1
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
2
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
3
|
Li H, Liang J, Han M, Gao Z. Polyphenols synergistic drugs to ameliorate non-alcoholic fatty liver disease via signal pathway and gut microbiota: A review. J Adv Res 2024:S2090-1232(24)00091-2. [PMID: 38471648 DOI: 10.1016/j.jare.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with an increasing incidence worldwide. Single drug therapy may have toxic side effects and disrupt gut microbiota balance. Polyphenols are widely used in disease intervention due to their distinctive nutritional properties and medicinal value, which a potential gut microbiota modulator. However, there is a lack of comprehensive review to explore the efficacy and mechanism of combined therapy with drugs and polyphenols for NAFLD. AIM OF REVIEW Based on this, this review firstly discusses the link between NAFLD and gut microbiota, and outlines the effects of polyphenols and drugs on gut microbiota. Secondly, it examined recent advances in the treatment and intervention of NAFLD with drugs and polyphenols and the therapeutic effect of the combination of the two. Finally, we highlight the underlying mechanisms of polyphenol combined drug therapy in NAFLD. This is mainly in terms of signaling pathways (NF-κB, AMPK, Nrf2, JAK/STAT, PPAR, SREBP-1c, PI3K/Akt and TLR) and gut microbiota. Furthermore, some emerging mechanisms such as microRNA potential biomarker therapies may provide therapeutic avenues for NAFLD. KEY SCIENTIFIC CONCEPTS OF REVIEW Drawing inspiration from combination drug strategies, the use of active substances in combination with drugs for NAFLD intervention holds transformative and prospective potential, both improve NAFLD and restore gut microbiota balance while reducing the required drug dosage. This review systematically discusses the bidirectional interactions between gut microbiota and NAFLD, and summarizes the potential mechanisms of polyphenol synergistic drugs in the treatment of NAFLD by modulating signaling pathways and gut microbiota. Future researches should develop multi-omics technology to identify patients who benefit from polyphenols combination drugs and devising individualized treatment plans to enhance its therapeutic effect.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
5
|
Shen Z, Cui T, Liu Y, Wu S, Han C, Li J. Astragalus membranaceus and Salvia miltiorrhiza ameliorate diabetic kidney disease via the "gut-kidney axis". PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155129. [PMID: 37804821 DOI: 10.1016/j.phymed.2023.155129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The combination of Astragalus membranaceus and Salvia miltiorrhiza (AS) is an effective prescription for treating diabetic kidney disease (DKD) in traditional Chinese medicine. Its efficacy in treating DKD has been confirmed, but the potential regulatory mechanism has not yet been fully clarified. PURPOSE To explore the mechanism by which AS regulates the "gut-metabolism-transcription" coexpression network under the action of the "gut-kidney axis" to ameliorate DKD. METHODS SD rats were used to establish the DKD model by injecting STZ. After AS intervention, the structure and function of the kidney and colon were observed. We sequenced the gut microbiota utilizing 16S rDNA, identified serum differential metabolites using LC‒MS/MS, and observed renal mRNA expression by RNA seq. The "gut-metabolism-transcription" coexpression network was further constructed, and the target bacteria, target metabolites, and target genes of AS were ultimately screened and validated. RESULTS AS improved renal pathology and functional damage and increased the abundance of Akkermansia, Akkermansia_muciniphila, Lactobacillus and Lactobacillus_murinus. Fourteen target metabolites of AS were identified, which were mainly concentrated in 19 KEGG pathways, including sphingolipid metabolism and glycerophospholipid metabolism. Sixty-three target mRNAs of AS were identified. The top 20 pathways were closely related to glycolipid metabolism, and 14 differential mRNAs were expressed in these pathways. Correlation analysis showed that Akkermansia, Akkermansia muciniphila, Lactobacillus and Lactobacillus murinus were closely associated with sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism. Moreover, the target metabolites and target mRNAs of AS were also enriched in five identical pathways of sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism, including 8 different metabolites, such as sphingosine, and 5 different genes, such as Kng1. The 8 metabolites had high AUC prediction values, and the validation of the 5 genes was consistent with the sequencing results. CONCLUSION Our research showed that AS can improve DKD via the "gut-kidney axis". Akkermansia muciniphila and Lactobacillus murinus were the main driving bacteria, and five pathways related to glycolipid metabolism, especially sphingolipid metabolism and glycerophospholipid metabolism, may be important follow-up reactions and regulatory mechanisms.
Collapse
Affiliation(s)
- Zhen Shen
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan 250200, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Shuai Wu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China.
| | - Jie Li
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China.
| |
Collapse
|
6
|
Deng S, Cai K, Pei C, Zhang X, Xiao X, Chen Y, Chen Y, Liang R, Chen Y, Li P, Xie Z, Liao Q. 16S rRNA and Metagenomics Combined with UPLC-Q/TOF-MS Metabolomics Analysis Reveals the Potential Mechanism of Radix Astragali Against Hyperuricemia in Mice. Drug Des Devel Ther 2023; 17:1371-1386. [PMID: 37181826 PMCID: PMC10171225 DOI: 10.2147/dddt.s407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Zhiyong Xie, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 075523260207, Email
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Qiongfeng Liao, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 02039358081, Email
| |
Collapse
|
7
|
Astragalus membranaceus and Salvia miltiorrhiza Ameliorate Hypertensive Renal Damage through lncRNA-mRNA Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3002353. [PMID: 36119929 PMCID: PMC9481330 DOI: 10.1155/2022/3002353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
lncRNAs and mRNA are closely associated with hypertensive renal damage, and Astragalus membranaceus and Salvia miltiorrhiza (AS) have a therapeutic effect; however, the mechanism of AS to ameliorate hypertensive renal damage through the co-expression network of lncRNA-mRNA was unclear. In this study, we investigated the role of AS regulated the coexpression network of lncRNA-mRNA in improving hypertensive renal damage. Sixteen 24-week old spontaneous hypertensive rats (SHRs) were randomly divided into model group (M) and drug intervention group (AS, 5.9 g/kg), 8 Wistar Kyoto rats (WKY) of the same age as normal group (N). The treatment of rats was 4 weeks. Detecting the change of blood pressure, renal pathology and renal function related indicators, and lncRNA and mRNA sequencing and joint analysis was performed on the kidney. AS reduced blood pressure; decreased urine NAG, urine mALB, serum CysC, and IL-6; and improved renal pathology compared with group M. Simultaneously, AS reversed the disordered expression of 178 differential expression (DE) mRNAs and 237 DE-lncRNAs in SHRs, and their joint analysis showed that 13 DE-mRNAs and 32 DE-lncRNAs were coexpressed. Further analysis of 13 coexpressed DE-mRNAs showed negative regulation of blood pressure and fatty acid beta-oxidation was highly enriched in GO pathways, PPAR signaling pathway was highly enriched in KEGG pathways, and the verification related to these pathways was also highly consistent with the sequence. AS can alleviate hypertensive renal damage through the coexpression network of lncRNA-mRNA, of which coexpressed 13 DE-mRNAs and 32 DE-lncRNAs were the important targets, and the pathway negative regulation of blood pressure, fatty acid beta-oxidation, and PPAR signaling pathway play a major regulatory role.
Collapse
|
8
|
KONG XL, LYU Q, ZHANG YQ, KANG DF, LI C, ZHANG L, GAO ZC, LIU XX, WU JB, LI YL. Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics. Chin J Nat Med 2022; 20:601-613. [DOI: 10.1016/s1875-5364(22)60186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/26/2022]
|
9
|
Yan D, Sun Y, Zhou X, Si W, Liu J, Li M, Wu M. Regulatory effect of gut microbes on blood pressure. Animal Model Exp Med 2022; 5:513-531. [PMID: 35880388 PMCID: PMC9773315 DOI: 10.1002/ame2.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina,Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
10
|
Hu D, Zhang W, Xiang J, Li D, Chen Y, Yuan P, Shao S, Zhou Z, Shen Y, Tang J. A ROS-responsive synergistic delivery system for combined immunotherapy and chemotherapy. Mater Today Bio 2022; 14:100284. [PMID: 35647515 PMCID: PMC9130108 DOI: 10.1016/j.mtbio.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/12/2023]
Abstract
Immune checkpoint blockade (ICB) therapies that target programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway are currently used for the treatment of various cancer types. However, low response rates of ICB remain the major issue and limit their applications in clinic. Here, we developed a ROS-responsive synergistic delivery system (pep-PAPM@PTX) by integrating physically-encapsulated paclitaxel (PTX) and surface-modified anti-PD-L1 peptide (pep) for combined chemotherapy and ICB therapy. Pep-PAPM@PTX could bind the cell surface PD-L1 and drive its recycling to lysosomal degradation, thus reverting PTX-induced PD-L1 upregulation and downregulating PD-L1 expression. As a result, pep-PAPM@PTX significantly promoted T cell infiltration and increased tumor immunoactivating factors, synergizing PTX chemotherapy to achieve enhanced anticancer potency in a triple-negative breast cancer (TNBC) model.
Collapse
|
11
|
Zhang FY, Wang LL, Dong WW, Zhang M, Tash D, Li XJ, Du SK, Yuan HM, Zhao R, Guan DW. A preliminary study on early postmortem submersion interval (PMSI) estimation and cause-of-death discrimination based on nontargeted metabolomics and machine learning algorithms. Int J Legal Med 2022; 136:941-954. [DOI: 10.1007/s00414-022-02783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023]
|
12
|
Cheng TY, Li JX, Chen JY, Chen PY, Ma LR, Zhang GL, Yan PY. Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chin Med 2021; 16:108. [PMID: 34686199 PMCID: PMC8540100 DOI: 10.1186/s13020-021-00516-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) is a common ischaemic heart disease whose pathological mechanism has not been fully elucidated. Single target drugs, such as antiplatelet aggregation, coronary artery dilation and lipid-lowering medicines, can relieve some symptoms clinically but cannot effectively prevent and treat CHD. Accumulating evidence has revealed that alterations in GM composition, diversity, and richness are associated with the risk of CHD. The metabolites of the gut microbiota (GM), including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs), affect human physiology by activating numerous signalling pathways. Due to the advantage of multiple components and multiple targets, traditional Chinese medicine (TCM) can intervene in CHD by regulating the composition of the GM, reducing TMAO, increasing SCFAs and other CHD interventions. We have searched PubMed, Web of science, Google Scholar Science Direct, and China National Knowledge Infrastructure (CNKI), with the use of the keywords "gut microbiota, gut flora, traditional Chinese medicine, herbal medicine, coronary heart disease". This review investigated the relationship between GM and CHD, as well as the intervention of TCM in CHD and GM, and aims to provide valuable insights for the treatments of CHD by TCM.
Collapse
Affiliation(s)
- Tian-Yi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jing-Yi Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Pei-Ying Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Gui-Lin Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
13
|
Li SN, Tang SH, Ren R, Gong JX, Chen YM. Metabolomic profile of milk fermented with Streptococcus thermophilus cocultured with Bifidobacterium animalis ssp. lactis, Lactiplantibacillus plantarum, or both during storage. J Dairy Sci 2021; 104:8493-8505. [PMID: 34024601 DOI: 10.3168/jds.2021-20270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/05/2021] [Indexed: 01/27/2023]
Abstract
In this study, the microbial interactions among cocultures of Streptococcus thermophilus (St) with potential probiotics of Bifidobacterium animalis ssp. lactis (Ba) and Lactiplantibacillus plantarum (Lp) in fermented milk were investigated during a storage period of 21 d at 4°C, in terms of acidifying activity (pH and titratable acidity), viable counts, and metabolites. A nontargeted metabolomics approach based on ultra-high-performance liquid chromatography coupled with mass spectrometry was employed for mapping the global metabolite profiles of fermented milk. Probiotic strains cocultured with St accelerated milk acidification, and improved the microbial viability compared with the single culture of St. The St-Ba/Lp treatment manifested a higher bacteria viability and acidification ability in comparison with the St-Ba or the St-Lp treatment. Relative quantitation of 179 significant metabolites was identified, including nucleosides, AA, short peptides, organic acids, lipid derivatives, carbohydrates, carbonyl compounds, and compounds related to energy metabolism. The principal component analysis indicated that St treatment and coculture treatments displayed a complete distinction in metabolite profiles, and Lp had a larger effect than Ba on metabolic profiles of fermented milk produced by cofermentation with St during storage. The heat map in combination with hierarchical cluster analysis showed that the abundance of metabolites significantly varied with the starter cultures over the storage, and high abundance of metabolites was observed in either St or coculture samples. The St-Ba/Lp treatment showed relatively high abundance for the vast majority of metabolites. These findings suggest that the profile of the metabolites characterizing fermented milk samples may depend on the starter cultures, and incorporation of probiotics may considerably influence the metabolomic activities of fermented milks.
Collapse
Affiliation(s)
- S N Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. China
| | - S H Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - R Ren
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. China
| | - J X Gong
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Y M Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
14
|
Badger R, Aho K, Serve K. Short-term exposure to synthetic flaxseed lignan LGM2605 alters gut microbiota in mice. Microbiologyopen 2021; 10:e1185. [PMID: 33970540 PMCID: PMC8087944 DOI: 10.1002/mbo3.1185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
LGM2605 is a synthetic version of the naturally occurring flaxseed lignan secoisolariciresinol diglucoside (SDG), with known anti‐inflammatory and antioxidant properties; however, its effects on gut microbial composition have not previously been evaluated. In the present study, we sought to determine how the 10‐day oral administration of LGM2605 alters the gut microbiota of mice. Eight‐week‐old female C57BL/6 mice were treated with either LGM2605 or saline, administered daily via oral gavage over a 10‐day treatment period. Upon termination of treatment, mouse cecums (n = 31) were collected, and cecal DNA was isolated. 16S rRNA genes were sequenced and analyzed in Mothur to identify changes in gut microbial composition induced by LGM2605 treatment (v. saline control). We then assessed community composition, performed indicator taxa analysis, and measured alpha and beta diversity. Overall, LGM2605 significantly altered the gut microbiota of mice; we reported alterations in 3 bacterial phyla and 22 genera as a result of treatment. The study here identifies for the first time significant alterations in the gut microbiota of mice following oral administration of LGM2605, in general shifting toward a more anti‐inflammatory composition. These findings lay the foundation for future investigations utilizing LGM2605 to control gut dysbiosis and, by extension, systemic inflammation.
Collapse
Affiliation(s)
- Reagan Badger
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Ken Aho
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Kinta Serve
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
15
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
16
|
Han C, Jiang YH, Li W, Liu Y. Astragalus membranaceus and Salvia miltiorrhiza ameliorates cyclosporin A-induced chronic nephrotoxicity through the "gut-kidney axis". JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113768. [PMID: 33383113 DOI: 10.1016/j.jep.2020.113768] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Astragalus membranaceus and Salvia miltiorrhiza (AS) is an effective prescription that is widely used to treat chronic kidney disease (CKD) clinically in traditional Chinese medicine. Our previous studies have shown that AS can alleviate early CKD through the "gut-kidney axis", but the regulatory role of AS in the "gut-kidney axis" in the middle and late stages of CKD caused by cyclosporin A-induced chronic nephrotoxicity (CICN) has remained unclear. AIM OF THE STUDY To explore the protective effect of AS by regulating the intestinal flora to further control the miRNA-mRNA interaction profiles in CICN. MATERIALS AND METHODS Thirty-two mice were divided into four groups: Normal (N) (olive oil), Model (M) (CsA, 30 mg kg-1 d-1), AS (CsA + AS, 30 + 8.4 g kg-1 d-1) and FMT-AS (CsA + Faeces of AS group, 30 mg + 10 mL kg-1 d-1). The mice were treated for 6 weeks. Changes in renal function related metabolites were detected, pathological changes in the colon and kidney were observed, and 16S rDNA sequencing was performed on mouse faeces. In addition, miRNA and mRNA sequencing were performed on the kidney to construct differential expression (DE) profiles of the other 3 groups compared with group M. The target mRNAs among the DE miRNAs were then predicted, and an integrated analysis was performed with the DE mRNAs to annotate gene function by KEGG. DE miRNAs and DE mRNAs related to CICN in the overlapping top 20 KEGG pathways were screened and verified. RESULTS Eight metabolites that could worsen renal function were increased in group M, accompanied by thickening of the glomerular basement membrane, vacuolar degeneration of renal tubules, and proliferation of collagen fibres, while AS and FMT-AS intervention amended these changes to varying degrees. Simultaneously, intestinal permeability increased, the abundance and diversity of the flora decreased, and the ratio of Firmicum to Bacteroides (F/B) increased in group M. The AS and FMT-AS treatments reversed the flora disorder and increased probiotics producing butyric acid and lactic acid, especially Akkermansia and Lactobacillus, which might regulate the 12 overlapping top 20 KEGG pathways, such as Butanoate metabolism, Tryptophan metabolism and several RF-related pathways, leading to the remission of renal metabolism. Finally, 15 DE miRNAs and 45 DE mRNAs were screened as the therapeutic targets, and the results coincided with the sequencing results. CONCLUSION AS could alleviate renal fibrosis and metabolism caused by CICN through the "gut-kidney axis". Probiotics such as Akkermansia and Lactobacillus were the primary driving factors, and the miRNA-mRNA interaction profiles, especially Butanoate metabolism and Tryptophan metabolism, may be an important subsequent response and regulatory mechanism.
Collapse
MESH Headings
- Animals
- Astragalus propinquus/chemistry
- Butyric Acid
- Colon/drug effects
- Colon/metabolism
- Colon/microbiology
- Colon/pathology
- Cyclosporine/toxicity
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Endoplasmic Reticulum Stress/drug effects
- Fatty Acids/metabolism
- Fecal Microbiota Transplantation
- Gastrointestinal Microbiome/drug effects
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Lactic Acid
- Male
- Medicine, Chinese Traditional
- Mice, Inbred C57BL
- MicroRNAs/drug effects
- MicroRNAs/metabolism
- Oxidative Stress/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Cell Surface/drug effects
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/microbiology
- Renal Insufficiency, Chronic/pathology
- Salvia miltiorrhiza/chemistry
- Mice
Collapse
Affiliation(s)
- Cong Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yue-Hua Jiang
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
17
|
Li X, Wu D, Niu J, Sun Y, Wang Q, Yang B, Kuang H. Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:237-268. [PMID: 33622213 DOI: 10.1142/s0192415x21500130] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Dan Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Jingjie Niu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| |
Collapse
|
18
|
Yang H, Pan R, Wang J, Zheng L, Li Z, Guo Q, Wang C. Modulation of the Gut Microbiota and Liver Transcriptome by Red Yeast Rice and Monascus Pigment Fermented by Purple Monascus SHM1105 in Rats Fed with a High-Fat Diet. Front Pharmacol 2021; 11:599760. [PMID: 33551805 PMCID: PMC7859525 DOI: 10.3389/fphar.2020.599760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperlipidemia can easily cause atherosclerosis and induce cardiovascular and cerebrovascular diseases. Red yeast rice (RYR) contains a variety of active ingredients and is commonly used as medicine and food, and has pharmacological effects such as lowering blood lipids. In this study, we select Monascus strain SHM1105 with a high yield of Monacolin K and monascus pigment (PIG), and studied the effects of the RYR and PIG fermented by this strain on blood lipids, intestinal flora, and liver transcriptome in hyperlipidemia model rats. The experimental results show that, compared with the high-fat model group, the weight growth rate, liver weight ratio, kidney weight ratio, spleen weight ratio, and fat weight ratio of rats in the gavage lovastatin (LOV), RYR, and PIG group were all significantly decreased (p < 0.05). Intervention with RYR and PIG can significantly reduce the serum TC, TG, and LDL-C levels, which has the effect of lowering blood lipids. The 16SrDNA sequencing results showed that the ratio of Firmicutes/Bacteroidetes decreased significantly (p ≤ 0.01) after the intervention of LOV, RYR, and PIG; the abundance of the ratio of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Bacteroidales-S24-7-group also changed. The combined analysis of transcriptome and metabolome showed that lovastatin, RYR, and PIG can all improve lipid metabolism in rats by regulating Steroid hormone biosynthesis, Glycerolipid metabolism, and the Arachidonic acid metabolism pathway. In addition, RYR and PIG also have a unique way of regulating blood lipids. Although a lot of research on the lipid-lowering components of Monascus rice and the single pigment component of Monascus has been carried out, the actual application is RYR and pigments as mixtures, as a mixture of RYR and PIG contains a variety of biologically active ingredients, and each component may have a synergistic effect. Hence it has a lipid-lowering mechanism that lovastatin does not have. Therefore, RYR and PIG are effective in reducing lipid potential development and can be utilized in functional foods.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ronghua Pan
- Zhejiang Sanhe Bio-Tech Co., Ltd., Zhejiang, China
| | - Jing Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | | | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Li M, Meng Q, Zhang H, Shu R, Zhao Y, Wu P, Li X, Zhou G, Qin Q, Zhang J. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. BMC Genomics 2020; 21:789. [PMID: 33176684 PMCID: PMC7659167 DOI: 10.1186/s12864-020-07209-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Ophiocordyceps sinensis (Berk.) is a well-known entomopathogenic and medicinal fungus. It parasitizes and mummifies the underground ghost moth larvae to produce a fruiting body named Chinese cordyceps. Specific for the fungus, O. sinensis experiences a biotrophic vegetative growth period spanning over 5 months. During this vegetative growth, it appears successively in the host hemocoel in three/four morphotypes, namely, the yeast-like blastospores (subdivided into proliferative (BP) and stationary phase (BS)), prehyphae (PreHy) and the hyphae (Hy). This peculiar morphogenesis has been elucidated through morphological and ultrastructural observations, but its molecular basis remains cryptic. In this study, transcriptome and metabolome profiling of BP, BS, PreHy and Hy stages were performed to characterize the key genes, metabolites, and signaling pathways that regulated the vegetative development of O. sinensis in Thitarodes xiaojinensis larva. Results The molecular events and metabolic pathways that regulated different intracellular processes at various stages were examined. Cluster analyses of differentially expressed genes across the four stages revealed the stage specifically enriched pathways. Analysis of metabolome profiles showed that carbon metabolism and several amino acids biosynthesis were significantly perturbed during the tested development stages of O. sinensis in the host hemocoel. Genes homologous to Saccharomyces cerevisiae MAPK cascade were significantly up-regulated during the transition from blastospore to hypha. The up-regulation of Sho1, a regulator protein, suggested nutrient starvation act a role in activation of MAPK pathway and filamentous growth. In addition, up-regulation of several fatty acid synthesis genes and their corresponding products accumulation in the samples of BS might explain more lipid droplets were observed in BS than in BP. Coupled with the up-regulation of fatty acid degradation during PreHy and Hy stages, it is presumed that lipid accumulation and mobilization play important roles in filamentous development. Conclusions This is the first report comprehensively describing developmental transcriptomics and metabolomics of O. sinensis in vivo. Our findings provide new perspectives into the key pathways and hub genes involved in morphological changes of fungus developed in the hemocoel of its host, and are expected to guide future studies on morphogenesis and morphotype changes of entomopathogenic fungi in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07209-2.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guiling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Wu G, Shi Y, Han L, Feng C, Ge Y, Yu Y, Tang X, Cheng X, Sun J, Le GW. Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7745-7756. [PMID: 32597175 DOI: 10.1021/acs.jafc.0c02965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diet greatly influences gut microbiota. Dietary methionine restriction (MR) prevents and ameliorates age-related or high-fat-induced diseases and prolongs life span. This study aimed to reveal the impact of MR on gut microbiota in middle-aged mice with low-, medium-, high-fat diets. C57BL/6J mice were randomly divided into six groups with different MR and fat-content diets. Multiple indicators of intestinal function, fat accumulation, energy consumption, and inflammation were measured. 16S rRNA gene sequencing was used to analyze cecal microbiota. Our results indicated that MR considerably reduced the concentrations of lipopolysaccharide (LPS) and increased short-chain fatty acids (SCFAs) by upregulating the abundance of Corynebacterium and SCFA-producing bacteria Bacteroides, Faecalibaculum, and Roseburia and downregulating the LPS-producing or proinflammatory bacteria Desulfovibrio and Escherichia-Shigella. The effect of MR on LPS and SCFAs further reduced fat accumulation and systemic inflammation, enhanced heat production, and mediated the LPS/LBP/CD14/ TLR4 pathway to strength the intestinal mucosal immunity barrier in middle-aged mice.
Collapse
Affiliation(s)
- Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yihao Yu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangrong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Guo-Wei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Ye P, Xu J, Luo Y, Su Z, Yao K. Familial autosomal recessive bestrophinopathy: identification of a novel variant in BEST1 gene and the specific metabolomic profile. BMC MEDICAL GENETICS 2020; 21:16. [PMID: 31969119 PMCID: PMC6977271 DOI: 10.1186/s12881-020-0951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal recessive bestrophinopathy (ARB) is a retinal degenerative disorder caused by BEST1 mutations with autosomal recessive inheritance. We aim to map a comprehensive genomic and metabolomic profile of a consanguineous Chinese family with ARB. METHODS Ophthalmic examinations were performed on the affected patients with ARB. The proband was screened for potential causative mutations in a panel with 256 known retinal disease genes by using target capture sequencing. The related mutation was further validated and segregated in the family members by Sanger sequencing. In silico prediction tools were used for pathogenicity assessment. A UHPLC-MS/MS metabolomic analysis was performed to explore the disease-associated metabolic feature. RESULTS The affected patients from this family were characterized by low vision, the presence of subretinal fluid, macular edema, and hyperopia with coincidental angle closure. DNA sequencing identified a novel missense mutation in the BEST1 gene c.646G > A (p.Val216Ile) of the proband. Sanger sequencing further confirmed the mutation. The missense mutation was co-segregation across the pedigree and predicted to be deleterious by SIFT (0.017). The blood metabolic profiles were highly similar among all family members probably because of the same lifestyle, habitat and genomic background. However, ARB patients presented a significant deregulation of metabolites, such as citric acid, L-Threonic acid, and eicosapentaenoic acid. CONCLUSIONS We identified a novel disease-associated variant in the BEST1 gene as well as a disease-specific metabolic feature in familial ARB. Our findings helped improve the understanding of ARB mechanisms.
Collapse
Affiliation(s)
- Panpan Ye
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Eye Hospital, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yueqiu Luo
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Eye Hospital, Zhejiang University, Hangzhou, China
| | - Zhitao Su
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Eye Hospital, Zhejiang University, Hangzhou, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Eye Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|