1
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Zuo X, Winkler B, Lerner K, Ilatovskaya DV, Zamaro AS, Dang Y, Su Y, Deng P, Fitzgibbon W, Hartman J, Park KM, Lipschutz JH. Cilia-deficient renal tubule cells are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. Am J Physiol Renal Physiol 2024; 327:F61-F76. [PMID: 38721661 PMCID: PMC11390130 DOI: 10.1152/ajprenal.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Brennan Winkler
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kasey Lerner
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Aleksandra S Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Peifeng Deng
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wayne Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jessica Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Medicine, Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
4
|
Ke CH, Tomiyasu H, Lin YL, Huang WH, Huang HH, Chiang HC, Lin CS. Canine transmissible venereal tumour established in immunodeficient mice reprograms the gene expression profiles associated with a favourable tumour microenvironment to enable cancer malignancy. BMC Vet Res 2022; 18:4. [PMID: 34980125 PMCID: PMC8722346 DOI: 10.1186/s12917-021-03093-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Canine transmissible venereal tumours (CTVTs) can cross the major histocompatibility complex barrier to spread among dogs. In addition to the transmissibility within canids, CTVTs are also known as a suitable model for investigating the tumour–host immunity interaction because dogs live with humans and experience the same environmental risk factors for tumourigenesis. Moreover, outbred dogs are more appropriate than inbred mice models for simulating the diversity of human cancer development. This study built a new model of CTVTs, known as MCTVTs, to further probe the shaping effects of immune stress on tumour development. For xenotransplantation, CTVTs were first injected and developed in immunodeficient mice (NOD.CB17-Prkdcscid/NcrCrl), defined as XCTVTs. The XCTVTs harvested from NOD/SCID mice were then inoculated and grown in beagles and named mouse xenotransplantation of CTVTs (MCTVTs). Results After the inoculation of CTVTs and MCTVTs into immune-competent beagle dogs separately, MCTVTs grew faster and metastasized more frequently than CTVTs did. Gene expression profiles in CTVTs and MCTVTs were analysed by cDNA microarray to reveal that MCTVTs expressed many tumour-promoting genes involved in chronic inflammation, chemotaxis, extracellular space modification, NF-kappa B pathways, and focal adhesion. Furthermore, several well-known tumour-associated biomarkers which could predict tumour progression were overexpressed in MCTVTs. Conclusions This study demonstrated that defective host immunity can result in gene instability and enable transcriptome reprogramming within tumour cells. Fast tumour growth in beagle dogs and overexpression of tumour-associated biomarkers were found in a CTVT strain previously established in immunodeficient mice. In addition, dysregulated interaction of chronic inflammation, chemotaxis, and extracellular space modification were revealed to imply the possibly exacerbating mechanisms in the microenvironments of these tumours. In summary, this study offers a potential method to facilitate tumour progression and provide a niche for discovering tumour-associated biomarkers in cancer research. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03093-4.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., 10617, Taipei, Taiwan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hsiao-Hsuan Huang
- Industrial Development Graduate Program of College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, 30068, Taiwan
| | | | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., 10617, Taipei, Taiwan.
| |
Collapse
|
5
|
Morita N, Hoshi M, Hara T, Ninomiya S, Enoki T, Yoneda M, Tsurumi H, Saito K. Viability of diffuse large B-cell lymphoma cells is regulated by kynurenine 3-monooxygenase activity. Oncol Lett 2021; 22:790. [PMID: 34584567 PMCID: PMC8461759 DOI: 10.3892/ol.2021.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy that is the most common type of lymphoma in Japan. Previous studies have demonstrated that patients with DLBCL have a poor prognosis due to increased levels of indoleamine 2,3-dioxygnase and kynurenine (KYN). However, the roles of metabolites acting downstream of KYN and associated enzymes are not fully understood. The present study investigated the role of kynurenine 3-monooxygenase (KMO), which catalyzes the conversion of KYN to 3-hydroxykynurenine (3-HK), using serum samples from patients with DLBCL and human DLBCL cell lines with different KMO expression [STR-428 cells with high levels of KMO expression (KMOhigh) and KML-1 cells with low levels of KMO expression (KMOlow)]. Serum samples from 28 patients with DLBCL and 34 healthy volunteers were used to investigate the association between prognosis and KMO activity or 3-HK levels. Furthermore, to investigate the roles of KMO and its related metabolites, STR-428 and KML-1 cell lines, and the lymph nodes of patients with DLBCL were analyzed by reverse transcription-quantitative PCR for KMO, KYNU, 3-hydroxyanthranilate-3,4-dioxygenase and quinolinate phosphoribosyltransferase, by western blotting, and immunohistochemical or immunofluorescence staining for KMO, and by cell viability and NAD+/NADH assays. KYN pathway metabolites in serum samples were measured by HPLC. Serum 3-HK levels were regulated independently of serum KYN levels, and increased serum 3-HK levels and KMO activity were found to be associated with worse disease progression. Notably, the addition of KMO inhibitors and 3-HK negatively and positively regulated the viability of DLBCL cells, respectively. Furthermore, NAD+ levels in KMOhigh STR-428 cells were significantly higher than those in KMOlow KML-1 cells. These results suggested that 3-HK generated by KMO activity may be involved in the regulation of DLBCL cell viability via NAD+ synthesis.
Collapse
Affiliation(s)
- Nanaka Morita
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Masato Hoshi
- Department of Biochemical and Analytical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Hara
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu 501-1194, Japan.,Department of Hematology, Matsunami General Hospital, Kasamatsucho, Gifu 501-6062, Japan
| | - Soranobu Ninomiya
- Department of Hematology, Matsunami General Hospital, Kasamatsucho, Gifu 501-6062, Japan
| | - Taisuke Enoki
- Department of Educational Collaboration, Health and Safety Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8285, Japan
| | - Misao Yoneda
- Department of Pathology, Suzuka University of Medical Sciences, Suzuka, Mie 510-0293, Japan
| | - Hisashi Tsurumi
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu 501-1194, Japan.,Department of Hematology, Matsunami General Hospital, Kasamatsucho, Gifu 501-6062, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
6
|
Kynurenine Monooxygenase Expression and Activity in Human Astrocytomas. Cells 2021; 10:cells10082028. [PMID: 34440798 PMCID: PMC8393384 DOI: 10.3390/cells10082028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.
Collapse
|
7
|
Novel promising serum biomarkers for canine mammary tumors. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Lai MH, Liao CH, Tsai NM, Chang KF, Liu CC, Chiu YH, Huang KC, Lin CS. Surface Expression of Kynurenine 3-Monooxygenase Promotes Proliferation and Metastasis in Triple-Negative Breast Cancers. Cancer Control 2021; 28:10732748211009245. [PMID: 33887987 PMCID: PMC8204454 DOI: 10.1177/10732748211009245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Kynurenine 3-monooxygenase (KMO) is the pivotal enzyme in the kynurenine pathway and is located on the mitochondrial outer membrane. The dysregulation of KMO leads to various neurodegenerative diseases; however, it is rarely mentioned in cancer progression. Our previous study showed that KMO overexpression in canine mammary gland tumors (cMGT) is associated with poor prognosis in cMGT patients. Surprisingly, it was also found that KMO can be located on the cell membranes of cMGT cells, unlike its location in normal cells, where KMO is expressed only within the cytosol. Since cMGT and human breast cancer share similar morphologies and pathogenesis, this study investigated the possibility of detecting surface KMO in human breast cancers and the role of surface KMO in tumorigenesis. Using immunohistochemistry (IHC), flow cytometry (FC), immunofluorescence assay (IFA), and transmission electron microscopy (TEM), we demonstrated that KMO can be aberrantly and highly expressed on the cell membranes of breast cancer tissues and in an array of cell lines. Masking surface KMO with anti-KMO antibody reduced the cell viability and inhibited the migration and invasion of the triple-negative breast cancer cell line, MDA-MB-231. These results indicated that aberrant surface expression of KMO may be a potential therapeutic target for human breast cancers.
Collapse
Affiliation(s)
- Min-Hua Lai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung.,Department of Pathology and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung.,Institute of Medicine of Chung Shun Medical University, Taichung
| | - Cheng-Chi Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| | - Yi-Han Chiu
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City. Chiu is now with Department of Microbiology, Soochow University, Taipei
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| |
Collapse
|
9
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
10
|
Liu IL, Chung TF, Huang WH, Hsu CH, Liu CC, Chiu YH, Huang KC, Liao ATC, Lin CS. Kynurenine 3-monooxygenase (KMO), and signal transducer and activator of transcription 3 (STAT3) expression is involved in tumour proliferation and predicts poor survival in canine melanoma. Vet Comp Oncol 2020; 19:79-91. [PMID: 32720434 DOI: 10.1111/vco.12641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/26/2023]
Abstract
Canine melanoma is a malignant tumour that exhibits aggressive behaviour, and frequently metastasizes to regional lymph nodes and distant sites. Currently, there are no effective treatments or practical prognostic biomarkers for canine melanoma. The enzyme kynurenine 3-monooxygenase (KMO), which plays a central role in the tryptophan metabolism, has previously been identified as the main pathogenic factor in neurodegenerative diseases; however, it has recently been found to be positively associated with tumour malignancy in human hepatocellular carcinoma and canine mammary tumours. Signal transducer and activator of transcription 3 (STAT3) is a well-known oncoprotein contributing to the proliferation, survival, invasiveness and metastasis of a variety of cancers. Although whether STAT3 and KMO collaborate in tumorigenesis needs to be further verified, our previous findings showed that inhibition of KMO activity reduced activation of STAT3. This study investigated the expressions of KMO and STAT3/phosphorylated (pSTAT3) by immunohistochemical analysis in 85 cases of canine melanoma, showing their expression levels were high within highly mitotic melanoma cells. KMO Overexpression was significantly associated with increased STAT3 and pSTAT3 expressions. Melanoma tissues with higher KMO, STAT3 and pSTAT3 protein expressions were correlated with reduced survival rates of the canine patients. Moreover, inhibition of KMO activity in canine melanoma cells resulted in reduced cell viability, in addition to decreased expressions of STAT3 and pSTAT3. Our results indicated the significance of KMO and the potential role of KMO/STAT3 interaction in enhancing tumour development. Additionally, KMO and STAT3/pSTAT3 may be viewed as useful biomarkers for the prediction of prognosis of canine melanoma.
Collapse
Affiliation(s)
- I-Li Liu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Ting-Fang Chung
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Hui Hsu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Cheng-Chi Liu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Han Chiu
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Taiwan, Republic of China
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, Taiwan, Republic of China
| | - Albert Tai-Ching Liao
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.,Animal Cancer Center, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Si Lin
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.,Animal Cancer Center, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
11
|
Kuo IM, Lee JJ, Wang YS, Chiang HC, Huang CC, Hsieh PJ, Han W, Ke CH, Liao ATC, Lin CS. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer 2020; 20:603. [PMID: 32600429 PMCID: PMC7324975 DOI: 10.1186/s12885-020-07072-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is a form of hyperthermia used in cancer treatment. mEHT has demonstrated the ability to activate host immunity by inducing the release of heat shock proteins, triggering apoptosis, and destroying the integrity of cell membranes to enhance cellular uptake of chemo-drugs in tumor cells. Both curcumin and resveratrol are phytochemicals that function as effective antioxidants, immune activators, and potential inhibitors of tumor development. However, poor bioavailability is a major obstacle for use in clinical cancer treatment. METHODS This purpose of this study was to investigate whether mEHT can increase anti-cancer efficacy of nanosized curcumin and resveratrol in in vitro and in vivo models. The in vitro study included cell proliferation assay, cell cycle, and apoptosis analysis. Serum concentration was analyzed for the absorption of curcumin and resveratrol in SD rat model. The in vivo CT26/BALB/c animal tumor model was used for validating the safety, tumor growth curve, and immune cell infiltration within tumor tissues after combined mEHT/curcumin/resveratrol treatment. RESULTS The results indicate co-treatment of mEHT with nano-curcumin and resveratrol significantly induced cell cycle arrest and apoptosis of CT26 cells. The serum concentrations of curcumin and resveratrol were significantly elevated when mEHT was applied. The combination also inhibited the growth of CT26 colon cancer by inducing apoptosis and HSP70 expression of tumor cells while recruiting CD3+ T-cells and F4/80+ macrophages. CONCLUSIONS The results of this study have suggested that this natural, non-toxic compound can be an effective anti-tumor strategy for clinical cancer therapy. mEHT can enable cellular uptake of potential anti-tumor materials and create a favorable tumor microenvironment for an immunological chain reaction that improves the success of combined treatments of curcumin and resveratrol.
Collapse
Affiliation(s)
- I-Ming Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Shan Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
- JohnPro Biotech Inc., Taipei, Taiwan
| | | | | | | | | | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Albert T. C. Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|
12
|
Ghafouri-Fard S, Taherian-Esfahani Z, Dashti S, Kholghi Oskooei V, Taheri M, Samsami M. Gene expression of indoleamine and tryptophan dioxygenases and three long non-coding RNAs in breast cancer. Exp Mol Pathol 2020; 114:104415. [PMID: 32165090 DOI: 10.1016/j.yexmp.2020.104415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
The kynurenine pathway (KP) has a principal role in the metabolism of tryptophan. This pathway is also involved in the pathogenesis of cancer. We evaluated expression of two rate limiting enzymes from this pathway (IDO1 and TDO2) as well as three long non-coding RNAs (lncRNAs) that have been predicted to alter expression of IDO1 (ITGB2-AS1, HCP5 and MIR155HG) in 82 breast cancer tissues and their adjacent non-cancerous tissues (ANCTs). While IDO1 expression levels were not significantly different between malignant tissues and ANCTs (expression ratio = 0.56, P = .21), TDO2 was significantly down-regulated in malignant tissues compared with ANCTs (Expression ratio = 0.001, P < .001). Among lncRNAs, expression of HCP5 was significantly lower in malignant tissues compared with ANCTs (Expression ratio = 0.17, P < .001). However, expression of ITGB2-AS1 was higher in malignant tissues compared with ANCTs (Expression ratio = 3.38, P = .01). Expressions of genes were not associated with any of clinical or demographic data of patients. However, there were trends towards association between IDO1 expression and tumor size as well as estrogen receptor (ER) status (P values 0.09 and 0.08 respectively). Significant pairwise correlations were found between expression levels of genes especially in ANCTs. Notably, TDO2 expression levels were correlated with expression of all other genes in ANCTs but none of them in tumor tissues. Based on the area under curve (AUC) values, HCP5 and TDO2 had "fair" diagnostic power (AUC values of 0.73 and 0.72). Notably, combination of HCP5, ITGB2-AS1 and TDO2 genes increased the diagnostic power to the level of "good". The current investigation underscores the role of KP in breast cancer and potentiates some genes within this pathway as diagnostic markers in breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Front Immunol 2020; 11:249. [PMID: 32153576 PMCID: PMC7047328 DOI: 10.3389/fimmu.2020.00249] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many patients with cancer suffer from anemia, depression, and an impaired quality of life (QoL). These patients often also show decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1 type immune activation marker neopterin. In the course of anti-tumor immune response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along the kynurenine pathway is related to fatigue and anemia as well as to depression and a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown might greatly contribute to the development of anemia, fatigue, and depression in cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune regulatory mechanisms, which may impair anti-tumor immune responses. In addition, tumor cells can degrade tryptophan to weaken immune responses directed against them. High IDO expression in the tumor tissue is associated with a poor prognosis of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently tested in combination with established chemotherapies and with immune checkpoint inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on the development and persistence of anemia, fatigue, and depression in cancer patients are discussed.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patricia Kink
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Maria Egger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol Centre for Personalized Cancer Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Lu Y, Shao M, Wu T. Kynurenine-3-monooxygenase: A new direction for the treatment in different diseases. Food Sci Nutr 2020; 8:711-719. [PMID: 32148781 PMCID: PMC7020307 DOI: 10.1002/fsn3.1418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
Kynurenine-3-monooxygenase (KMO) is an enzyme that relies on nicotinamide adenine dinucleotide phosphate (NADP), a key site in the kynurenine pathway (KP), which has great effects on neurological diseases, cancer, and peripheral inflammation. This review mainly pay attention to the research of KMO mechanism for the treatment of different diseases, and hopes to provide assistance for clinical and drug use. KMO controlling the chief division of the KP, which directly controls downstream product quinolinic acid (QUIN) and indirectly controls kynurenic acid (KYNA), plays an important role in many diseases, especially neurological diseases.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|