1
|
Lin S, Depczynski B, Varndell W, Hui SA, Chiew A. Clinical significance of an elevated on-admission beta-hydroxybutyrate in acutely ill adult patients without diabetes. Emerg Med Australas 2024; 36:527-535. [PMID: 38439135 DOI: 10.1111/1742-6723.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To determine the relationship between point-of-care β-hydroxybutyrate (BHB) concentration and outcomes in adult patients without diabetes admitted through ED. METHODS This was a prospective study from 10 March to 2 July 2021. Admitted patients without diabetes had capillary BHB sampled in ED. Outcomes of length-of-stay (LOS), composite mortality/ICU admission rates and clinical severity scores (Quick Sepsis Organ Failure Assessment score/National Early Warning Score [qSOFA/NEWS]) were measured. BHB was assessed as a continuous variable and between those with BHB above and equal to 1.0 mmol/L and those below 1.0 mmol/L. RESULTS A total of 311 patients were included from 2377 admissions. Median length-of-stay was 4.1 days (IQR 2.1-9.8), 18 (5.8%) died and 37 (11.8%) were admitted to ICU. Median BHB was 0.2 mmol/L (IQR 0.1-0.4). Twenty-five patients had BHB ≥1.0 mmol/L and five were >3.0 mmol/L. There was no significant difference in median LOS for patients with BHB ≥1.0 mmol/L compared to non-ketotic patients, 5.3 days (IQR 2.2-7.5) versus 4.1 days, respectively (IQR 2.0-9.8) (P = 0.69). BHB did not correlate with LOS (Spearman ρ = 0.116, 95% confidence interval: 0.006-0.223). qSOFA and NEWS also did not differ between these cohorts. For those 25 patients with BHB ≥1.0 mmol/L, an infective/inflammatory diagnosis was present in 11 (44%), at least 2 days of fasting in 10 (40%) and ethanol intake >40 g within 48 h in 4 (16%). CONCLUSIONS Routine BHB measurement in patients without diabetes does not add to clinical bedside assessment and use should be limited to when required to confirm a clinical impression.
Collapse
Affiliation(s)
- Samuel Lin
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Barbara Depczynski
- Prince of Wales Hospital, South Eastern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Wayne Varndell
- Prince of Wales Hospital, South Eastern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Su An Hui
- Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angela Chiew
- Prince of Wales Hospital, South Eastern Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Orban B, Tengölics R, Zavori L, Simon D, Erdo-Bonyar S, Molnar T, Schwarcz A, Csecsei P. The Difference in Serum Metabolomic Profiles between the Good and Poor Outcome Groups at 3 Months in the Early and Late Phases of Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2024; 25:6597. [PMID: 38928303 PMCID: PMC11203497 DOI: 10.3390/ijms25126597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to investigate the characteristics of serum metabolomics in aneurysmal subarachnoid hemorrhage patients (aSAH) with different 3-month outcomes (good = modified Rankin score: 0-3 vs. poor = mRS 4-6). We collected serum samples from 46 aSAH patients at 24 (D1) and 168 (D7) hours after injury for analysis by liquid chromatography-mass spectrometry. Ninety-six different metabolites were identified. Groups were compared using multivariate (orthogonal partial least squares discriminant analysis), univariate, and receiving operator characteristic (ROC) methods. We observed a marked decrease in serum homocysteine levels at the late phase (D7) compared to the early phase (D1). At both D1 and D7, mannose and sorbose levels were notably higher, alongside elevated levels of kynurenine (D1) and increased 2-hydroxybutyrate, methyl-galactoside, creatine, xanthosine, p-hydroxyphenylacetate, N-acetylalanine, and N-acetylmethionine (all D7) in the poor outcome group. Conversely, levels of guanidinoacetate (D7) and several amino acids (both D1 and D7) were significantly lower in patients with poor outcomes. Our results indicate significant changes in energy metabolism, shifting towards ketosis and alternative energy sources, both in the early and late phases, even with adequate enteral nutrition, particularly in patients with poor outcomes. The early activation of the kynurenine pathway may also play a role in this process.
Collapse
Affiliation(s)
- Brigitta Orban
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Roland Tengölics
- Metabolomics Lab, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary;
- Core Facilities, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Lab, 6726 Szeged, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates;
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7632 Pecs, Hungary;
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| |
Collapse
|
3
|
Mohammed OA, Saber S, Abdel-Reheim MA, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Eleragi AMS, Eltahir HB, Abdalla MO, Bahashwan E, Ibrahim EK, Rezigalla AA, Abdel-Ghany S, Alzokaky AA, Doghish AS, El-Husseiny HM, Alghamdi M, Youssef ME. Tracking the therapeutic efficacy of a ketone mono ester and β-hydroxybutyrate for ulcerative colitis in rats: New perspectives. Toxicol Appl Pharmacol 2024; 486:116943. [PMID: 38677600 DOI: 10.1016/j.taap.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body β-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases β-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous β-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of β-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous β-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma β-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma β-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, University of Bisha, Bisha 61922, Saudi Arabia
| | - Hanan B Eltahir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohamed Osama Abdalla
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | | | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of basic medical sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt.
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Al Qalyubia 13736, Egypt
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
4
|
Anwar MA, Keshteli AH, Yang H, Wang W, Li X, Messier HM, Cullis PR, Borchers CH, Fraser R, Wishart DS. Blood-Based Multiomics-Guided Detection of a Precancerous Pancreatic Tumor. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:182-192. [PMID: 38634790 DOI: 10.1089/omi.2023.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Over a decade ago, longitudinal multiomics analysis was pioneered for early disease detection and individually tailored precision health interventions. However, high sample processing costs, expansive multiomics measurements along with complex data analysis have made this approach to precision/personalized medicine impractical. Here we describe in a case report, a more practical approach that uses fewer measurements, annual sampling, and faster decision making. We also show how this approach offers promise to detect an exceedingly rare and potentially fatal condition before it fully manifests. Specifically, we describe in the present case report how longitudinal multiomics monitoring (LMOM) helped detect a precancerous pancreatic tumor and led to a successful surgical intervention. The patient, enrolled in an annual blood-based LMOM since 2018, had dramatic changes in the June 2021 and 2022 annual metabolomics and proteomics results that prompted further clinical diagnostic testing for pancreatic cancer. Using abdominal magnetic resonance imaging, a 2.6 cm lesion in the tail of the patient's pancreas was detected. The tumor fluid from an aspiration biopsy had 10,000 times that of normal carcinoembryonic antigen levels. After the tumor was surgically resected, histopathological findings confirmed it was a precancerous pancreatic tumor. Postoperative omics testing indicated that most metabolite and protein levels returned to patient's 2018 levels. This case report illustrates the potentials of blood LMOM for precision/personalized medicine, and new ways of thinking medical innovation for a potentially life-saving early diagnosis of pancreatic cancer. Blood LMOM warrants future programmatic translational research with the goals of precision medicine, and individually tailored cancer diagnoses and treatments.
Collapse
Affiliation(s)
| | | | - Haiyan Yang
- Molecular You Corporation, Vancouver, British Columbia, Canada
| | - Windy Wang
- Molecular You Corporation, Vancouver, British Columbia, Canada
| | - Xukun Li
- Molecular You Corporation, Vancouver, British Columbia, Canada
| | - Helen M Messier
- Molecular You Corporation, Vancouver, British Columbia, Canada
- Fountain Life, Naples, Florida, USA
| | - Pieter R Cullis
- Molecular You Corporation, Vancouver, British Columbia, Canada
- Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Robert Fraser
- Molecular You Corporation, Vancouver, British Columbia, Canada
| | - David S Wishart
- Molecular You Corporation, Vancouver, British Columbia, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Shrestha N, Melvin SD, McKeating DR, Holland OJ, Cuffe JSM, Perkins AV, McAinch AJ, Hryciw DH. Sex-Specific Differences in Lysine, 3-Hydroxybutyric Acid and Acetic Acid in Offspring Exposed to Maternal and Postnatal High Linoleic Acid Diet, Independent of Diet. Int J Mol Sci 2021; 22:10223. [PMID: 34638563 PMCID: PMC8508705 DOI: 10.3390/ijms221910223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. METHODS Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. RESULTS Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. CONCLUSION In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
| | - Daniel R. McKeating
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - James S. M. Cuffe
- School of Biomedical Science, The University of Queensland, Brisbane, QLD 4061, Australia;
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC 8001, Australia
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
6
|
Kong B, Khatri B, Kang S, Shouse S, Kadhim H, Kidd M, Lassiter K, Hiltz J, Mallmann B, Orlowski S, Anthony N, Bottje W, Kuenzel W, Owens C. Blood Plasma Biomarkers for Woody Breast Disease in Commercial Broilers. Front Physiol 2021; 12:712694. [PMID: 34366899 PMCID: PMC8339902 DOI: 10.3389/fphys.2021.712694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Woody breast (WB) myopathy results in poor muscle quality. The increasing incidence of WB over the last several years indicates a need for improved prediction or early diagnosis. We hypothesized that the use of body fluids, including blood, may be more suitable than breast muscle tissue in developing a minimally invasive diagnostic tool for WB detection. To identify potential early-age-biomarkers that may represent the potential onset of WB, blood samples were collected from 100, 4 wks old commercial male broilers. At 8 wks of age, WB conditions were scored by manual palpation. A total of 32 blood plasma samples (eight for each group of WB and non-WB control birds at two time points, 4 wks and 8 wks) were subjected to shotgun proteomics and untargeted metabolomics to identify differentially abundant plasma proteins and metabolites in WB broilers compared to non-WB control (Con) broilers. From the proteomics assay, 25 and 16 plasma proteins were differentially abundant (p < 0.05) in the 4 and 8 wks old samples, respectively, in WB compared with Con broilers. Of those, FRA10A associated CGG repeat 1 (FRAG10AC1) showed >2-fold higher abundance in WB compared with controls. In the 8 wks old broilers, 4 and 12 plasma proteins displayed higher and lower abundances, respectively, in WB compared with controls. Myosin heavy chain 9 (MYH9) and lipopolysaccharide binding protein (LBP) showed more than 2-fold higher abundances in WB compared with controls, while transferrin (TF) and complement C1s (C1S) showed more than 2-fold lower abundances compared with controls. From the untargeted metabolomics assay, 33 and 19 plasma metabolites were differentially abundant in birds at 4 and 8 wks of age, respectively, in WB compared with controls. In 4 wks old broilers, plasma 3-hydroxybutyric acid (3-HB) and raffinose concentrations showed the highest and lowest fold changes, respectively, in WB compared with controls. The blood plasma 3-HB and raffinose concentrations were confirmed with targeted biochemical assays. Blood biomarkers, such as 3-HB and raffinose, may be suitable candidate targets in the prediction of WB onset at early ages.
Collapse
Affiliation(s)
- Byungwhi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Seong Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Stephanie Shouse
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Hakeem Kadhim
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Veterinary Medicine College, University of Thi-Qar, Nasiriyah, Iraq
| | - Michael Kidd
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Joseph Hiltz
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Barbara Mallmann
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nicholas Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Wayne Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Casey Owens
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Paley EL. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging. J Alzheimers Dis Rep 2021; 5:571-600. [PMID: 34514341 PMCID: PMC8385430 DOI: 10.3233/adr-210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).
Collapse
Affiliation(s)
- Elena L. Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|