1
|
Li S, Shen Y, Wang C, Yang J, Chen M, Hu Y. Exploring the prognostic and diagnostic value of lactylation-related genes in sepsis. Sci Rep 2024; 14:23130. [PMID: 39367086 PMCID: PMC11452377 DOI: 10.1038/s41598-024-74040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
The discovery of Lactylation may pave the way for novel approaches to investigating sepsis. This study focused on the prognostic and diagnostic significance of lactylated genes in sepsis. RNA sequencing was performed on blood samples from 20 sepsis patients and 10 healthy individuals at Southwest Medical University in Luzhou, Sichuan, China. Genes associated with sepsis were identified through analysis of RNA sequencing data. Afterward, the genes that were expressed differently were compared with the lactylation genes, resulting in the identification of 55 lactylation genes linked to sepsis. The overlapping genes underwent analysis using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-Protein Network Interactions were used to screen for the core genes. The datasets GSE65682, GSE69528, GSE54514, GSE63042, and GSE95233 were obtained from the GEO database to validate core genes. Survival analysis evaluated the predictive significance of central genes in sepsis, while Receiver Operating Characteristic (ROC) Curve analysis was employed to establish the diagnostic value of genes. Additionally, a meta-analysis was conducted to confirm the precision of RNA-seq data. We obtained five peripheral blood samples, including two from healthy individuals, one from a patient with systemic inflammatory response syndrome (SIRS), and two from patients with sepsis. These samples were used to identify the specific location of core genes using 10×single-cell sequencing. High-throughput sequencing and bioinformatics techniques identified two lactylation-related genes (S100A11 and CCNA2) associated with sepsis. Survival analysis indicated that septic patients with reduced levels of S100A11 had a decreased 28-day survival rate compared to those with elevated levels. Conversely, individuals exhibiting decreased CCNA2 levels demonstrated a greater likelihood of surviving for 28 days than those in the high expression category, indicating a favorable association with survival rates among sepsis patients (P < 0.05). Both genes showed high sensitivity and specificity based on the ROC curve, with AUC values of 0.961 for S100A11 and 0.890 for CCNA2. The meta-analysis revealed that S100A11 exhibited high levels of expression in the sepsis survivors, whereas it displayed low levels of expression in the non-survivors; on the other hand, CCNA2 demonstrated low expression in the sepsis survivors and high expression in the non-survivors (P < 0.05). Single-cell RNA sequencing ultimately showed that monocyte macrophages, T cells, and B cells exhibited high expression levels of the crucial genes associated with sepsis-induced lactylation. In conclusion, the lactylation genes S100A11 and CCNA2 are strongly linked to sepsis and could be valuable markers for diagnosing, predicting outcomes, and providing guidance for sepsis.
Collapse
Affiliation(s)
- Shilin Li
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, JiangYang District, Luzhou, Sichuan, China
| | - Yuzhou Shen
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, JiangYang District, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, JiangYang District, Luzhou, Sichuan, China
| | - Jingyi Yang
- The Fourth People's Hospital of Zigong, Southwest Medical University, ZiGong, Si Chuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, JiangYang District, Luzhou, Sichuan, China.
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, JiangYang District, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
3
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
4
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
5
|
Ye J, Hu X, Wang Z, Li R, Gan L, Zhang M, Wang T. The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Front Immunol 2023; 14:1164187. [PMID: 37533869 PMCID: PMC10391641 DOI: 10.3389/fimmu.2023.1164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated defense response caused by infectious or non-infectious stressors such as trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an uncontrolled inflammatory response. In addition to the early mortality due to the "first hits" after trauma, the trauma-induced SIRS and multiple organ dysfunction syndrome (MODS) are the main reasons for the poor prognosis of trauma patients as "second hits". Unlike infection-induced SIRS caused by pathogen-associated molecular patterns (PAMPs), trauma-induced SIRS is mainly mediated by damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-induced mitochondrial injury, including mitochondrial DNA (mtDNA) and mitochondrial formyl peptides (mtFPs), can activate inflammatory response through multiple inflammatory signaling pathways. This review summarizes the role and mechanism of mtDAMPs in the occurrence and development of trauma-induced SIRS.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Xiaodan Hu
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
- School of Basic Medicine, Peking University, Beijing, China
| | - Zhiwei Wang
- Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
6
|
Hao S, Huang M, Xu X, Wang X, Song Y, Jiang W, Huo L, Gu J. Identification and validation of a novel mitochondrion-related gene signature for diagnosis and immune infiltration in sepsis. Front Immunol 2023; 14:1196306. [PMID: 37398680 PMCID: PMC10310918 DOI: 10.3389/fimmu.2023.1196306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Owing to the complex pathophysiological features and heterogeneity of sepsis, current diagnostic methods are not sufficiently precise or timely, causing a delay in treatment. It has been suggested that mitochondrial dysfunction plays a critical role in sepsis. However, the role and mechanism of mitochondria-related genes in the diagnostic and immune microenvironment of sepsis have not been sufficiently investigated. Methods Mitochondria-related differentially expressed genes (DEGs) were identified between human sepsis and normal samples from GSE65682 dataset. Least absolute shrinkage and selection operator (LASSO) regression and the Support Vector Machine (SVM) analyses were carried out to locate potential diagnostic biomarkers. Gene ontology and gene set enrichment analyses were conducted to identify the key signaling pathways associated with these biomarker genes. Furthermore, correlation of these genes with the proportion of infiltrating immune cells was estimated using CIBERSORT. The expression and diagnostic value of the diagnostic genes were evaluated using GSE9960 and GSE134347 datasets and septic patients. Furthermore, we established an in vitro sepsis model using lipopolysaccharide (1 µg/mL)-stimulated CP-M191 cells. Mitochondrial morphology and function were evaluated in PBMCs from septic patients and CP-M191 cells, respectively. Results In this study, 647 mitochondrion-related DEGs were obtained. Machine learning confirmed six critical mitochondrion-related DEGs, including PID1, CS, CYP1B1, FLVCR1, IFIT2, and MAPK14. We then developed a diagnostic model using the six genes, and receiver operating characteristic (ROC) curves indicated that the novel diagnostic model based on the above six critical genes screened sepsis samples from normal samples with area under the curve (AUC) = 1.000, which was further demonstrated in the GSE9960 and GSE134347 datasets and our cohort. Importantly, we also found that the expression of these genes was associated with different kinds of immune cells. In addition, mitochondrial dysfunction was mainly manifested by the promotion of mitochondrial fragmentation (p<0.05), impaired mitochondrial respiration (p<0.05), decreased mitochondrial membrane potential (p<0.05), and increased reactive oxygen species (ROS) generation (p<0.05) in human sepsis and LPS-simulated in vitro sepsis models. Conclusion We constructed a novel diagnostic model containing six MRGs, which has the potential to be an innovative tool for the early diagnosis of sepsis.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuqing Song
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wendi Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Shu Q, She H, Chen X, Zhong L, Zhu J, Fang L. Identification and experimental validation of mitochondria-related genes biomarkers associated with immune infiltration for sepsis. Front Immunol 2023; 14:1184126. [PMID: 37228596 PMCID: PMC10203506 DOI: 10.3389/fimmu.2023.1184126] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Sepsis remains a complex condition with incomplete understanding of its pathogenesis. Further research is needed to identify prognostic factors, risk stratification tools, and effective diagnostic and therapeutic targets. Methods Three GEO datasets (GSE54514, GSE65682, and GSE95233) were used to explore the potential role of mitochondria-related genes (MiRGs) in sepsis. WGCNA and two machine learning algorithms (RF and LASSO) were used to identify the feature of MiRGs. Consensus clustering was subsequently carried out to determine the molecular subtypes for sepsis. CIBERSORT algorithm was conducted to assess the immune cell infiltration of samples. A nomogram was also established to evaluate the diagnostic ability of feature biomarkers via "rms" package. Results Three different expressed MiRGs (DE-MiRGs) were identified as sepsis biomarkers. A significant difference in the immune microenvironment landscape was observed between healthy controls and sepsis patients. Among the DE-MiRGs, NDUFB3 was selected to be a potential therapeutic target and its significant elevated expression level was confirmed in sepsis using in vitro experiments and confocal microscopy, indicating its significant contribution to the mitochondrial quality imbalance in the LPS-simulated sepsis model. Conclusion By digging the role of these pivotal genes in immune cell infiltration, we gained a better understanding of the molecular immune mechanism in sepsis and identified potential intervention and treatment strategies.
Collapse
Affiliation(s)
- Qi Shu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Like Zhong
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
8
|
Wang L, Liu Y, Qu R, Zou Z. Serum mAST/ALT ratio had high predictive value for adverse outcome of severe fever with thrombocytopenia syndrome with severe condition. BMC Infect Dis 2023; 23:168. [PMID: 36932323 PMCID: PMC10022549 DOI: 10.1186/s12879-023-08121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) usually demonstrates multi-organ injury with a high mortality rate. This study aimed to investigate associations of serum aspartate/alanine aminotransferase (AST)/ALT, cytosolic AST (cAST)/ALT and mitochondrial AST (mAST)/ALT ratios with the prognosis of SFTS patients. METHODS A total of 355 confirmed SFTS patients were included. Clinical and laboratory data were compared between survivors and nonsurvivors. Logistic regression analysis was used to assess the independent risk factors for fatality in all patients and those admitted to the intensive care unit (ICU). The predictive values of the risk factors and constructed risk models were evaluated. RESULTS Mean age and biochemical parameters were significantly greater in nonsurvivors than in survivors. In ICU patients, the three ratios, high-sensitivity troponin I (hsTnI), creatine kinase (CK), lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) were elevated markedly in nonsurvivors than in survivors. Multivariate logistic regression analysis showed that age, three ratios and α-HBDH were independent risk factors for mortality in all patients. Only the three ratios were independent risk factors for death in ICU patients. Risk Models (M1, M2 and M3) and simplified models (sMs) containing the three ratios respectively had comparatively high predictive values for fatality in all patients with area under ROC curves (AUCs) > 0.85. In ICU patients, mAST/ALT ratio had the highest predictive value, sensitivity and odds ratio (OR) for mortality among three ratios. CONCLUSION AST/ALT, cAST/ALT and mAST/ALT ratios were associated with unfavorable clinical outcome of SFTS. The prognostic value of mAST/ALT ratio was higher in severe cases.
Collapse
Affiliation(s)
- Li Wang
- Clinical Laboratory, Qishan Hospital of Yantai, 62 Huanshan Road, Zhifu District, 264001, Yantai, Shandong, The People's Republic of China.
| | - Youde Liu
- Infectious Disease Department, Qishan Hospital of Yantai, 62 Huanshan Road, Zhifu District, 264001, Yantai, Shandong, The People's Republic of China
| | - Renliang Qu
- Clinical Laboratory, Qishan Hospital of Yantai, 62 Huanshan Road, Zhifu District, 264001, Yantai, Shandong, The People's Republic of China
| | - Zhiqiang Zou
- Infectious Disease Department, Qishan Hospital of Yantai, 62 Huanshan Road, Zhifu District, 264001, Yantai, Shandong, The People's Republic of China
| |
Collapse
|
9
|
Zhang HJ, Li JY, Wang C, Zhong GQ. Microvesicles with mitochondrial content are increased in patients with sepsis and associated with inflammatory responses. World J Clin Cases 2023; 11:342-356. [PMID: 36686348 PMCID: PMC9850980 DOI: 10.12998/wjcc.v11.i2.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Endothelial activation plays an important role in sepsis-mediated inflammation, but the triggering factors have not been fully elucidated. Microvesicles carrying mitochondrial content (mitoMVs) have been implicated in several diseases and shown to induce endothelial activation.
AIM To explore whether mitoMVs constitute a subset of MVs isolated from plasma of patients with sepsis and contribute to endothelial activation.
METHODS MVs were isolated from human plasma and characterized by confocal microscopy and flow cytometry. Proinflammatory cytokines, including interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-α, and soluble vascular cell adhesion molecule (sVCAM)-1 were detected by ELISA. Human umbilical vein endothelial cells (HUVECs) were stimulated with the circulating MVs to evaluate their effect on endothelial activation.
RESULTS MitoMVs were observed in plasma from patients with sepsis. Compared with those in healthy controls, expression of MVs, mitoMVs, proinflammatory cytokines and sVCAM-1 was increased. The number of mitoMVs was positively associated with TNF-α and sVCAM-1. In vitro, compared with MVs isolated from the plasma of healthy controls, MVs isolated from the plasma of patients with sepsis induced expression of OAS2, RSAD2, and CXCL10 in HUVECs. MitoMVs were taken up by HUVECs, and sonication of MVs significantly reduced the uptake of mitoMVs by HUVECs and expression of the above three type I IFN-dependent genes.
CONCLUSION MitoMVs are increased in the plasma of patients with sepsis, which induces elevated expression of type I IFN-dependent genes. This suggests that circulating mitoMVs activate the type I IFN signalling pathway in endothelial cells and lead to endothelial activation.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| | - Jin-Yi Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541000, Guangxi Zhuang Autonomous Region, China
| | - Chao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Guo-Qiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
11
|
Kong C, Song W, Fu T. Systemic inflammatory response syndrome is triggered by mitochondrial damage (Review). Mol Med Rep 2022; 25:147. [PMID: 35234261 PMCID: PMC8915392 DOI: 10.3892/mmr.2022.12663] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Mitochondria are key organelles of cellular energy metabolism; both mitochondrial function and metabolism determine the physiological function of cells and serve an essential role in immune responses. Key damage-associated molecular patterns (DAMPs), such as mitochondrial DNA and N-formyl peptides, released following severe trauma-induced mitochondrial damage may affect the respiratory chain, enhance oxidative stress and activate systemic inflammatory responses via a variety of inflammation-associated signaling pathways. Severe trauma can lead to sepsis, multiple organ dysfunction syndrome and death. The present review aimed to summarize the pathophysiological mechanisms underlying the effects of human mitochondrial injury-released DAMPs on triggering systemic inflammatory responses and to determine their potential future clinical applications in preventing and treating sepsis.
Collapse
Affiliation(s)
- Can Kong
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
13
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
14
|
Itagaki K, Riça I, Konecna B, Kim HI, Park J, Kaczmarek E, Hauser CJ. Role of Mitochondria-Derived Danger Signals Released After Injury in Systemic Inflammation and Sepsis. Antioxid Redox Signal 2021; 35:1273-1290. [PMID: 33847158 PMCID: PMC8905257 DOI: 10.1089/ars.2021.0052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a major public health concern, with high mortality and morbidity, especially among patients undergoing trauma. It is characterized by a systemic inflammatory response syndrome (SIRS) occurring in response to infection. Although classically associated with pathogens, many patients with SIRS do not have infection. The variability of the disease course cannot be fully explained by our current understanding of its pathogenesis. Thus, other factors are likely to play key roles in the development and progression of SIRS/sepsis. Recent Advances: Circulating levels of damage-associated molecular patterns (DAMPs) seem to correlate with SIRS/sepsis morbidity and mortality. Of the known DAMPs, those of mitochondrial (mt) origin have been of particular interest, since their DNA (mtDNA) and formyl peptides (mtFPs) resemble bacterial DNA and peptides, and hence, when released, may be recognized as "danger signals." Critical Issues: mtDAMPs released after tissue injury trigger immune responses similar to those induced by pathogens. Thus, they can result in systemic inflammation and organ damage, similar to that observed in SIRS/sepsis. We will discuss recent findings on the roles of mtDAMPs, particularly regarding the less recognized mtFPs, in the activation of inflammatory responses and development of SIRS/sepsis. Future Directions: There are no established methods to predict the course of SIRS/sepsis, but clinical studies reveal that plasma levels of mtDAMPs may correlate with the outcome of the disease. We propose that non-pathogen-initiated, mtDAMPs-induced SIRS/sepsis events need further studies aimed at early clinical recognition and better treatment of this disease.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Elzbieta Kaczmarek
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Wang Z, Liu M, Ye D, Ye J, Wang M, Liu J, Xu Y, Zhang J, Zhao M, Feng Y, Xu S, Pan W, Luo Z, Li D, Wan J. Il12a Deletion Aggravates Sepsis-Induced Cardiac Dysfunction by Regulating Macrophage Polarization. Front Pharmacol 2021; 12:632912. [PMID: 34276358 PMCID: PMC8284189 DOI: 10.3389/fphar.2021.632912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiac dysfunction is a well-recognized complication of sepsis and is associated with the outcome and prognosis of septic patients. Evidence suggests that Il12a participates in the regulation of various cardiovascular diseases, including heart failure, hypertension and acute myocardial infarction. However, the effects of Il12a in sepsis-induced cardiac dysfunction remain unknown. In our study, lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) model were used to mimic sepsis, and cardiac Il12a expression was assessed. In addition, Il12a knockout mice were used to detect the role of Il12a in sepsis-related cardiac dysfunction. We observed for the first time that Il12a expression is upregulated in mice after LPS treatment and macrophages were the main sources of Il12a. In addition, our findings demonstrated that Il12a deletion aggravates LPS-induced cardiac dysfunction and injury, as evidenced by the increased serum and cardiac levels of lactate dehydrogenase (LDH) and cardiac creatine kinase-myocardial band (CK-MB). Moreover, Il12a deletion enhances LPS-induced macrophage accumulation and drives macrophages toward the M1 phenotype in LPS-treated mice. Il12a deletion also downregulated the activity of AMP-activated protein kinase (AMPK) but increased the phosphorylation levels of p65 (p-p65) and NF-κB inhibitor alpha (p-IκBα). In addition, Il12a deletion aggravates CLP-induced cardiac dysfunction and injury. Treatment with the AMPK activator AICAR abolishes the deterioration effect of Il12a deletion on LPS-induced cardiac dysfunction. In conclusion, Il12a deletion aggravated LPS-induced cardiac dysfunction and injury by exacerbating the imbalance of M1 and M2 macrophages. Our data provide evidence that Il12a may represent an attractive target for sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
16
|
Bhatia D, Capili A, Choi ME. Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Res Clin Pract 2020; 39:244-258. [PMID: 32868492 PMCID: PMC7530368 DOI: 10.23876/j.krcp.20.082] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are energy-producing organelles that not only satisfy the high metabolic demands of the kidney but sense and respond to kidney injury-induced oxidative stress and inflammation. Kidneys are rich in mitochondria. Mitochondrial dysfunction plays a critical role in the progression of acute kidney injury and chronic kidney disease. Mitochondrial responses to specific stimuli are highly regulated and synergistically modulated by tightly interconnected processes, including mitochondrial dynamics (fission, fusion) and mitophagy. The counterbalance between these processes is essential in maintaining a healthy network of mitochondria. Recent literature suggests that alterations in mitochondrial dynamics are implicated in kidney injury and the progression of kidney diseases. A decrease in mitochondrial fusion promotes fission-induced mitochondrial fragmentation, but a reduction in mitochondrial fission produces excessive mitochondrial elongation. The removal of dysfunctional mitochondria by mitophagy is crucial for their quality control. Defective mitochondrial function disrupts cellular redox potential and can cause cell death. Mitochondrial DNA derived from damaged cells also act as damage-associated molecular patterns to recruit immune cells and the inflammatory response can further exaggerate kidney injury. This review provides a comprehensive overview of the role of mitochondrial dysfunction in acute kidney injury and chronic kidney disease. We discuss the processes that control mitochondrial stress responses to kidney injury and review recent advances in understanding the role of mitochondrial dysfunction in inflammation and tissue damage through the use of different experimental models of kidney disease. We also describe potential mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Allyson Capili
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
- Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Peng F, Chang W, Sun Q, Xu X, Xie J, Qiu H, Yang Y. HGF alleviates septic endothelial injury by inhibiting pyroptosis via the mTOR signalling pathway. Respir Res 2020; 21:215. [PMID: 32795289 PMCID: PMC7427898 DOI: 10.1186/s12931-020-01480-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Endothelial injury is one of the predominant pathophysiological characteristics of sepsis and is the major cause of sepsis-induced multiple organ failure. Endothelial pyroptosis is a fatal mechanism of endothelial injury in sepsis, and specific, effective therapies are lacking. Although hepatocyte growth factor (HGF) has been shown to have anti-apoptotic and anti-necrotic effects, whether it prevents pyroptosis to improve endothelial injury in sepsis remains unclear. Methods Recombinant HGF was intravenously injected into mice with sepsis caused by caecal ligation puncture (CLP). Histopathological examination and transmission electron microscopy (TEM) were used to measure lung vascular endothelial injury. Lipopolysaccharide (LPS) was transfected into EA.hy926 cells to induce endothelial pyroptosis, and the cells were treated with HGF in the presence of inhibitors of c-Met and mTOR, namely, PHA-665752 and rapamycin, respectively. The mTOR signalling pathway and mitochondrial physiology were assessed using Western blot and flow cytometry. Results Intravenous HGF effectively alleviated pulmonary vascular endothelial injury and acute lung injury in the septic mice. The TEM results of lung tissue revealed that HGF attenuated pulmonary vascular endothelial pyroptosis, which was confirmed in vitro. Transfected LPS induced the pyroptosis of EA.hy926 cells and damaged their paracellular permeability, and these effects were ameliorated by treating the cells with recombinant HGF. The protective effect of HGF against pyroptosis was dependent on c-Met/mTOR signalling. mTOR activation effectively protected mitochondrial physiology and decreased reactive oxygen species (ROS) production in EA.hy926 cells in vitro. Conclusions These results demonstrated that HGF protected mitochondrial physiology by activating mTOR signalling to partially ameliorate endothelial pyroptosis and attenuate vascular endothelial injury and acute lung injury in sepsis animal model.
Collapse
Affiliation(s)
- Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
18
|
Nie MW, Han YC, Shen ZJ, Xie HZ. Identification of circRNA and mRNA expression profiles and functional networks of vascular tissue in lipopolysaccharide-induced sepsis. J Cell Mol Med 2020; 24:7915-7927. [PMID: 32452125 PMCID: PMC7348180 DOI: 10.1111/jcmm.15424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Sepsis is the most common cause of death in intensive care units. This study investigated the circular RNA (circRNA) and mRNA expression profiles and functional networks of the aortic tissue in sepsis. We established a lipopolysaccharide (LPS)‐induced rat sepsis model. High‐throughput sequencing was performed on the aorta tissue to identify differentially expressed (DE) circRNAs and mRNAs, which were validated by real‐time quantitative polymerase chain reaction (RT‐qPCR). Bioinformatic analysis was carried out and coding and non‐coding co‐expression (CNC) and competing endogenous RNA (ceRNA) regulatory networks were constructed to investigate the mechanisms. In total, 373 up‐regulated and 428 down‐regulated circRNAs and 2063 up‐regulated and 2903 down‐regulated mRNAs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of mRNAs showed that the down‐regulated genes were mainly enriched in the process of energy generation. CNC and ceRNA regulatory networks were constructed with seven DE circRNAs. The results of functional enrichment analysis of CNC target genes revealed the important role of circRNAs in inflammatory response. The ceRNA network also highlighted the significant enrichment in calcium signalling pathway. Significant alterations in circRNAs and mRNAs were observed in the aortic tissue of septic rats. In addition, CNC and ceRNA networks were established.
Collapse
Affiliation(s)
- Mu-Wen Nie
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Ye-Chen Han
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Zhu-Jun Shen
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Zhi Xie
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
19
|
Gallyas Jr. F, Sumegi B. Mitochondrial Protection by PARP Inhibition. Int J Mol Sci 2020; 21:ijms21082767. [PMID: 32316192 PMCID: PMC7215481 DOI: 10.3390/ijms21082767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of the nuclear DNA damage sensor and signalling enzyme poly(ADP-ribose) polymerase (PARP) have recently been introduced in the therapy of cancers deficient in double-strand DNA break repair systems, and ongoing clinical trials aim to extend their use from other forms of cancer non-responsive to conventional treatments. Additionally, PARP inhibitors were suggested to be repurposed for oxidative stress-associated non-oncological diseases resulting in a devastating outcome, or requiring acute treatment. Their well-documented mitochondria- and cytoprotective effects form the basis of PARP inhibitors’ therapeutic use for non-oncological diseases, yet can limit their efficacy in the treatment of cancers. A better understanding of the processes involved in their protective effects may improve the PARP inhibitors’ therapeutic potential in the non-oncological indications. To this end, we endeavoured to summarise the basic features regarding mitochondrial structure and function, review the major PARP activation-induced cellular processes leading to mitochondrial damage, and discuss the role of PARP inhibition-mediated mitochondrial protection in several oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Ferenc Gallyas Jr.
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|