1
|
Zou XF, Wu SH, Ma JG, Yin ZQ, Hu ZD, Wang YW, Yang J, Guo RD. 3-O-Methyl-D-Glucose Blunts Cold Ischemia Damage in Kidney via Inhibiting Ferroptosis. Biomed Pharmacother 2024; 173:116262. [PMID: 38394845 DOI: 10.1016/j.biopha.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.
Collapse
Affiliation(s)
- Xun-Feng Zou
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Shao-Hua Wu
- Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Qi Yin
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhan-Dong Hu
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yi-Wei Wang
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jie Yang
- University hospital, Tianjin Normal University, Tianjin 300192, China
| | - Ren-De Guo
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
2
|
Bejaoui M, Slim C, Peralta C, Ben Abdennebi H. Effect of PERLA®, a new cold-storage solution, on oxidative stress injury and early graft function in rat kidney transplantation model. BMC Nephrol 2024; 25:62. [PMID: 38389057 PMCID: PMC10882783 DOI: 10.1186/s12882-024-03488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The composition of organ preservation solutions is crucial for maintaining graft integrity and early graft function after transplantation. The aim of this study is to compare new organ preservation solution PERLA® with the gold standard preservation solution University of Wisconsin (UW) regarding oxidative stress and early graft injury. METHODS In order to assess oxidative stress after cold storage, kidney grafts have been preserved for 18 h at 4° C in either UW solution or PERLA® solution and then assessed for oxidative stress injury (protocol 1). To assess kidney injuries and oxidative stress after reperfusion, rat kidneys were harvested, stored in cold UW or in PERLA® solutions for 18 h at 4 °C and then transplanted heterotopically for 6 h (protocol 2). PERLA® is a high Na+/low K+ solution including PEG-35 (1 g/L), trimetazidine (1 µM), carvedilol (10 µM) and tacrolimus (5 µM). RESULTS Our results showed that preservation of kidneys in PERLA® solution significantly attenuates oxidative stress parameters after cold storage and reperfusion. We found a significant decrease in oxidative damage indicators (MDA, CD and CP) and a significant increase in antioxidant indicators (GPx, GSH, CAT, SOD and PSH). Moreover, PERLA® solution decreased kidney injury after reperfusion (creatinine, LDH and uric acid). CONCLUSION PERLA® solution was more effective than UW storage solution in preserving rat's kidney grafts.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
3
|
Orhan HG, Teimoori A, Demirtaş E, Zeynalova N, Efe OE, Emre Aydingöz S. Effects of hypoxia versus ischaemia on vascular functions of isolated rat thoracic aorta: revisiting the in vitro vascular ischaemia/reperfusion model. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2023; 20:173-178. [PMID: 37937174 PMCID: PMC10626406 DOI: 10.5114/kitp.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/14/2023] [Indexed: 11/09/2023]
Abstract
Introduction The in vitro rat vascular ischaemia and reperfusion model is used to evaluate the molecular and functional effects of potential agents against ischaemia and reperfusion injury of autologous graft veins. However, there is no consensus on whether hypoxia, rather than ischaemia, is sufficient to induce vascular dysfunction. Aim To compare the effects of hypoxia and ischaemia, with or without reperfusion, on the vascular functions of isolated thoracic aortic rings of rats. Material and methods Thoracic aortas of 12 male Sprague-Dawley rats (350-500 g, 18-24 months old) were isolated and divided into rings that were randomly allocated to control, ischaemia, hypoxia, ischaemia-reperfusion, and hypoxia-reperfusion groups. Aortic rings other than those of the control group were stored at 4°C for 24 h in saline. For ischaemia, saline was gassed with nitrogen. After 24 h, aortic rings in the ischaemia-reperfusion and hypoxia-reperfusion groups were incubated with 200 μM sodium hypochlorite for 30 min. Vascular and endothelial functions were tested in an organ bath set-up. Results Vascular response to potassium chloride (80 mM) decreased in all experimental groups compared to the control group (p = 0.007), but phenylephrine-induced contraction (10-5 M) increased only in the ischaemia-reperfusion group (p < 0.0001). Acetylcholine (10-11-10-5 M)-induced endothelium-dependent vasorelaxations were impaired in all groups - particularly in the ischaemia-reperfusion group (p = 0.0011). Sodium nitroprusside (10-12-10-7 M)-induced endothelium-independent vasorelaxations were similar across all groups (p = 0.1258). Conclusions Ischaemia followed by reperfusion should be implanted to achieve maximum endothelial and contractile dysfunction in vitro, and to replicate ischaemia and reperfusion injury of autologous graft veins.
Collapse
Affiliation(s)
- Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Ariyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elif Demirtaş
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Nargiz Zeynalova
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oğuzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Selda Emre Aydingöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Campos Pamplona C, Moers C, Leuvenink HGD, van Leeuwen LL. Expanding the Horizons of Pre-Transplant Renal Vascular Assessment Using Ex Vivo Perfusion. Curr Issues Mol Biol 2023; 45:5437-5459. [PMID: 37504261 PMCID: PMC10378498 DOI: 10.3390/cimb45070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, immense efforts have focused on improving the preservation of (sub)optimal donor organs by means of ex vivo perfusion, which enables the opportunity for organ reconditioning and viability assessment. However, there is still no biomarker that correlates with renal viability. Therefore, it is essential to explore new techniques for pre-transplant assessment of organ quality to guarantee successful long-term transplantation outcomes. The renal vascular compartment has received little attention in machine perfusion studies. In vivo, proper renal vascular and endothelial function is essential for maintaining homeostasis and long-term graft survival. In an ex vivo setting, little is known about vascular viability and its implications for an organ's suitability for transplant. Seeing that endothelial damage is the first step in a cascade of disruptions and maintaining homeostasis is crucial for positive post-transplant outcomes, further research is key to clarifying the (patho)physiology of the renal vasculature during machine perfusion. In this review, we aim to summarize key aspects of renal vascular physiology, describe the role of the renal vasculature in pathophysiological settings, and explain how ex vivo perfusion plays a role in either unveiling or targeting such processes. Additionally, we discuss potentially new vascular assessment tools during ex vivo renal perfusion.
Collapse
Affiliation(s)
- Carolina Campos Pamplona
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Foguenne M, MacMillan S, Kron P, Nath J, Devresse A, De Meyer M, Michel M, Hosgood S, Darius T. Current Evidence and Future Perspectives to Implement Continuous and End-Ischemic Use of Normothermic and Oxygenated Hypothermic Machine Perfusion in Clinical Practice. J Clin Med 2023; 12:3207. [PMID: 37176647 PMCID: PMC10178893 DOI: 10.3390/jcm12093207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The use of high-risk renal grafts for transplantation requires the optimization of pretransplant assessment and preservation reconditioning strategies to decrease the organ discard rate and to improve short- and long-term clinical outcomes. Active oxygenation is increasingly recognized to play a central role in dynamic preservation strategies, independent of preservation temperature, to recondition mitochondria and to restore the cellular energy profile. The oxygen-related decrease in mitochondrial succinate accumulation ameliorates the harmful effects of ischemia-reperfusion injury. The differences between normothermic and hypothermic machine perfusion with regard to organ assessment, preservation, and reconditioning, as well as the logistic and economic implications, are factors to take into consideration for implementation at a local level. Therefore, these different techniques should be considered complementary to the perfusion strategy selected depending on functional intention and resource availability. This review provides an overview of the current clinical evidence of normothermic and oxygenated hypothermic machine perfusion, either as a continuous or end-ischemic preservation strategy, and future perspectives.
Collapse
Affiliation(s)
- Maxime Foguenne
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Serena MacMillan
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Philipp Kron
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK
| | - Arnaud Devresse
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Nephrology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Martine De Meyer
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mourad Michel
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Darius
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Molecular Frontiers in Transplantation-Induced Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24043450. [PMID: 36834861 PMCID: PMC9968209 DOI: 10.3390/ijms24043450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
This Special Issue aims to summarize the most up-to-date research on ischemia-reperfusion and organ transplantation [...].
Collapse
|
7
|
van Leeuwen LL, Leuvenink HGD, Olinga P, Ruigrok MJR. Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs. Front Med (Lausanne) 2022; 8:806774. [PMID: 35083254 PMCID: PMC8784659 DOI: 10.3389/fmed.2021.806774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.
Collapse
Affiliation(s)
- L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Mitchel J. R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Hosgood SA, Brown RJ, Nicholson ML. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021; 105:e202-e214. [PMID: 33982904 PMCID: PMC8549459 DOI: 10.1097/tp.0000000000003679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
The use of cold preservation solutions to rapidly flush and cool the kidney followed by static cold storage in ice has been the standard kidney preservation technique for the last 50 y. Nonetheless, changing donor demographics that include organs from extended criteria donors and donation after circulatory death donors have led to the adoption of more diverse techniques of preservation. Comparison of hypothermic machine perfusion and static cold storage techniques for deceased donor kidneys has long been debated and is still contested by some. The recent modification of hypothermic machine perfusion techniques with the addition of oxygen or perfusion at subnormothermic or near-normothermic temperatures are promising strategies that are emerging in clinical practice. In addition, the use of normothermic regional perfusion to resuscitate abdominal organs of donation after circulatory death donors in situ before cold flushing is also increasingly being utilized. This review provides a synopsis of the different types of preservation techniques including their mechanistic effects and the outcome of their application in clinical practice for different types of donor kidney.
Collapse
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel J. Brown
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael L. Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
9
|
Darius T, Nath J, Mourad M. Simply Adding Oxygen during Hypothermic Machine Perfusion to Combat the Negative Effects of Ischemia-Reperfusion Injury: Fundamentals and Current Evidence for Kidneys. Biomedicines 2021; 9:993. [PMID: 34440197 PMCID: PMC8394874 DOI: 10.3390/biomedicines9080993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The use of high-risk renal grafts for transplantation requires optimization of pretransplant preservation and assessment strategies to improve clinical outcomes as well as to decrease organ discard rate. With oxygenation proposed as a resuscitative measure during hypothermic machine preservation, this review provides a critical overview of the fundamentals of active oxygenation during hypothermic machine perfusion, as well as the current preclinical and clinical evidence and suggests different strategies for clinical implementation.
Collapse
Affiliation(s)
- Tom Darius
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK;
| | - Michel Mourad
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021; 22:ijms22052366. [PMID: 33673423 PMCID: PMC7956779 DOI: 10.3390/ijms22052366] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Collapse
Affiliation(s)
- Pauline Chazelas
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Clara Steichen
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Patrick Trouillas
- INSERM U1248, IPPRITT, Université de Limoges, 87032 Limoges, France;
- RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
| | - Patrick Hannaert
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
| | - Raphaël Thuillier
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Giraud
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Thierry Hauet
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
- FHU SUPORT Survival Optimization in Organ Transplantation, 86021 Poitiers, France
- IBiSA Plateforme Modélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT), Do-maine Expérimental du Magneraud, 17700 Surgères, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, 86073 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-38-59
| |
Collapse
|
12
|
In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. Int J Mol Sci 2020; 21:ijms21218156. [PMID: 33142791 PMCID: PMC7662866 DOI: 10.3390/ijms21218156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a key element of ischemia–reperfusion injury, occurring during kidney preservation and transplantation. Current options for kidney graft preservation prior to transplantation are static cold storage (CS) and hypothermic machine perfusion (HMP), the latter demonstrating clear improvement of preservation quality, particularly for marginal donors, such as extended criteria donors (ECDs) and donation after circulatory death (DCDs). Nevertheless, complications still exist, fostering the need to improve kidney preservation. This review highlights the most promising avenues of in kidney perfusion improvement on two critical aspects: ex vivo and in vitro evaluation.
Collapse
|
13
|
Hendriks KDW, Brüggenwirth IMA, Maassen H, Gerding A, Bakker B, Porte RJ, Henning RH, Leuvenink HGD. Renal temperature reduction progressively favors mitochondrial ROS production over respiration in hypothermic kidney preservation. J Transl Med 2019; 17:265. [PMID: 31409351 PMCID: PMC6693148 DOI: 10.1186/s12967-019-2013-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypothermia, leading to mitochondrial inhibition, is widely used to reduce ischemic injury during kidney preservation. However, the exact effect of hypothermic kidney preservation on mitochondrial function remains unclear. METHODS We evaluated mitochondrial function [i.e. oxygen consumption and production of reactive oxygen species (ROS)] in different models (porcine kidney perfusion, isolated kidney mitochondria, and HEK293 cells) at temperatures ranging 7-37 °C. RESULTS Lowering temperature in perfused kidneys and isolated mitochondria resulted in a rapid decrease in oxygen consumption (65% at 27 °C versus 20% at 7 °C compared to normothermic). Decreased oxygen consumption at lower temperatures was accompanied by a reduction in mitochondrial ROS production, albeit markedly less pronounced and amounting only 50% of normothermic values at 7 °C. Consequently, malondialdehyde (a marker of ROS-induced lipid peroxidation) accumulated in cold stored kidneys. Similarly, low temperature incubation of kidney cells increased lipid peroxidation, which is due to a loss of ROS scavenging in the cold. CONCLUSIONS Lowering of temperature highly affects mitochondrial function, resulting in a progressive discrepancy between the lowering of mitochondrial respiration and their production of ROS, explaining the deleterious effects of hypothermia in transplantation procedures. These results highlight the necessity to develop novel strategies to decrease the formation of ROS during hypothermic organ preservation.
Collapse
Affiliation(s)
- Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713JZ, Groningen, The Netherlands. .,Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands.
| | - Isabel M A Brüggenwirth
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara Bakker
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713JZ, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|