1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Liu QQ, Wu GH, Wang XC, Xiong XW, Rui-Wang, Yao BL. The role of Foxo3a in neuron-mediated cognitive impairment. Front Mol Neurosci 2024; 17:1424561. [PMID: 38962803 PMCID: PMC11220205 DOI: 10.3389/fnmol.2024.1424561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Le Yao
- Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
3
|
Tan Z, Dong F, Wu L, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation attenuated neuroinflammation and oxidative stress by activating SIRT1-induced signaling pathway in MCAO/R rat models. Exp Neurol 2024; 373:114658. [PMID: 38141805 DOI: 10.1016/j.expneurol.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Silent information regulator 1 (SIRT1) plays a beneficial role in cerebral ischemic injury. Previous reports have demonstrated that transcutaneous electrical acupoint stimulation (TEAS) exerts a beneficial effect on ischemic stroke; however, whether SIRT1 participates in the underlying mechanism for the neuroprotective effects of TEAS against ischemic brain damage has not been confirmed. METHODS The rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) were utilized in the current experiment. After MCAO/R surgery, rats in TEAS, EC and EX group received TEAS intervention with or without the injection of EX527, the SIRT1 inhibitor. Neurological deficit scores, infarct volume, hematoxylin eosin (HE) staining and apoptotic cell number were measured. The results of RNA sequencing were analyzed to determine the differential expression changes of genes among sham, MCAO and TEAS groups, in order to investigate the possible pathological processes involved in cerebral ischemia and explore the protective mechanisms of TEAS. Moreover, oxidative stress markers including MDA, SOD, GSH and GSH-Px were measured with assay kits. The levels of the proinflammatory cytokines, such as IL-6, IL-1β and TNF-α, were detected by ELISA assay, and Iba-1 (the microglia marker protein) positive cells was measured by immunofluorescence (IF). Western blot and IF were utilized to examine the levels of key molecules in SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways. RESULTS TEAS significantly decreased brain infarcted size and apoptotic neuronal number, and alleviated neurological deficit scores and morphological injury by activating SIRT1. The results of RNA-seq and bioinformatic analysis revealed that oxidative stress and inflammation were the key pathological mechanisms, and TEAS alleviated oxidative injury and inflammatory reactions following ischemic stroke. Then, further investigation indicated that TEAS notably attenuated neuronal apoptosis, neuroinflammation and oxidative stress damage in the hippocampus of rats with MCAO/R surgery. Moreover, TEAS intervention in the MCAO/R model significantly elevated the expressions of SIRT1, FOXO3a, CAT, BRCC3, NLRP3 in the hippocampus. Furthermore, EX527, as the inhibitor of SIRT1, obviously abolished the anti-oxidative stress and anti-neuroinflammatory roles of TEAS, as well as reversed the TEAS-mediated elevation of SIRT1, FOXO3a, CAT and reduction of BRCC3 and NLRP3 mediated by following MCAO/R surgery. CONCLUSIONS In summary, these findings clearly suggested that TEAS attenuated brain damage by suppressing apoptosis, oxidative stress and neuroinflammation through modulating SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways following ischemic stroke, which can be a promising treatment for stroke patients.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, PR China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
4
|
Tao X, Liu K, Li W, Zhao S, Liu C, Dai Q, Dong T, Wei P, Duan J, Wang J, Xi M. Saponin of Aralia taibaiensis promotes angiogenesis through VEGF/VEGFR2 signaling pathway in cerebral ischemic mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116771. [PMID: 37308026 DOI: 10.1016/j.jep.2023.116771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aralia taibaiensis is known for its ability to promote blood circulation and dispel blood stasis, activate meridians and remove arthralgia. The saponins of Aralia taibaiensis (sAT) are the main active components that are often used to treat cardiovascular and cerebrovascular diseases. However, it has not been reported whether sAT can improve ischemic stroke (IS) by promoting angiogenesis. AIM OF THE STUDY In this study, we investigated the potential of sAT to promote post-ischemic angiogenesis in mice and determined the underlying mechanism through in vitro experiments. METHODS To establish the middle cerebral artery occlusion (MCAO) mice model in vivo. First of all, we examined the neurological function, brain infarct volume, and degree of brain swelling in MCAO mice. We also observed pathological changes in brain tissue, ultrastructural changes in blood vessels and neurons, and the degree of vascular neovascularization. Additionally, we established the oxygen-glucose deprivation/reoxygenation (OGD/R) -human umbilical vein endothelial cells (HUVECs) model in vitro to detect the survival, proliferation, migration and tube formation of OGD/R HUVECs. Finally, we verified the regulatory mechanism of Src and PLCγ1 siRNA on sAT promoting angiogenesis by cell transfection technique. RESULTS In the cerebral ischemia-reperfusion mice, sAT distinctly improved the cerebral infarct volume, brain swelling degree, neurological dysfunction, and brain histopathological morphology due to cerebral ischemia/reperfusion injury. It also increased the double positive expression of BrdU and CD31 in brain tissue, promoted the release of VEGF and NO and decreased the release of NSE and LDH. In the OGD/R HUVECs, sAT significantly improved cell survival, proliferation, migration and tube formation, promoted the release of VEGF and NO, and increased the expression of VEGF, VEGFR2, PLCγ1, ERK1/2, Src and eNOS. Surprisingly, the effect of sAT on angiogenesis was inhibited by Src siRNA and PLCγ1 siRNA in OGD/R HUVECs. CONCLUSION The results proved that sAT promotes angiogenesis in cerebral ischemia-reperfusion mice and its mechanism is to regulate VEGF/VEGFR2 and then regulate Src/eNOS and PLCγ1/ERK1/2.
Collapse
Affiliation(s)
- Xingru Tao
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an City, Shaanxi Province, 710032, China; College of Pharmacy, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712046, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an City, Shaanxi Province, 710032, China
| | - Weihong Li
- College of Pharmacy, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712046, China
| | - Shi Zhao
- TANK Medicinal Biology Institute of Xi'an, Xi'an City, Shaanxi Province, 710032, China
| | - Chengzhao Liu
- College of Pharmacy, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712046, China
| | - Qi Dai
- College of Pharmacy, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712046, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712046, China
| | - Peifeng Wei
- National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712000, China.
| | - Jialin Duan
- Institute of Medicine, Northwestern Polytechnical University, Xi'an City, Shaanxi Province, 710072, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an City, Shaanxi Province, 710032, China.
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi'an, Xi'an City, Shaanxi Province, 710032, China; National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of TCM, Xianyang City, Shaanxi Province, 712000, China.
| |
Collapse
|
5
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Wang W, Ye J, Guo Z, Ma Y, Yang Q, Zhong W, Du S, Bai J. A novel glycoprotein from earthworm extract PvE-3: Insights of their characteristics for promoting diabetic wound healing and attenuating methylglyoxal-induced cell damage. Int J Biol Macromol 2023; 239:124267. [PMID: 37003377 DOI: 10.1016/j.ijbiomac.2023.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Diabetic chronic wound is a worldwide medical burden related to overdosed methylglyoxal (MGO) synthesis, which is the major precursor of glycation of proteins and DNA and is related to the dysfunction of dermal cells thus leading to chronic refractory wounds. Previous studies proved that earthworm extract accelerates diabetic wound healing and possesses cell proliferation and antioxidative effects. However, the effects of earthworm extract on MGO-damaged fibroblasts, the inner mechanisms of MGO-induced cell damage and the functional components in earthworm extract are still poorly understood. Firstly, we evaluated the bioactivities of the earthworm extract PvE-3 on the diabetic wound model and the diabetic related cell damage model. Then the mechanisms were investigated through transcriptomics, flow cytometry and fluorescence probe. The results revealed that PvE-3 promoted diabetic wound healing and protected fibroblast function in cell-damaged conditions. Meanwhile, the high-throughput screening implied the inner mechanisms of diabetic wound healing and PvE-3 cytoprotection effect were involved in the muscle cell function, the cell cycle regulation and the mitochondrial transmembrane potential depolarization. The functional glycoprotein isolated from PvE-3 possessed EGF-like domain which had a strong binding affinity with EGFR. The findings provided references to explore the potential treatments of diabetic wound healing.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qilin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
陈 兴, 王 开, 储 德, 朱 羽, 张 文, 曹 慧, 谢 文, 鲁 传, 李 侠. [Forsythiaside B inhibits cerebral ischemia/reperfusion-induced oxidative stress injury in mice via the AMPK/DAF-16/FOXO3 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:199-205. [PMID: 36946038 PMCID: PMC10034537 DOI: 10.12122/j.issn.1673-4254.2023.02.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism. METHODS Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting. RESULTS In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01). CONCLUSION FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.
Collapse
Affiliation(s)
- 兴 陈
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 开万 王
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 德海 储
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 羽 朱
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 文兵 张
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 慧萍 曹
- 汉滨区第三人民医院重症医学科,陕西 安康 725000Department of Critical Care Medicine, Hanbin District Third People's Hospital, Ankang 725000, China
| | - 文宇 谢
- 空军军医大学西京医院神经外科,陕西 西安 710032Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - 传豪 鲁
- 空军军医大学西京医院神经外科,陕西 西安 710032Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - 侠 李
- 空军军医大学西京医院神经外科,陕西 西安 710032Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Yu X, Luo Y, Yang L, Chen P, Duan X. P‑hydroxybenzyl alcohol ameliorates neuronal cerebral ischemia‑reperfusion injury by activating mitochondrial autophagy through SIRT1. Mol Med Rep 2023; 27:68. [PMID: 36799156 PMCID: PMC9942263 DOI: 10.3892/mmr.2023.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial autophagy serves a key role in clearing damaged mitochondria. P‑hydroxybenzyl alcohol (pHBA) can improve neuronal injury induced by cerebral ischemia‑reperfusion (I/R). However, the mechanism of pHBA improving I/R damage through the mitochondrial pathway remains unclear. A rat model of middle cerebral artery occlusion and reperfusion (MCAO/R) was used in the present study. The rats were treated with sirtuin 1 (SIRT1) inhibitor EX527 and pHBA for 7 days, followed by reperfusion. At 24 h after reperfusion, the infarct size was calculated and the severity of nerve damage was evaluated. Hematoxylin and eosin and Nissl staining revealed cellular changes in the ischemic penumbra. Changes in mitochondrial structure were observed using electron microscopy. Mitochondrial function was evaluated by detecting mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) and ATP levels using commercially available kits. In addition, the ischemic penumbra tissues were used for immunofluorescence staining for p62 and LC3 proteins. The expression of SIRT1 and mitochondrial autophagy‑related proteins, PTEN‑induced kinase 1 (PINK1) and Parkin, were detected by western blotting. Finally, apoptosis was analyzed by TUNEL staining and the expression of apoptosis‑related proteins (Bax, Bcl‑2 and Caspase‑3) by western blotting. The results suggested that postoperative pHBA treatment may reduce the size of cerebral infarction and damage to the nervous system, and may improve cell damage in the ischemic penumbra of MCAO/R rats. Compared with rats in the untreated MCAO/R group, the mitochondrial structure of the pHBA‑treated group was improved, the levels of MMP and ATP were increased, and the degree of opening of mPTP was decreased. Simultaneously, immunofluorescence and western blotting results showed that compared with the MCAO/R group, the number of LC3‑ and TUNEL‑positive cells increased, the number of p62‑positive cells decreased, SIRT1 and autophagy protein (PINK1, Parkin and LC3 II/I) expression levels increased and p62 expression decreased in the pHBA group. However, these improvements were blocked by treatment with EX527. In summary, results from the present study suggested that pHBA may improve neuronal injury in the ischemic penumbra of MCAO/R rats through SIRT1‑activated mitochondrial autophagy and mitochondrial‑mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Xinglin Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuan Luo
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pu Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China,Correspondence to: Dr Xiaohua Duan, Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail:
| |
Collapse
|
9
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Bergenin has neuroprotective effects in mice with ischemic stroke through antioxidative stress and anti-inflammation via regulating Sirt1/FOXO3a/NF-κB signaling. Neuroreport 2022; 33:549-560. [DOI: 10.1097/wnr.0000000000001789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: A Potential Therapeutic Target in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1949718. [PMID: 36105479 PMCID: PMC9467755 DOI: 10.1155/2022/1949718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/06/2022]
Abstract
Stroke is a fatal cerebral vascular disease with a high mortality rate and substantial economic and social costs. ROS production and neuroinflammation have been implicated in both hemorrhagic and ischemic stroke and have the most critical effects on subsequent brain injury. SIRT1, a member of the sirtuin family, plays a crucial role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, and oxidative stress. Targeting SIRT1 to reduce ROS and neuroinflammation might represent an emerging therapeutic target for stroke. Therefore, we conducted the present review to summarize the mechanisms of SIRT1-mediated oxidative stress and neuroinflammation in stroke. In addition, we provide a comprehensive introduction to the effect of compounds and natural drugs on SIRT1 signaling related to oxidative stress and neuroinflammation in stroke. We believe that our work will be helpful to further understand the critical role of the SIRT1 signaling pathway and will provide novel therapeutic potential for stroke treatment.
Collapse
|
12
|
MeCP2 inhibits ischemic neuronal injury by enhancing methylation of the FOXO3a promoter to repress the SPRY2-ZEB1 axis. Exp Mol Med 2022; 54:1076-1085. [PMID: 35915222 PMCID: PMC9440071 DOI: 10.1038/s12276-022-00790-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMethyl CpG binding protein 2 (MeCP2) is involved in nerve regeneration following ischemic stroke, but the related mechanism remains unclear. Here, we found low MeCP2 expression in hippocampal tissues. Using functional analysis, we demonstrated that MeCP2 accelerated FOXO3a methylation and subsequently inhibited its expression, thus repressing the apoptosis of neuronal cells. Mechanistically, FOXO3a could bind to the promoter region of SPRY2, consequently inducing its transcription and promoting the expression of the downstream target gene ZEB1. Altogether, our study revealed that overexpression of MeCP2 can protect mice against ischemic brain injury via disruption of the FOXO3a/SPRY2/ZEB1 signaling axis. Our results identify ectopic expression of MeCP2 as a therapeutic target in ischemic stroke.
Collapse
|
13
|
Lee CH, Jeon J, Lee SM, Kim SY. Differential Expression of miRNAs and Their Predicted Target Pathways in Cochlear Nucleus Following Chronic Noise Exposure in Rats. Cells 2022; 11:cells11152266. [PMID: 35892563 PMCID: PMC9332242 DOI: 10.3390/cells11152266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Several recent preclinical studies have reported that dynamic changes in miRNA expression contribute to hearing function. This study aims to investigate miRNA expression changes in the cochlear nuclei (CN) of rats following chronic noise exposure. Eight-week-old rats (n = 14) were exposed to noise for 4 weeks. The control rats (n = 14) were raised under identical conditions without noise. Two months after noise exposure, the auditory brainstem response (ABR) was examined, and the cochlea and CN were harvested. In the CN, the expression levels of arc, neurocan, and brevican were measured (n = 6 per group). Furthermore, the expression levels of miRNAs and their predicted target genes were measured in the CN (n = 8 per group). ABR thresholds were elevated after 4 weeks of noise exposure, which were maintained for 3 months. In CN, the protein expression of arc and brevican was higher in the noise-exposed group than in the control group (0.95 [standard deviation (SD) = 0.53] vs. 3.19 [SD = 1.00], p < 0.001 for arc and 1.02 [SD = 0.10] vs. 1.66 [SD = 0.24], p < 0.001 for brevican). The noise-exposed rats exhibited lower expression levels of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p than the control rats (all p < 0.001). The AMPK signaling pathway was predicted to be regulated by these miRNAs. The predicted target genes AKT3, SIRT1, and PRKAA1 were highly expressed in noise-exposed rats. In CN of noise-exposed rats, the miRNAs of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p were reduced and related to AMPK signaling including AKT3 and SIRT1 expression. These modulation of signaling pathways could mediate the increased expression of brevican in the CN of noise-exposed rats.
Collapse
|
14
|
Chu X, Zhang L, Zhou Y, Fang Q. Cucurbitacin B alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress. Biosci Biotechnol Biochem 2022; 86:zbac065. [PMID: 35689827 DOI: 10.1093/bbb/zbac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Cucurbitacin B (CuB) has been demonstrated to possess anti-inflammatory and antioxidative properties. However, the effect of CuB on cerebral ischemia/reperfusion (I/R) injury was unclear. In this work, we found that CuB significantly elevated cell viability, decreased lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, and proinflammatory factor levels in oxygen-glucose deprivation/reoxygenation-exposed PC12 cells, reduced cerebral infarction volume and neuronal apoptosis, inhibited oxidative stress and inflammation, and improved neurological function in mice with middle cerebral artery occlusion-induced cerebral I/R injury. Meanwhile, CuB decreased levels of NLRP3, cleaved caspase-1, and cleaved interleukin-1β, which were upregulated by I/R injury. Moreover, upregulation of NLRP3 dramatically reversed the effects of CuB on NLRP3 inflammasome activation, cell viability, and levels of proinflammatory factors in vitro. In conclusion, this study demonstrated that CuB attenuated cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress.
Collapse
Affiliation(s)
- Xiuli Chu
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yajun Zhou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
| |
Collapse
|
15
|
Yang L, Du B, Zhang S, Wang M. RXRγ attenuates cerebral ischemia-reperfusion induced ferroptosis in neurons in mice through transcriptionally promoting the expression of GPX4. Metab Brain Dis 2022; 37:1351-1363. [PMID: 35486208 DOI: 10.1007/s11011-022-00988-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia is a common cerebrovascular disease with high mortality and disability rate. Exploring its mechanism is essential for developing effective treatment for cerebral ischemia. Therefore, this study aims to explore the regulatory effect and mechanism of retinoid X receptor γ (RXRγ) on cerebral ischemia-reperfusion (I/R) injury. A mouse intraluminal middle cerebral artery occlusion model was established, and PC12 cells were exposed to anaerobic/reoxygenation (A/R) as an in vitro model in this study. Cerebral I/R surgery or A/R treatment induced ferroptosis, downregulated RXRγ and GPX4 (glutathione peroxidase 4) levels, upregulated cyclooxygenase-2 (COX-2) level and increased ROS (reactive oxygen species) level in A/R induced cells or I/R brain tissues in vivo or PC12 cells in vitro. Knockdown of RXRγ downregulated GPX4 and increased COX-2 and ROS levels in A/R induced cells. RXRγ overexpression has the opposite effect. GPX4 knockdown reversed the improvement of RXRγ overexpression on COX-2 downregulation, GPX4 upregulation and ferroptosis in PC12 cells. Furthermore, chromatin immunoprecipitation (ChIP) and luciferase reporter gene assays revealed that RXRγ bound to GPX4 promoter region and activated its transcription. Overexpression of RXRγ or GPX4 alleviated brain damage and inhibited ferroptosis in I/R mice. In conclusion, RXRγ-mediated transcriptional activation of GPX4 might inhibit ferroptosis during I/R-induced brain injury.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710038, People's Republic of China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shitao Zhang
- Department of Neurosurgery, Xi'an No.3 hospital, the Affiliated Hospital of Northwest University, Xi'an City, Shaanxi Province, 710018, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
| |
Collapse
|
16
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Sun X, Liu B. Donepezil ameliorates oxygen-glucose deprivation/reoxygenation-induced brain microvascular endothelial cell dysfunction via the SIRT1/FOXO3a/NF-κB pathways. Bioengineered 2022; 13:7760-7770. [PMID: 35286233 PMCID: PMC9208472 DOI: 10.1080/21655979.2022.2045833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is a disease in which brain tissue is damaged by a sudden rupture or blockage of a blood vessel in the brain that prevents blood from flowing to the brain. Extensive literature has demonstrated the neuroprotective effect of donepezil on brain injury, and this paper attempts to further reveal the effect of donepezil on brain microvascular endothelial cells dysfunction. Human brain microvascular endothelial cells (HBMECs) were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) to induced brain microvascular endothelial cell dysfunction. The OGD/R-induced cell were added with different doses of donepezil with or without Sirtuin-1 (SIRT1) inhibitor EX527. Cell viability of HBMECs was examined by cell counting kit (CCK)-8 assay. OGD/R-treated cell migration was assessed by wound healing assay while angiogenesis in HBMECs was examined by tube formation assay and Western blot analysis. Endothelial cell dysfunction was assessed employing fluorescein isothiocyanate-dextran assay and Western blotting. SIRTI/FOXO3a/NF-kB signaling pathway-related protein expressions were detected using Western blotting. After pretreatment with SIRT1 inhibitor EX527, the above experiments were done again. Donepezil increased cell viability of OGD/R-induced HBMECs, promoted cell migration and angiogenesis, decreased cell permeability, and upregulated the expressions of tight junction proteins. In addition, donepezil regulated the expressions of SIRT1/FOXO3a/NF-κB signaling pathways. However, pretreatment with the SIRT1 inhibitor EX527 reversed the protective effect of donepezil on OGD/R-induced HBMECs. In summary, Donepezil ameliorates OGD/R-induced brain microvascular endothelial cell dysfunction via the SIRT1/FOXO3a/NF-κB pathways.
Collapse
Affiliation(s)
- Xueming Sun
- Baotou Vocational and Technical College, Baotou City, Inner Mongolia, China
| | - Bing Liu
- Baotou Vocational and Technical College, Baotou City, Inner Mongolia, China
| |
Collapse
|
18
|
Sevoflurane Improves Hemorrhagic Shock and Resuscitation-Induced Cognitive Impairments and Mitochondrial Dysfunctions through SIRT1-Mediated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9771743. [PMID: 35528522 PMCID: PMC9068312 DOI: 10.1155/2022/9771743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (IRI) induced by hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Previous studies indicated the neuroprotective effect of sevoflurane postconditioning (SP) in cerebral IRI. However, the mechanisms still remain elusive. Cerebral IRI models with SP were established by using HSR with C57BL/6 mice (male, 3-month-old) in vivo and by using oxygen glucose deprivation and reoxygenation (OGD/R) with HT22 cells in vitro. Postoperative cognition was evaluated by the Morris water maze, novel object recognition, and elevated plus maze tests. The role of SIRT1 was determined by using siRNA, a sensitive inhibitor (EX527), or an overexpression shRNA-GFP lentivirus. IRI caused significant disabilities of spatial learning and memory associated with enhanced cerebral infarct and neuronal apoptosis, which were effectively attenuated by SP. IRI also made a significant decrease of SIRT1 accompanied by oxidative stress, mitochondria dysfunction, and inactivated autophagy. SP or genetically overexpressing SIRT1 significantly suppressed defective autophagy, mitochondrial oxidative injury, and neuronal death caused by HSR or OGD/R. However, genetic suppression or pharmacological inhibition of SIRT1 significantly reversed the impact of SP treatment on mitochondrial DNA transcription ability and autophagy. Our results demonstrate that the loss of SIRT1 causes a sequential chain of mitochondrial dysfunction, defective autophagy, and neuronal apoptosis after IRI in the preclinical stroke models. Sevoflurane postconditioning treatment could effectively attenuate pathophysiological signatures induced by noxious stimuli, which maybe mediated by SIRT1.
Collapse
|
19
|
Liu FJ, Gu TJ, Wei DY. Emodin alleviates sepsis-mediated lung injury via inhibition and reduction of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J Med Sci 2022; 38:253-260. [PMID: 34806822 DOI: 10.1002/kjm2.12476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Inflammation plays an important role during sepsis, and excessive inflammation can result in organ damage, chronic inflammation, fibrosis, and scarring. The study aimed to investigate the specific mechanism of emodin by constructing in vivo and in vitro septic lung injury models via inhibition and reduction of NF-kB and high mobility group box 1 (HMGB1) pathways. A cecal ligation and puncture (CLP) model was built for adult male Sprague-Dawley rats. Concentrations of TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid were determined using commercially available ELISA kits. Hematoxylin and eosin staining was used for the right lung inferior lobes. Myeloperoxidase (MPO) activity of the lung tissue was detected by using the MPO kit. Murine alveolar epithelial cell line (MLE-12) cells were used for flow cytometry and Western blot to analyze the apoptosis rate and protein expression. Emodin significantly decreased CLP-induced cell apoptosis, upregulated expression of sirtuin 1 (SIRT1), and inhibited p-p65/p65 and HMGB1. In lipopolysaccharide (LPS) treated cell model, emodin treatment markedly decreased LPS-induced release of IL-1, IL-6, and tumor necrosis factor (TNF)-α, inhibited LPS-induced cell apoptosis and suppressed protein levels of P-P65/P65 and HMGB1. However, science of SIRT1 reversed the above effects by treatment of emodin. In summarize, this study found that emodin can alleviate sepsis-induced lung injury in vivo and in vitro through regulation of SIRT1.
Collapse
Affiliation(s)
- Fu-Jing Liu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ti-Jun Gu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong-Yue Wei
- Department of Pediatric, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
20
|
Wang Y, Jian Y, Zhang X, Ni B, Wang M, Pan C. Melatonin protects H9c2 cardiomyoblasts from oxygen-glucose deprivation and reperfusion-induced injury by inhibiting Rac1/JNK/Foxo3a/Bim signaling pathway. Cell Biol Int 2021; 46:415-426. [PMID: 34882903 DOI: 10.1002/cbin.11739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
Melatonin has been shown to protect against ischemia/reperfusion (I/R)-induced myocardial injury, however, the precise molecular mechanisms have not been fully clarified. The present study was aimed to investigate whether inactivation of Rac1/JNK/Foxo3a/Bim signaling pathway is responsible for the protective effect of melatonin on I/R-induced myocardial injury. Our results showed that Foxo3a downregulation contributed to the protective effect of melatonin on OGD/R-induced injury of H9c2 cardiomyoblasts. Melatonin treatment led to a reduced activity of Rac1, which was responsible for Foxo3a downregulation and decreased cell injury in OGD/R-exposed H9c2 cells. Furthermore, JNK acts as a downstream effector of Rac1 in mediating melatonin-induced inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in OGD/R-exposed H9c2 cells. In conclusion, our results indicate that melatonin protects H9c2 cells against OGD/R-induced injury by inactivating the Rac1/JNK/Foxo3a/Bim signaling pathway. This study provided a novel insight into the protective mechanism of melatonin against I/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Emergency Center, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ying Jian
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaofu Zhang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Bin Ni
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Chunqi Pan
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Zhao Y, Jiang Q, Zhang X, Zhu X, Dong X, Shen L, Zhang S, Niu L, Chen L, Zhang M, Jiang J, Chen D, Zhu L. l-Arginine Alleviates LPS-Induced Oxidative Stress and Apoptosis via Activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a Signaling Pathways in C2C12 Myotube Cells. Antioxidants (Basel) 2021; 10:antiox10121957. [PMID: 34943060 PMCID: PMC8750292 DOI: 10.3390/antiox10121957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
l-arginine (l-Arg) has been reported to possess a wide range of functions, including anti-inflammatory, anti-oxidative, and anti-apoptosis. However, the role of l-Arg in LPS-induced muscle injury and its potential protective mechanism has not been well elucidated. This study aimed to investigate the effects of l-Arg on the LPS-induced oxidative stress and apoptosis in differentiated C2C12 myotube cells. Our results demonstrated that myotube cells treated with 0.2 mg/mL LPS significantly decreased cell viability. l-Arg treatment significantly suppressed LPS induced ROS accumulation and cell apoptosis. Furthermore, l-Arg improved antioxidant-related enzymes’ activities; increased antioxidant ability via Akt-Nrf2 signaling pathway; maintained the mitochondrial membrane potential (MMP); and enhanced FOXO3a expression, leading to a decrease in the mitochondrial-associated apoptotic proteins. In addition, l-Arg exposure dramatically increased the mRNA and protein expressions of SIRT1. The cytoprotective effect of l-Arg was restricted by the SIRT1 inhibitor EX527, which led to an increase in ROS level, apoptosis rate, and decreased cell MMP. The results also demonstrated that EX527 treatment significantly eliminated the effect of l-Arg on LPS-induced oxidative damage and mitochondria-mediated cell apoptosis. Our findings revealed that l-Arg could be used as a potential nutraceutical in reducing muscle injury via regulating SIRT1-Akt-Nrf2 and SIRT1-FOXO3a-mitochondria apoptosis signaling pathways.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xuefei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xiaoxiao Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xia Dong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: (D.C.); (L.Z.)
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
- Correspondence: (D.C.); (L.Z.)
| |
Collapse
|
22
|
Zhao J, Dong L, Huo T, Cheng J, Li X, Huangfu X, Sun S, Wang H, Li L. O-GlcNAc Transferase (OGT) Protects Cerebral Neurons from Death During Ischemia/Reperfusion (I/R) Injury by Modulating Drp1 in Mice. Neuromolecular Med 2021; 24:299-310. [PMID: 34705256 DOI: 10.1007/s12017-021-08688-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that increased O-linked N-acetylglucosamine (O-GlcNAc) level could promote cell survival following environmental stresses. This study aimed to explore the role of O-GlcNAc transferase (OGT) during cerebral ischemia/reperfusion (I/R) injury. The mouse model with cerebral I/R injury was induced by middle cerebral artery occlusion/reperfusion (MCAO/R). The expression of ogt in brain tissues was detected by qRT-PCR, Western blot, and immunohistochemistry (IHC) staining assay. Neurological deficit was evaluated using a modified scoring system. The infarct volume was assessed by TTC staining assay. Neuronal apoptosis in brain tissues was evaluated by TUNEL staining assay. The level of cleaved caspase-3 in brain tissues was detected by Western blot and IHC staining assay. The expression of critical proteins involved in mitochondrial fission, including OPA1, Mfn1, and Mfn2, as well as Mff and Drp1 was detected by Western blot and IHC, respectively. The expression of ogt during cerebral I/R injury was significantly upregulated. Ogt knockdown significantly increased neurological score and infarct volume in I/R-induced mice. Meanwhile, ogt knockdown significantly enhanced neuronal apoptosis and cleaved caspase-3 level in brain tissues of I/R-induced mice. In addition, ogt knockdown markedly decreased serine 637 phosphorylation level of mitochondrial fission protein dynamin-related protein 1 (Drp1) and promoted Drp1 translocation from the cytosol to the mitochondria. Moreover, the specific Drp1 inhibitor mdivi-1 effectively attenuated ogt knockdown-induced brain injury of I/R-stimulated mice in vivo. Our study revealed that OGT protects against cerebral I/R injury by inhibiting the function of Drp1 in mice, suggesting that ogt may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Huangfu
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Sujuan Sun
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China.
| |
Collapse
|
23
|
Fangma Y, Zhou H, Shao C, Yu L, Yang J, Wan H, He Y. Hydroxysafflor Yellow A and Anhydrosafflor Yellow B Protect Against Cerebral Ischemia/Reperfusion Injury by Attenuating Oxidative Stress and Apoptosis via the Silent Information Regulator 1 Signaling Pathway. Front Pharmacol 2021; 12:739864. [PMID: 34658877 PMCID: PMC8514692 DOI: 10.3389/fphar.2021.739864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/11/2023] Open
Abstract
Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) are the main water-soluble compounds in Carthamus tinctorius L. However, studies on the effect of AHSYB on cerebral ischemia/reperfusion (I/R) injury and the therapeutic effect of HSYA by regulating silent information regulator 1 (SIRT1) pathway remain obscure. In this study, we investigated whether the neuroprotective effects of HSYA and AHSYB on oxygen-glucose deprivation/reoxygenation in primary-cultured hippocampal neuronal cells and the middle cerebral artery occlusion and reperfusion model in rats are associated with the regulation of the SIRT1 pathway. In vitro, HSYA and AHSYB increased cell viability, depressed oxidation properties, and reduced neuronal cell apoptosis. In vivo results showed that HSYA and AHSYB effectively reduced infarct volume, improved neurological function, suppressed apoptosis, and decreased the oxidative stress reaction. Besides, RT-PCR and Western blot analysis showed that HSYA and AHSYB increased the mRNA and protein expressions of the main factors in the SIRT1 pathway, including SIRT1, forkhead box O (FOXO) 1, and peroxisome proliferator–activated receptor coactivator 1α (PGC1α), decreased the expression of Bax, and increased the expression of Bcl-2. The results from immunohistochemistry also showed that the expressions of SIRT1, FOXO1, and PGC1α were increased after treatment with HSYA and AHSYB. Furthermore, the neuroprotective effects of HSYA and AHSYB were abolished by EX527 (SIRT1–specific inhibitor). These results indicated that HSYA and AHSYB should be developed into potential drugs for treating cerebral I/R injury via the SIRT1 pathway. Although HSYA and AHSYB have different chemical structures, both of them exert similar neuroprotective properties against I/R injury in vitro and in vivo, which means that AHSYB is also a non-negligible component in safflower.
Collapse
Affiliation(s)
- Yijia Fangma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4025-4042. [PMID: 34594101 PMCID: PMC8476322 DOI: 10.2147/dddt.s330222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aim Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. Methods The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. Results In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. Conclusion TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
25
|
Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain Behav Immun Health 2021; 9:100152. [PMID: 34589895 PMCID: PMC8474497 DOI: 10.1016/j.bbih.2020.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The complexity of the ischemic cascade is based on the integrated crosstalk of every cell type in the neurovascular unit. Depending on the features of the ischemic insult, several cell death mechanisms are triggered, such as apoptosis, necroptosis, ferroptosis/oxytosis, ETosis or pyroptosis, leading to reactive astrogliosis. However, emerging evidence demonstrates a dual role for the immune system in stroke pathophysiology, where it exerts both detrimental and also beneficial functions. In this review, we discuss the relevance of several cell death modalities and the dual role of the immune system in stroke pathophysiology. We also provide an overview of some emerging immunomodulatory therapeutic strategies, amongst which saponins, which are promising candidates that exert multiple pharmacological effects. Several cell death mechanisms coexist in stroke pathophysiology. Neurons are more vulnerable to necroptosis than glial cells. Inhibitors of receptor-interacting protein kinases and of ferroptosis induce neuroprotection. Saponins exert modulatory effects on inflammation and neuronal cell death in stroke.
Collapse
|
26
|
Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation 2021; 44:1993-2005. [PMID: 33999329 DOI: 10.1007/s10753-021-01476-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
This study is aimed at exploring the potential of isorhamnetin in protection against diabetes-exacerbated ischemia/reperfusion-induced brain injury and elucidating its action mechanism. After establishment of the model of high glucose (HG)-aggravated oxygen-glucose deprivation and reoxygenation (OGD/R), HT22 cell viability was detected by CCK-8. Lactate dehydrogenase (LDH) activity, casapase-3 activity, and oxidative stress-related markers in HT22 cells were detected by corresponding commercial kits. The apoptosis of HG-treated HT22 cells following OGD/R was observed with TUNEL staining. The level of pro-inflammatory cytokines was examined by ELISA. The expression of Akt/SIRT1/Nrf2/HO-1 signaling-related proteins was assayed by Western blot. The results showed that HG noticeably worsened the OGD/R-induced apoptosis of HT22 cells. Isorhamnetin relieved the HG-aggravated OGD/R-induced apoptosis, inflammatory response, and oxidative stress of HT22 cells. Isorhamnetin alleviated the HG-aggravated OGD/R injury in HT22 cells through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Meanwhile, treatment with Akt inhibitor LY294002 reversed the protective effects of isorhamnetin against HG-aggravated OGD/R injury in HT22 cells. In a conclusion, Isorhamnetin alleviates HG-aggravated OGD/R in HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway.
Collapse
|
27
|
Taohuajing reduces oxidative stress and inflammation in diabetic cardiomyopathy through the sirtuin 1/nucleotide-binding oligomerization domain-like receptor protein 3 pathway. BMC Complement Med Ther 2021; 21:78. [PMID: 33637069 PMCID: PMC7913206 DOI: 10.1186/s12906-021-03218-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress and inflammation promote the development of diabetic cardiomyopathy (DCM). Therefore, inhibiting these processes may show beneficial effects in the treatment of patients with DCM. Taohuajing (THJ) is prepared using Persicae semen (Taoren), Polygonatum sibiricum (Huangjing), and Carthami flos (Honghua) and may have applications in the treatment of DCM. However, the protective effects of THJ have not been thoroughly assessed. Accordingly, in this study, we aimed to investigate the protective effects of THJ in a model of DCM and further clarify the potential mechanisms. Methods A type 2 diabetes mellitus model was generated using male C57BL/6 mice. Echocardiography and histopathology were used to evaluate cardiac function. The expression levels of cytokines were measured using enzyme-linked immunosorbent assays. Western blotting and small interfering RNA were used to evaluate the targets of THJ. Results Compared with the control group, DCM mice showed cardiac dysfunction, metabolic disorder, fibrosis, and disorganized ultrastructure, and THJ treatment significantly inhibited these changes significantly. THJ treatment also inhibited the production of reactive oxygen species (ROS) and malondialdehyde (MDA), induced the production of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), decreased the levels of pro-inflammatory cytokines, and suppressed the activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. These protective effects were abolished by sirtinol, an inhibitor of sirtuin1 (SIRT1). Conclusions Overall, THJ protected the heart from hyperglycemia-induced oxidative stress and inflammation in DCM mice via a mechanism involving SIRT1-mediated antioxidant proteins and suppression of the NLRP3 inflammasome.
Collapse
|
28
|
Liu B, Yan L, Jiao X, Sun X, Zhao Z, Yan J, Guo M, Zang Y. Lycopene Alleviates Hepatic Hypoxia/Reoxygenation Injury Through Nrf2/HO-1 Pathway in AML12 Cell. J Interferon Cytokine Res 2020; 40:406-417. [PMID: 32813603 DOI: 10.1089/jir.2020.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lihong Yan
- The Library of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuefei Jiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zonggang Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junwei Yan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunjin Zang
- Institute of Transplantation Science, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will Sirtuins Be Promising Therapeutic Targets for TBI and Associated Neurodegenerative Diseases? Front Neurosci 2020; 14:791. [PMID: 32848564 PMCID: PMC7411228 DOI: 10.3389/fnins.2020.00791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity worldwide, induces mechanical, persistent structural, and metabolic abnormalities in neurons and other brain-resident cells. The key pathological features of TBI include neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. These pathological processes persist for a period of time after TBIs. Sirtuins are evolutionarily conserved nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylases and mono-ADP-ribosyl transferases. The mammalian sirtuin family has seven members, referred to as Sirtuin (SIRT) 1-7. Accumulating evidence suggests that SIRT1 and SIRT3 play a neuroprotective role in TBI. Although the evidence is scant, considering the involvement of SIRT2, 4-7 in other brain injury models, they may also intervene in similar pathophysiology in TBI. Neurodegenerative diseases are generally accepted sequelae of TBI. It was found that TBI and neurodegenerative diseases have many similarities and overlaps in pathological features. Besides, sirtuins play some unique roles in some neurodegenerative diseases. Therefore, we propose that sirtuins might be a promising therapeutic target for both TBI and associated neurodegenerative diseases. In this paper, we review the neuroprotective effects of sirtuins on TBI as well as related neurodegeneration and discuss the therapeutic potential of sirtuin modulators.
Collapse
Affiliation(s)
- Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front Mol Neurosci 2020; 13:28. [PMID: 32194375 PMCID: PMC7066113 DOI: 10.3389/fnmol.2020.00028] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The cerebral ischemia injury can result in neuronal death and/or functional impairment, which leads to further damage and dysfunction after recovery of blood supply. Cerebral ischemia/reperfusion injury (CIRI) often causes irreversible brain damage and neuronal injury and death, which involves many complex pathological processes including oxidative stress, amino acid toxicity, the release of endogenous substances, inflammation and apoptosis. Oxidative stress and inflammation are interactive and play critical roles in ischemia/reperfusion injury in the brain. Oxidative stress is important in the pathological process of ischemic stroke and is critical for the cascade development of ischemic injury. Oxidative stress is caused by reactive oxygen species (ROS) during cerebral ischemia and is more likely to lead to cell death and ultimately brain death after reperfusion. During reperfusion especially, superoxide anion free radicals, hydroxyl free radicals, and nitric oxide (NO) are produced, which can cause lipid peroxidation, inflammation and cell apoptosis. Inflammation alters the balance between pro-inflammatory and anti-inflammatory factors in cerebral ischemic injury. Inflammatory factors can therefore stimulate or exacerbate inflammation and aggravate ischemic injury. Neuroprotective therapies for various stages of the cerebral ischemia cascade response have received widespread attention. At present, neuroprotective drugs mainly include free radical scavengers, anti-inflammatory agents, and anti-apoptotic agents. However, the molecular mechanisms of the interaction between oxidative stress and inflammation, and their interplay with different types of programmed cell death in ischemia/reperfusion injury are unclear. The development of a suitable method for combination therapy has become a hot topic.
Collapse
Affiliation(s)
- Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Gao Y, Li R, Sun H, Li J, He B, Xiao S, Li L, Wang J. Protective Effects of Oroxylin A on Oxygen-Glucose Deprivation/Reperfusion-Induced PC12 Cells by Activating the Sonic Hedgehog Signal Pathway. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19881544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ischemic stroke is a leading cause of human death. The injury that is induced by oxygen-glucose deprivation/reperfusion in stroke remains unsolved. This study first investigated the effects of oroxylin A on oxygen-glucose deprivation/reperfusion-induced PC12 cells. This was performed by dividing the cells into a control group, an oxygen-glucose deprivation and reperfusion (OGD/R) group, a solvent control group, and experimental groups treated with different concentrations of oroxylin A. Cell viability was evaluated by Cell Counting Kit-8 assay. Relevant indicators of oxidant stress were detected by using the appropriate kits. Western blot was applied to detect the expressions of inflammatory cytokine and proteins of the signaling pathway. Oroxylin A pretreatment exerted anti-oxidative, anti-apoptotic, and anti-inflammatory effects in oxygen-glucose deprivation/reperfusion-induced PC12 cells, thus indicating it as a new avenue for stroke treatment and providing references for future studies.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Traditional Chinese Medicine, First People’s Hospital of Qujing City, China
| | - Rui Li
- Medical Department, First People’s Hospital of Qujing City, China
| | - Hua Sun
- Department of Traditional Chinese Medicine, First People’s Hospital of Qujing City, China
| | - Jianmei Li
- Department of Hematology, First People’s Hospital of Qujing City, China
| | - Bing He
- Department of Traditional Chinese Medicine, First People’s Hospital of Qujing City, China
| | - Sa Xiao
- Department of Traditional Chinese Medicine, First People’s Hospital of Qujing City, China
| | - Liping Li
- Department of Traditional Chinese Medicine, First People’s Hospital of Qujing City, China
| | - Junling Wang
- Biological Laboratories, First People’s Hospital of Qujing City, China
| |
Collapse
|