor motif domains (TIGIT) represents a hallmark in the process of T-cell exhaustion in liver cancer. Compared to PD-1, expression of TIGIT more reliably identified exhausted CD8 T cells at different stages of their differentiation. In combination with PD-1 inhibition, targeting of TIGIT with antagonistic antibodies resulted in synergistic inhibition of liver cancer growth in immunocompetent mice. Finally, we demonstrate expression of TIGIT on tumor-infiltrating CD8 T cells in tissue samples of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma and identify two subsets of patients based on differential expression of TIGIT on tumor-specific T cells. CONCLUSIONS Our transcriptome analysis provides a valuable resource for the identification of key pathways involved in T-cell exhaustion in patients with liver cancer and identifies TIGIT as a potential target in checkpoint combination therapies.
Collapse
Affiliation(s)
- Dmitrij Ostroumov
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Steven Duong
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jessica Wingerath
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Kai Timrott
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Moritz Kleine
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Wolf Ramackers
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | | | - Tobias Eggert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
37
|
Shaffer T, Natarajan A, Gambhir SS. PET Imaging of TIGIT Expression on Tumor-Infiltrating Lymphocytes. Clin Cancer Res 2021; 27:1932-1940. [PMID: 33408249 DOI: 10.1158/1078-0432.ccr-20-2725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic checkpoint inhibitors on tumor-infiltrating lymphocytes (TIL) are being increasingly utilized in the clinic. The T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on T and natural killer cells. The TIGIT signaling pathway is an alternative target for checkpoint blockade to current PD-1/CTLA-4 strategies. Elevated TIGIT expression in the tumor microenvironment correlates with better therapeutic responses to anti-TIGIT therapies in preclinical models. Therefore, quantifying TIGIT expression in tumors is necessary for determining whether a patient may respond to anti-TIGIT therapy. PET imaging of TIGIT expression on TILs can therefore aid diagnosis and in monitoring therapeutic responses. EXPERIMENTAL DESIGN Antibody-based TIGIT imaging radiotracers were developed with the PET radionuclides copper-64 (64Cu) and zirconium-89 (89Zr). In vitro characterization of the imaging probes was followed by in vivo evaluation in both xenografts and syngeneic tumor models in mouse. RESULTS Two anti-TIGIT probes were developed and exhibited immunoreactivity of >72%, serum stability of >95%, and specificity for TIGIT with both mouse TIGIT-expressing HeLa cells and ex vivo-activated primary splenocytes. In vivo, the 89Zr-labeled probe demonstrated superior contrast than the 64Cu probe due to 89Zr's longer half-life matching the TIGIT antibody's pharmacokinetics. The 89Zr probe was used to quantify TIGIT expression on TILs in B16 melanoma in immunocompetent mice and confirmed by ex vivo flow cytometry. CONCLUSIONS This study develops and validates novel TIGIT-specific 64Cu and 89Zr PET probes for quantifying TIGIT expression on TILs for diagnosis of patient selection for anti-TIGIT therapies.
Collapse
Affiliation(s)
- Travis Shaffer
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Arutselvan Natarajan
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Stanford Bio-X Program, Stanford University, Stanford, California
| |
Collapse
|
38
|
Diao JA, Wang JK, Chui WF, Mountain V, Gullapally SC, Srinivasan R, Mitchell RN, Glass B, Hoffman S, Rao SK, Maheshwari C, Lahiri A, Prakash A, McLoughlin R, Kerner JK, Resnick MB, Montalto MC, Khosla A, Wapinski IN, Beck AH, Elliott HL, Taylor-Weiner A. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat Commun 2021; 12:1613. [PMID: 33712588 PMCID: PMC7955068 DOI: 10.1038/s41467-021-21896-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features (HIFs). Our method leverages >1.6 million annotations from board-certified pathologists across >5700 samples to train deep learning models for cell and tissue classification that can exhaustively map whole-slide images at two and four micron-resolution. Cell- and tissue-type model outputs are combined into 607 HIFs that quantify specific and biologically-relevant characteristics across five cancer types. We demonstrate that these HIFs correlate with well-known markers of the tumor microenvironment and can predict diverse molecular signatures (AUROC 0.601-0.864), including expression of four immune checkpoint proteins and homologous recombination deficiency, with performance comparable to 'black-box' methods. Our HIF-based approach provides a comprehensive, quantitative, and interpretable window into the composition and spatial architecture of the tumor microenvironment.
Collapse
Affiliation(s)
- James A Diao
- PathAI, Inc., Boston, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Jason K Wang
- PathAI, Inc., Boston, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Wan Fung Chui
- PathAI, Inc., Boston, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Richard N Mitchell
- Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Murray B Resnick
- PathAI, Inc., Boston, MA, USA
- Department of Pathology, Warren Alpert Medical School, Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang X, Lu X, Cheung AKL, Zhang Q, Liu Z, Li Z, Yuan L, Wang R, Liu Y, Tang B, Xia H, Wu H, Zhang T, Su B. Analysis of the Characteristics of TIGIT-Expressing CD3 -CD56 +NK Cells in Controlling Different Stages of HIV-1 Infection. Front Immunol 2021; 12:602492. [PMID: 33717085 PMCID: PMC7953050 DOI: 10.3389/fimmu.2021.602492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
TIGIT expression on natural killer (NK) cells is associated with dysfunction during chronic HIV infection, but the phenotype and biological functions of these cells in the context of acute HIV-1 infection remain poorly understood. Here, 19 acutely infected HIV-1 patients traced at first, third and twelfth month, and age-matched patients with chronic HIV-1 infection were enrolled to investigate the phenotype and functions of TIGIT expression on NK cells. We found that TIGIT-expressing NK cells did not increase in frequency in the first, third and twelfth month of infection until chronic HIV-1 infection lasted over 2 years. The number of TIGIT+NK cells in acute infection was positively associated with HIV-1 viral load (r = 0.53, P = 0.0009). CD96 was significantly upregulated on NK cells after acute infection for 1 month and in chronic infection over 2 years, while CD226 was downregulated in chronic infection over 2 years. Further, at different stages of infection, CD96−CD226+ cells diminished among total NK cells, TIGIT+NK and TIGIT−NK cells, while CD96+CD226− cells expanded. Reduced CD96−CD226+ cells and elevated CD96+CD226− cells among NK cells especially TIGIT−NK cells, had opposite associations with viral load in the first month of infection, as well as CD4 T-cell counts in including the twelfth month and more than 2 years of chronic infection. In both HIV-1-infected individuals and healthy donors, TIGIT was predominantly expressed in NKG2A−NKG2C+NK cells, with a significantly higher proportion than in NKG2A+NKG2C−NK cells. Moreover, the frequencies of TIGIT+NK cells were positively associated with the frequencies of NKG2A−NKG2C+NK cells in acute infection (r = 0.62, P < 0.0001), chronic infection (r = 0.37, P = 0.023) and healthy donors (r = 0.36, P = 0.020). Enhanced early activation and coexpression of CD38 and HLA-DR in TIGIT+NK cells were detected compared to TIGIT−NK cells, both of which were inversely associated with the decrease in CD4 T-cell counts in both acute and chronic HIV-1 infection. The ability of TIGIT+NK cells to produce TNF-α, IFN-γ and CD107a degranulation substance were consistently weaker than that of TIGIT−NK cells in both acute and chronic infection. Moreover, the functionalities of TIGIT+NK cells were lower than those of TIGIT−NK cells, except for TNF-α−CD107a+IFN-γ−NK cells. These findings highlight the phenotype and functional characteristics of TIGIT-expressing NK cells which have poor capabilities in inhibiting HIV-1 replication and maintaining CD4 T-cell counts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xiaofan Lu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Qiuyue Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhiying Liu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhen Li
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lin Yuan
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Rui Wang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yan Liu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Tang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Huan Xia
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
40
|
Liang R, Zhu X, Lan T, Ding D, Zheng Z, Chen T, Huang Y, Liu J, Yang X, Shao J, Wei H, Wei B. TIGIT promotes CD8 +T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunol Immunother 2021; 70:2781-2793. [PMID: 33634371 DOI: 10.1007/s00262-021-02886-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
TIGIT is a lymphocyte surface receptor, which is mainly expressed on the surface of CD8+T cells. The role of TIGIT in colorectal cancer and its expression pattern in colorectal cancer infiltrating lymphocytes are still controversial. This study aimed at identifying the function of TIGIT in colorectal cancer. Patients with colorectal cancer showed significantly higher TIGIT+CD8+T cell infiltration in tumor tissues, metastases compared with paired PBMC and normal tissues through flow cytometry. TIGIT+CD8+T cells showed an exhausted phenotype and expressed low levels of killer cytokines IFN-γ, IL-2, TNF-α. In addition, more inhibitory receptors such as PD-1, LAG-3, and TIM-3 were expressed on the surface of TIGIT+CD8+T cells. TGF-β1 could promote the expression of TIGIT and inhibit CD8+T cell function in vitro. Moreover, the accumulation of TIGIT+T cells in tumors was associated with advanced disease, predicted early recurrence, and reduced survival rates in colorectal cancer patients. Our results indicate that TIGIT can be a biological marker for the prognosis of colorectal cancer, and TIGIT can be used as a potential target for treatment.
Collapse
Affiliation(s)
- Rongpu Liang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xudong Zhu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Tianyun Lan
- Central Laboratory, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Dongbing Ding
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yong Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jianpei Liu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xiaofeng Yang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jun Shao
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Bo Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
41
|
Hsu YSO, Lu KL, Fu Y, Wang CW, Lu CW, Lin YF, Chang WC, Yeh KY, Hung SI, Chung WH, Chen CB. The Roles of Immunoregulatory Networks in Severe Drug Hypersensitivity. Front Immunol 2021; 12:597761. [PMID: 33717075 PMCID: PMC7953830 DOI: 10.3389/fimmu.2021.597761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The immunomodulatory effects of regulatory T cells (Tregs) and co-signaling receptors have gained much attention, as they help balance immunogenic and immunotolerant responses that may be disrupted in autoimmune and infectious diseases. Drug hypersensitivity has a myriad of manifestations, which ranges from the mild maculopapular exanthema to the severe Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DRESS/DIHS). While studies have identified high-risk human leukocyte antigen (HLA) allotypes, the presence of the HLA allotype at risk is not sufficient to elicit drug hypersensitivity. Recent studies have suggested that insufficient regulation by Tregs may play a role in severe hypersensitivity reactions. Furthermore, immune checkpoint inhibitors, such as anti-CTLA-4 or anti-PD-1, in cancer treatment also induce hypersensitivity reactions including SJS/TEN and DRESS/DIHS. Taken together, mechanisms involving both Tregs as well as coinhibitory and costimulatory receptors may be crucial in the pathogenesis of drug hypersensitivity. In this review, we summarize the currently implicated roles of co-signaling receptors and Tregs in delayed-type drug hypersensitivity in the hope of identifying potential pharmacologic targets.
Collapse
Affiliation(s)
- Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Lin Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yun Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuang-Wei Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Fen Lin
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Cheng Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
42
|
Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel) 2021; 13:cancers13040663. [PMID: 33562324 PMCID: PMC7915065 DOI: 10.3390/cancers13040663] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Immune checkpoint blockade targeting PD-1/PD-L1 has a promising therapeutic efficacy in different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. This review summarizes the recent findings of PD-L1 role in resistance to therapies through the PD-1/PD-L1 pathway and other correlating signaling pathways. A special focus will be given to the key mechanisms underlying resistance to the PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, we also discuss the promising combination of therapeutic strategies for patients resistant to the PD-1/PD-L1 blockade in order to enhance the efficacy of immune checkpoint inhibitors. Abstract Release of immunoreactive negative regulatory factors such as immune checkpoint limits antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resistance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. In this review, we described the utility of PD-L1 expression levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways. Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was also summarized.
Collapse
|
43
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Schnell A, Bod L, Madi A, Kuchroo VK. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res 2020; 30:285-299. [PMID: 31974523 PMCID: PMC7118128 DOI: 10.1038/s41422-020-0277-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
Co-inhibitory receptors are important regulators of T-cell function that define the balance between tolerance and autoimmunity. The immune regulatory function of co-inhibitory receptors, including CTLA-4, PD-1, TIM-3, TIGIT, and LAG-3, was first discovered in the setting of autoimmune disease models, in which their blockade or deficiency resulted in induction or exacerbation of the disease. Later on, co-inhibitory receptors on lymphocytes have also been found to influence outcomes in tumor and chronic viral infection settings. These receptors suppress T-cell function in the tumor microenvironment (TME), thereby making the T cells dysfunctional. Based on this observation, blockade of co-inhibitory receptors (also known as checkpoint molecules) has emerged as a successful treatment option for a number of human cancers. However, severe autoimmune-like side effects limit the use of therapeutics that block individual or combinations of co-inhibitory receptors for cancer treatment. In this review we provide an overview of the role of co-inhibitory receptors in autoimmunity and anti-tumor immunity. We then discuss current approaches and future directions to leverage our knowledge of co-inhibitory receptors to target them in tumor immunity without inducing autoimmunity.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
45
|
Chen F, Xu Y, Chen Y, Shan S. TIGIT enhances CD4 + regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med 2020; 9:3584-3591. [PMID: 32212317 PMCID: PMC7221438 DOI: 10.1002/cam4.2976] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OC) is the fifth-leading cause of cancer-related death in women with a pathogenesis involving activation of regulatory T cells (Tregs). The T-cell immunoglobulin and ITIM domain (TIGIT) is a well-known immune checkpoint molecule that inhibits T-cell responses. However, the role of TIGIT in OC is not comprehensively understood. In this study, we revealed crucial functions of TIGIT in the development and progression of OC. ID8 cells were used to establish a murine OC model. TIGIT expression was increased in immune cells of OC mice, particularly in CD4+ Tregs. Anti-TIGIT monoclonal antibodies (mAb) were used to block the function of TIGIT in OC mice, and we found that the anti-TIGIT treatment reduced the proportion of CD4+ Tregs, but did not affect CD4+ and CD8+ T cells or natural killer cells. Splenic CD4+ Tregs from OC mice were isolated after the anti-TIGIT treatment, and their functioning was examined. Inhibition of TIGIT lowered the degree of immunosuppression induced by CD4+ Tregs. A survival curve suggested that anti-TIGIT treatment can improve the survival rate of OC in mice. We conclude that TIGIT enhanced CD4+ Tregs response and mediated immunosuppression in the OC model. Our data suggest that inhibition of TIGIT is a potential therapeutic target in OC patients.
Collapse
Affiliation(s)
- Fengzhen Chen
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yulong Chen
- Department of Lung Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shu Shan
- Department of Gynecology and Obstetrics, Affiliated Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Picard E, Verschoor CP, Ma GW, Pawelec G. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front Immunol 2020; 11:369. [PMID: 32210966 PMCID: PMC7068608 DOI: 10.3389/fimmu.2020.00369] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly heterogeneous at the genetic and molecular level, which has major repercussions on the efficacy of immunotherapy. A small subset of CRCs exhibit microsatellite instability (MSI), a molecular indicator of defective DNA mismatch repair (MMR), but the majority are microsatellite-stable (MSS). The high tumor mutational burden (TMB) and neoantigen load in MSI tumors favors the infiltration of immune effector cells, and antitumor immune responses within these tumors are strong relative to their MSS counterparts. MSI has emerged as a major predictive marker for the efficacy of immune checkpoint blockade over the last few years and nivolumab or pembrolizumab targeting PD-1 has been approved for patients with MSI refractory or metastatic CRC. However, some MSS tumors show DNA polymerase epsilon (POLE) mutations that also confer a very high TMB and may also be heavily infiltrated by immune cells making them amenable to respond to immune checkpoint inhibitors (ICI). In this review we discuss the role of the different immune landscapes in CRC and their relationships with defined CRC genetic subtypes. We discuss potential reasons why immune checkpoint blockade has met with limited success for the majority of CRC patients, despite the finding that immune cell infiltration of primary non-metastatic tumors is a strong predictive, and prognostic factor for relapse and survival. We then consider in which ways CRC cells develop mechanisms to resist ICI. Finally, we address the latest advances in CRC vaccination and how a personalized neoantigen vaccine strategy might overcome the resistance of MSI and MSS tumors in patients for whom immune checkpoint blockade is not a treatment option.
Collapse
Affiliation(s)
- Emilie Picard
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | | | - Grace W Ma
- Department of Surgery, Health Sciences North, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Sun H, Sun C. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Front Immunol 2019; 10:2354. [PMID: 31681269 PMCID: PMC6812684 DOI: 10.3389/fimmu.2019.02354] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haoyu Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Haoyu Sun
| | - Cheng Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Cheng Sun
| |
Collapse
|
48
|
Hinsch A, Blessin NC, Simon R, Kluth M, Fischer K, Hube-Magg C, Li W, Makrypidi-Fraune G, Wellge B, Mandelkow T, Debatin NF, Höflmayer D, Lennartz M, Sauter G, Izbicki JR, Minner S, Büscheck F, Uhlig R, Dum D, Krech T, Luebke AM, Wittmer C, Jacobsen F, Burandt E, Steurer S, Wilczak W. Expression of the immune checkpoint receptor TIGIT in seminoma. Oncol Lett 2019; 18:1497-1502. [PMID: 31423216 PMCID: PMC6607271 DOI: 10.3892/ol.2019.10428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
A characteristic feature of testicular seminoma is the abundance of immune cells in the tumor microenvironment, raising the possibility that immune checkpoint inhibitors may serve as a therapeutic option in these types of tumors. T cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory immune checkpoint receptor in analogy to PD-1, and drugs targeting TIGIT are currently being investigated in clinical trials. Little is known about the expression of these proteins in testicular seminomas. Therefore the present study performed immunohistochemical analysis to determine the relative abundance of TIGIT and PD-1 in relation to the total CD3+ immune cell infiltration in a tissue microarray (TMA) constructed from 78 seminoma patients. The fraction of TIGIT+ and PD-1+ lymphocytes was highly variable in individual cancers and ranged from 2.3 to 69.4% (mean: 32.2±14.7%) for TIGIT and from 0.8 to 56.5% (mean: 21.6±13.2%) for PD-1. The same high degree of variability was also identified for the ratio of PD-1 to TIGIT positive cells, which varied from a dominance of TIGIT (PD-1: TIGIT ratio=0.02) in 74% of patients, to a predominance of PD-1 (PD-1: TIGIT ratio=12.5) in 23% of patients. In summary, the immune checkpoint receptors TIGIT and PD-1 are abundantly expressed in human seminomas. Once available, anti-TIGIT antibodies, possibly in combination with anti-PD-1 drugs, may be a reasonable therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Wenchao Li
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Björn Wellge
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Nicolaus F Debatin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximilian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ria Uhlig
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - David Dum
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andreas M Luebke
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Corinna Wittmer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Eike Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Waldemar Wilczak
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|