1
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| |
Collapse
|
2
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Li G, Wang Y, Qian L, Li D, Yao Y, Pan J, Fan D. C8-ceramide modulates microglia BDNF expression to alleviate postoperative cognition dysfunction via PKCδ/NF-κB signaling pathway. Exp Brain Res 2024; 242:1543-1559. [PMID: 38750371 PMCID: PMC11208206 DOI: 10.1007/s00221-024-06847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a kind of serious postoperative complication in surgery with general anesthesia and it may affect patients' normal lives. Activated microglia are thought to be one of the key factors in the regulation of POCD process. Once activated, resident microglia change their phenotype and secrete kinds of cytokines to regulate inflammatory response in tissues. Among these secretory factors, brain-derived neurotrophic factor (BDNF) is considered to be able to inhibit inflammation response and protect nervous system. Therefore, the enhancement of BDNF expression derived from resident microglia is suggested to be potential treatment for POCD. In our study, we focused on the role of C8-ceramide (a kind of interventional drug) and assessed its regulatory effect on improving the expression of BDNF secreted from microglia to treat POCD. According to the results of our study, we observed that C8-ceramide stimulated primary microglia to up-regulate the expression of BDNF mRNA after being treated with lipopolysaccharide (LPS) in vitro. We proved that C8-ceramide had ability to effectively improve POCD of mice after being accepted carotid artery exposure and their abnormal behavior recovered better than that of mice from the surgery group. Furthermore, we also demonstrated that C8-ceramide enhanced the cognitive function of mice via the PKCδ/NF-κB signaling pathway. In general, our study has confirmed a potential molecular mechanism that led to the occurrence of POCD caused by surgery and provided a new clinical strategy to treat POCD.
Collapse
Affiliation(s)
- Guangqian Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 West Second Section, First-Ring Road, Chengdu, 610072, People's Republic of China
| | - Yuhao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Qian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 West Second Section, First-Ring Road, Chengdu, 610072, People's Republic of China
| | - Danni Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 West Second Section, First-Ring Road, Chengdu, 610072, People's Republic of China
| | - Yuchen Yao
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 West Second Section, First-Ring Road, Chengdu, 610072, People's Republic of China
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Fan
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 West Second Section, First-Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
4
|
Chen SH, Wu CC, Tseng WL, Lu FI, Liu YH, Lin SP, Lin SC, Hsueh YY. Adipose-derived stem cells modulate neuroinflammation and improve functional recovery in chronic constriction injury of the rat sciatic nerve. Front Neurosci 2023; 17:1172740. [PMID: 37457010 PMCID: PMC10339833 DOI: 10.3389/fnins.2023.1172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Compressive neuropathy, a common chronic traumatic injury of peripheral nerves, leads to variable impairment in sensory and motor function. Clinical symptoms persist in a significant portion of patients despite decompression, with muscle atrophy and persistent neuropathic pain affecting 10%-25% of cases. Excessive inflammation and immune cell infiltration in the injured nerve hinder axon regeneration and functional recovery. Although adipose-derived stem cells (ASCs) have demonstrated neural regeneration and immunomodulatory potential, their specific effects on compressive neuropathy are still unclear. Methods We conducted modified CCI models on adult male Sprague-Dawley rats to induce irreversible neuropathic pain and muscle atrophy in the sciatic nerve. Intraneural ASC injection and nerve decompression were performed. Behavioral analysis, muscle examination, electrophysiological evaluation, and immunofluorescent examination of the injured nerve and associated DRG were conducted to explore axon regeneration, neuroinflammation, and the modulation of inflammatory gene expression. Transplanted ASCs were tracked to investigate potential beneficial mechanisms on the local nerve and DRG. Results Persistent neuropathic pain was induced by chronic constriction of the rat sciatic nerve. Local ASC treatment has demonstrated robust beneficial outcomes, including the alleviation of mechanical allodynia, improvement of gait, regeneration of muscle fibers, and electrophysiological recovery. In addition, locally transplanted ASCs facilitated axon remyelination, alleviated neuroinflammation, and reduced inflammatory cell infiltration of the injured nerve and associated dorsal root ganglion (DRG). Trafficking of the transplanted ASC preserved viability and phenotype less than 7 days but contributed to robust immunomodulatory regulation of inflammatory gene expression in both the injured nerve and DRG. Discussion Locally transplanted ASC on compressed nerve improve sensory and motor recoveries from irreversible chronic constriction injury of rat sciatic nerve via alleviation of both local and remote neuroinflammation, suggesting the promising role of adjuvant ASC therapies for clinical compressive neuropathy.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- The integrative Evolutionary Galliform Genomics (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY, Pan J. The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther 2022; 13:511. [PMID: 36333820 PMCID: PMC9636722 DOI: 10.1186/s13287-022-03199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bone injury plagues millions of patients worldwide every year, and it demands a heavy portion of expense from the public medical insurance system. At present, orthopedists think that autologous bone transplantation is the gold standard for treating large-scale bone defects. However, this method has significant limitations, which means that parts of patients cannot obtain a satisfactory prognosis. Therefore, a basic study on new therapeutic methods is urgently needed. The in-depth research on crosstalk between macrophages (Mϕs) and bone marrow mesenchymal stem cells (BMSCs) suggests that there is a close relationship between inflammation and regeneration. The in-depth understanding of the crosstalk between Mϕs and BMSCs is helpful to amplify the efficacy of stem cell-based treatment for bone injury. Only in the suitable inflammatory microenvironment can the damaged tissues containing stem cells obtain satisfactory healing outcomes. The excessive tissue inflammation and lack of stem cells make the transplantation of biomaterials necessary. We can expect that the crosstalk between Mϕs and BMSCs and biomaterials will become the mainstream to explore new methods for bone injury in the future. This review mainly summarizes the research on the crosstalk between Mϕs and BMSCs and also briefly describes the effects of biomaterials and aging on cell transplantation therapy.
Collapse
Affiliation(s)
- Yu-Hao Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cheng-Zhi Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ren-Yi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Qian-Xin Du
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ji-Yuan Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jian Pan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| |
Collapse
|
6
|
Luo L, Zhang W, Wang J, Zhao M, Shen K, Jia Y, Li Y, Zhang J, Cai W, Xiao D, Bai X, Liu K, Wang K, Zhang Y, Zhu H, Zhou Q, Hu D. A Novel 3D Culture Model of Human ASCs Reduces Cell Death in Spheroid Cores and Maintains Inner Cell Proliferation Compared With a Nonadherent 3D Culture. Front Cell Dev Biol 2021; 9:737275. [PMID: 34858974 PMCID: PMC8632442 DOI: 10.3389/fcell.2021.737275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
3D cell culture technologies have recently shown very valuable promise for applications in regenerative medicine, but the most common 3D culture methods for mesenchymal stem cells still have limitations for clinical application, mainly due to the slowdown of inner cell proliferation and increase in cell death rate. We previously developed a new 3D culture of adipose-derived mesenchymal stem cells (ASCs) based on its self-feeder layer, which solves the two issues of ASC 3D cell culture on ultra-low attachment (ULA) surface. In this study, we compared the 3D spheroids formed on the self-feeder layer (SLF-3D ASCs) with the spheroids formed by using ULA plates (ULA-3D ASCs). We discovered that the cells of SLF-3D spheroids still have a greater proliferation ability than ULA-3D ASCs, and the volume of these spheroids increases rather than shrinks, with more viable cells in 3D spheroids compared with the ULA-3D ASCs. Furthermore, it was discovered that the SLF-3D ASCs are likely to exhibit the abovementioned unique properties due to change in the expression level of ECM-related genes, like COL3A1, MMP3, HAS1, and FN1. These results indicate that the SLF-3D spheroid is a promising way forward for clinical application.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Wei Zhang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| |
Collapse
|
7
|
Gupta A, Singh S. Potential Role of Growth Factors Controlled Release in Achieving Enhanced Neuronal Trans-differentiation from Mesenchymal Stem Cells for Neural Tissue Repair and Regeneration. Mol Neurobiol 2021; 59:983-1001. [PMID: 34816381 DOI: 10.1007/s12035-021-02646-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
With an increase in the incidence of neurodegenerative diseases, a need to replace incapable conventional methods has arisen. To overcome this burden, stem cells therapy has emerged as an efficient treatment option. Endeavours to accomplish this have paved the path to neural regeneration through efficient neuronal transdifferentiation. Despite their potential, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. The process of neural differentiation through the stem cells is achieved through the use of chemical inducers or growth factors and their direct introduction reduces their bioavailability in the system. To address these limitations, neural regeneration ventures require growth factors to be effectively implemented on stem cells in order to produce functional neuronal precursor cells. An efficient technique to achieve it is through the delivery of growth factors via microcarriers for their sustained release. It ensures the presence of commensurable concentration even at later stages of neuronal transdifferentiation. Nanofibers and nanoparticles, along with liposomes and such, have been used to implement this. The interaction between such carriers and the growth factors is mainly electrostatic. Such interaction enables them to form a stable assembly through immobilisation of the growth factor either onto their surfaces or within the core of their structures. The rate of sustained release depends upon the release kinetics associated with the polymeric structure employed and its interaction with the encapsulated growth factor. The sustained release ensures that the stem cells immerse under the effect of the growth factors for a prolonged period, ultimately aiding in the formation of cells showing ample characteristics of neuron precursors. This review analyses the various carriers that have been employed for the release of growth factors in an orderly fashion and their constituents, along with the advantages and the limitations they pose in delivering the growth factors for facilitating the process of neuronal transdifferentiation.
Collapse
Affiliation(s)
- Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
8
|
Chakraborty A, Upadhya R, Usman TA, Shetty AK, Rutkowski JM. Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain Behav Immun 2021; 98:219-233. [PMID: 34389489 PMCID: PMC8511130 DOI: 10.1016/j.bbi.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.
Collapse
Affiliation(s)
- Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Timaj A. Usman
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA,Correspondence: Joseph M Rutkowski, Texas A&M University College of Medicine, 8447 Riverside Parkway, Bryan, TX 77807 USA, Ph: 979-436-0576,
| |
Collapse
|
9
|
Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum Cell 2021; 34:1142-1152. [PMID: 33899160 DOI: 10.1007/s13577-021-00537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Over the past decades, stem cell therapy has been investigated as a promising approach towards various diseases, including neurodegenerative disorders. Stem cells show the capability to differentiate into neuronal progenitor cells in vitro. In the present study, the differentiation potential of human-induced pluripotent stem cells (hiPSCs) into neural lineages was examined under the efficient induction media containing forskolin and 3-isobutyl-1-methyl-xanthine (IBMX) in the presence of nisin (Ni), non-essential amino acids (NEAA) and combination of those (NEAA-Ni) in vitro. The optimum concentrations of these factors were obtained by MTT assay and acridine orange (AO) staining. The effect of Ni and NEAA on the expression rate of neural-specific markers including NSE, MAP2, and ß-tubulin III was studied via immunocytochemistry (ICC) and real-time RT-PCR analyses. Our results indicated that the induction medium containing Ni or NEAA increased the gene and protein expression of NSE, MAP2, and β-tubulin III on the 14th differentiation day. On the other hand, NEAA-Ni showed a less-differentiated hiPSCs compared to Ni and NEAA alone. In conclusion, the obtained results illustrated that Ni and NEAA could be applied as effective factors for neural differentiation of hiPSCs in the future.
Collapse
|
10
|
Luo L, Zhang W, Chen W, Fu X, Wang X, Xu R, Hu D. Based on a Self-Feeder Layer, a Novel 3D Culture Model of Human ADSCs Facilitates Trans-Differentiation of the Spheroid Cells into Neural Progenitor-Like Cells Using siEID3 with a Laminin/Poly-d-lysine Matrix. Cells 2021; 10:493. [PMID: 33668931 PMCID: PMC7996540 DOI: 10.3390/cells10030493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived stromal cells (ADSCs) are receiving unprecedented attention as a potential cellular source for regenerative medicine-based therapies against various diseases and conditions. However, there still have significant issues concerning the translational development of ADSC-based therapies, such as its heterogeneity and being prone to aging. We developed a new simple and economical 3D semi-suspended expansion method in which 3D spheroids reside on an ADSC-derived self-feeder cell layer, producing cells with increased population homogeneity and strong stemness and ensuring that the proliferation and differentiation potency of the cells does not become notably reduced after at least ten passages in culture. To check the potential application of the 3D ADSC spheroids, we discovered that the combination of siEID3, which is a small interfering RNA of EP300 inhibitor of differentiation 3 (EID3), and laminin/poly-d-lysine matrix can rapidly result in trans-differentiation of the 3D spheroid cells to neural progenitor-like cells (NPLCs) in approximately 9 days in vitro. This approach provides a multidisciplinary tool for stem cell research and production in mesenchymal stem cell-related fields.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
- Department of Plastics and Aesthetic Surgery, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Wenjin Chen
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Xiaojun Fu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
| | - Ruxiang Xu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- Department of Plastics and Aesthetic Surgery, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
- The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
| |
Collapse
|
11
|
Kim KY, Chang KA. Therapeutic Potential of Magnetic Nanoparticle-Based Human Adipose-Derived Stem Cells in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22020654. [PMID: 33440873 PMCID: PMC7827941 DOI: 10.3390/ijms22020654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21936, Korea
- Correspondence:
| |
Collapse
|
12
|
Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Vincitorio F, Petrone S, Titolo P, Tartara F, Vercelli A, Garbossa D. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci 2021; 22:E572. [PMID: 33430035 PMCID: PMC7827385 DOI: 10.3390/ijms22020572] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords "nerve regeneration", "stem cells", "peripheral nerve injury", "rat", and "human" were used. Additionally, a "MeSH" research was performed in PubMed using the terms "stem cells" and "nerve regeneration". The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.
Collapse
Affiliation(s)
- Andrea Lavorato
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (S.R.); (L.M.)
| | - Marina Boido
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (M.B.); (A.V.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (S.R.); (L.M.)
| | - Giorgia Durante
- Faculty of Medicine and Surgery, University of Turin, 10126 Turin, TO, Italy;
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Francesca Vincitorio
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Salvatore Petrone
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Paolo Titolo
- Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, 10126 Turin, TO, Italy;
| | - Fulvio Tartara
- Neurosurgery Unit, Istituto Clinico Città Studi (ICCS), 20131 Milan, MI, Italy;
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (M.B.); (A.V.)
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| |
Collapse
|
13
|
Han C, Wang YJ, Wang YC, Guan X, Wang L, Shen LM, Zou W, Liu J. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells. Neural Regen Res 2021; 16:714-720. [PMID: 33063733 PMCID: PMC8067921 DOI: 10.4103/1673-5374.295342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that caveolin-1 is involved in regulating the differentiation of mesenchymal stem cells. However, its role in the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons remains unclear. The aim of this study was to investigate whether caveolin-1 regulates the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. We also examined whether the expression of caveolin-1 could be modulated by RNA interference technology to promote the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. The differentiation of human adipose mesenchymal stem cells into dopaminergic neurons was evaluated morphologically and by examining expression of the markers tyrosine hydroxylase, Lmx1a and Nurr1. The analyses revealed that during the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons, the expression of caveolin-1 is decreased. Notably, the downregulation of caveolin-1 promoted the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons, and it increased the expression of tyrosine hydroxylase, Lmx1a and Nurr1. Together, our findings suggest that caveolin-1 plays a negative regulatory role in the differentiation of dopaminergic-like neurons from stem cells, and it may therefore be a potential molecular target for strategies for regulating the differentiation of these cells. This study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Dalian Medical University of China (approval No. PJ-KS-KY-2020-54) on March 7, 2017.
Collapse
Affiliation(s)
- Chao Han
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ya-Jun Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Li-Ming Shen
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|