1
|
Rahman M. Editorial: design considerations for future personalized vaccination approaches. Nanomedicine (Lond) 2024:1-6. [PMID: 39552583 DOI: 10.1080/17435889.2024.2419816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Affiliation(s)
- Mahbuba Rahman
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Martino D, Schultz N, Kaur R, van Haren SD, Kresoje N, Hoch A, Diray-Arce J, Su JL, Levy O, Pichichero M. Respiratory infection- and asthma-prone, low vaccine responder children demonstrate distinct mononuclear cell DNA methylation pathways. Clin Epigenetics 2024; 16:85. [PMID: 38961479 PMCID: PMC11223352 DOI: 10.1186/s13148-024-01703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunizations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripheral blood mononuclear cells from respiratory infection allergy/asthma-prone (IAP) infants and non-infection allergy/asthma prone (NIAP) were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fisher's exact p-value = 0.02). RESULTS An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPL), a TLR agonist, partially reversed this signature at a subset of CpGs, suggesting the potential for epigenetic remodeling. CONCLUSIONS This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for future investigation.
Collapse
Affiliation(s)
- David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Nikki Schultz
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ravinder Kaur
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Nina Kresoje
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Jessica Lasky Su
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Michael Pichichero
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| |
Collapse
|
3
|
Martino D, Schultz N, Kaur R, Haren SD, Kresoje N, Hoch A, Diray-Arce J, Lasky Su J, Levy O, Pichichero M. Respiratory Infection- and Asthma-prone, Low Vaccine Responder Children Demonstrate Distinct Mononuclear Cell DNA Methylation Pathways. RESEARCH SQUARE 2024:rs.3.rs-4160354. [PMID: 38645021 PMCID: PMC11030504 DOI: 10.21203/rs.3.rs-4160354/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunisations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripharal immune cells from respiratory infection allergy/asthma prone (IAP) infants were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fishers Exact p-value = 0.01). Results An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPLA), a TLR agonist, partially reversing this signature at a subset of CpGs, suggesting the potential for epigenetic remodelling. Conclusions This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for furture investigation.
Collapse
|
4
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Tukwasibwe S, Mboowa G, Sserwadda I, Nankabirwa JI, Arinaitwe E, Ssewanyana I, Taremwa Y, Tumusiime G, Kamya MR, Jagannathan P, Nakimuli A. Impact of high human genetic diversity in Africa on immunogenicity and efficacy of RTS,S/AS01 vaccine. Immunogenetics 2023; 75:207-214. [PMID: 37084013 PMCID: PMC10119520 DOI: 10.1007/s00251-023-01306-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda.
- School of Medicine, Uganda Christian University, Kampala, Uganda.
| | - Gerald Mboowa
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ivan Sserwadda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | - Yoweri Taremwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gerald Tumusiime
- School of Medicine, Uganda Christian University, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Annettee Nakimuli
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
7
|
Rahman M, Schellhorn HE. Metabolomics of infectious diseases in the era of personalized medicine. Front Mol Biosci 2023; 10:1120376. [PMID: 37275959 PMCID: PMC10233009 DOI: 10.3389/fmolb.2023.1120376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Infectious diseases continue to be a major cause of morbidity and mortality worldwide. Diseases cause perturbation of the host's immune system provoking a response that involves genes, proteins and metabolites. While genes are regulated by epigenetic or other host factors, proteins can undergo post-translational modification to enable/modify function. As a result, it is difficult to correlate the disease phenotype based solely on genetic and proteomic information only. Metabolites, however, can provide direct information on the biochemical activity during diseased state. Therefore, metabolites may, potentially, represent a phenotypic signature of a diseased state. Measuring and assessing metabolites in large scale falls under the omics technology known as "metabolomics". Comprehensive and/or specific metabolic profiling in biological fluids can be used as biomarkers of disease diagnosis. In addition, metabolomics together with genomics can be used to differentiate patients with differential treatment response and development of host targeted therapy instead of pathogen targeted therapy where pathogens are more prone to mutation and lead to antimicrobial resistance. Thus, metabolomics can be used for patient stratification, personalized drug formulation and disease control and management. Currently, several therapeutics and in vitro diagnostics kits have been approved by US Food and Drug Administration (FDA) for personalized treatment and diagnosis of infectious diseases. However, the actual number of therapeutics or diagnostics kits required for tailored treatment is limited as metabolomics and personalized medicine require the involvement of personnel from multidisciplinary fields ranging from technological development, bioscience, bioinformatics, biostatistics, clinicians, and biotechnology companies. Given the significance of metabolomics, in this review, we discussed different aspects of metabolomics particularly potentials of metabolomics as diagnostic biomarkers and use of small molecules for host targeted treatment for infectious diseases, and their scopes and challenges in personalized medicine.
Collapse
|
8
|
Ferraresi A, Isidoro C. Will Omics Biotechnologies Save Us from Future Pandemics? Lessons from COVID-19 for Vaccinomics and Adversomics. Biomedicines 2022; 11:52. [PMID: 36672560 PMCID: PMC9855897 DOI: 10.3390/biomedicines11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic had cross-cutting impacts on planetary health, quotidian life, and society. Mass vaccination with the current gene-based vaccines has helped control the pandemic but unfortunately it has not shown effectiveness in preventing the spread of the virus. In addition, not all individuals respond to these vaccines, while others develop adverse reactions that cannot be neglected. It is also a fact that some individuals are more susceptible to infection while others develop effective immunization post-infection. We note here that the person-to-person and population variations in vaccine efficacy and side effects have been studied in the field of vaccinomics long before the COVID-19 pandemic. Additionally, the field of adversomics examines the mechanisms of individual differences in the side effects of health interventions. In this review, we discuss the potential of a multi-omics approach for comprehensive profiling of the benefit/risk ratios of vaccines. Vaccinomics and adversomics stand to benefit planetary health and contribute to the prevention of future pandemics in the 21st century by offering precision guidance to clinical trials as well as promoting precision use of vaccines in ways that proactively respond to individual and population differences in their efficacy and safety. This vision of pandemic prevention based on personalized instead of mass vaccination also calls for equity in access to precision vaccines and diagnostics that support a vision and practice of vaccinomics and adversomics in planetary health.
Collapse
Affiliation(s)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
9
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
10
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
11
|
Martinón-Torres F, Bertrand-Gerentes I, Oster P. A novel vaccine to prevent meningococcal disease beyond the first year of life: an early review of MenACYW-TT. Expert Rev Vaccines 2021; 20:1123-1146. [PMID: 34365870 DOI: 10.1080/14760584.2021.1964962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Although quadrivalent meningococcal conjugate vaccines have been effective in preventing invasive meningococcal disease (IMD) caused by serogroups A, C, W, and Y across age groups from infants to adults, data on their efficacy and safety in adults ≥56 years of age are lacking. Moreover, multiple available quadrivalent conjugate vaccines require reconstitution prior to administration, introducing the potential for error. A novel quadrivalent meningococcal conjugate vaccine, MenACYW-TT (MenQuadfi®) was approved in 2020 for use in individuals ≥12 months of age as a single dose in the European Union and some other countries and in individuals ≥2 years of age in the United States. AREAS COVERED The findings of Phase II/III studies that included >6600 individuals and evaluated the immunogenicity and safety of MenACYW-TT beyond the first year of life are comprehensively summarized and discussed. EXPERT OPINION Extensive data on immunogenicity and safety, co-administration with routine vaccines, elicitation of robust booster responses, and significantly higher Men C responses versus monovalent MenC or MenACWY standard-of-care vaccines in toddlers suggest that MenACYW-TT may be suitable for inclusion in National Immunization Programs (NIPs) globally. The authors provide their perspectives on the clinical use of MenACYW-TT across age groups from toddlers through adults.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario and Universidad De Santiago De Compostela (USC), Galicia, Spain.,Genetics, Vaccines, and Pediatric Infectious Diseases Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago and Universidad De Santiago De Compostela (USC), Galicia, Spain
| | | | - Philipp Oster
- Global Medical Affairs, Sanofi Pasteur, Lyon, France
| |
Collapse
|
12
|
Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Neutralization-Resistant SIVsmE543-3 Infection. Viruses 2021; 13:v13061181. [PMID: 34205728 PMCID: PMC8235048 DOI: 10.3390/v13061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Antibody responses are crucial for the control of virus infection. Understanding of the mechanism of antibody induction is important for the development of a vaccine eliciting effective anti-virus antibodies. Virus-specific B cell receptor (BCR)/antibody repertoires are different among individuals, but determinants for this difference remain largely unclear. We have recently reported that a germline BCR immunoglobulin (IgG) gene polymorphism (VH3.33_ET or VH3.33_VI) in rhesus macaques is the determinant for induction of potent B404-class anti-simian immunodeficiency virus (SIV) neutralizing antibodies in neutralization-sensitive SIVsmH635FC infection. In the present study, we examined whether neutralization-resistant SIVsmE543-3 infection can induce the anti-SIV neutralizing antibodies associated with the germline VH3.33 polymorphism. Anti-SIVsmE543-3 neutralizing antibodies were induced in all the macaques possessing the VH3.33_ET allele, but not in those without VH3.33_ET, in the chronic phase of SIVsmE543-3 infection. Next generation sequencing analysis of BCR VH genes found B404-class antibody sequences only in those with VH3.33_ET. These results indicate that anti-SIVsmE543-3 neutralizing antibody induction associated with the germline BCR IgG gene polymorphism can be triggered by infection with neutralization-resistant SIVsmE543-3. This animal model would be useful for the elucidation of the mechanism of potent antibody induction against neutralization-resistant viruses.
Collapse
|
13
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
14
|
Xie J, Zi W, Li Z, He Y. Ontology-based Precision Vaccinology for Deep Mechanism Understanding and Precision Vaccine Development. Curr Pharm Des 2021; 27:900-910. [PMID: 33238868 DOI: 10.2174/1381612826666201125112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Vaccination is one of the most important innovations in human history. It has also become a hot research area in a new application - the development of new vaccines against non-infectious diseases such as cancers. However, effective and safe vaccines still do not exist for many diseases, and where vaccines exist, their protective immune mechanisms are often unclear. Although licensed vaccines are generally safe, various adverse events, and sometimes severe adverse events, still exist for a small population. Precision medicine tailors medical intervention to the personal characteristics of individual patients or sub-populations of individuals with similar immunity-related characteristics. Precision vaccinology is a new strategy that applies precision medicine to the development, administration, and post-administration analysis of vaccines. Several conditions contribute to make this the right time to embark on the development of precision vaccinology. First, the increased level of research in vaccinology has generated voluminous "big data" repositories of vaccinology data. Secondly, new technologies such as multi-omics and immunoinformatics bring new methods for investigating vaccines and immunology. Finally, the advent of AI and machine learning software now makes possible the marriage of Big Data to the development of new vaccines in ways not possible before. However, something is missing in this marriage, and that is a common language that facilitates the correlation, analysis, and reporting nomenclature for the field of vaccinology. Solving this bioinformatics problem is the domain of applied biomedical ontology. Ontology in the informatics field is human- and machine-interpretable representation of entities and the relations among entities in a specific domain. The Vaccine Ontology (VO) and Ontology of Vaccine Adverse Events (OVAE) have been developed to support the standard representation of vaccines, vaccine components, vaccinations, host responses, and vaccine adverse events. Many other biomedical ontologies have also been developed and can be applied in vaccine research. Here, we review the current status of precision vaccinology and how ontological development will enhance this field, and propose an ontology-based precision vaccinology strategy to support precision vaccine research and development.
Collapse
Affiliation(s)
- Jiangan Xie
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Wenrui Zi
- Chongqing engineering research center of medical electronics and information technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Chongqing engineering research center of medical electronics and information technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Development of Microbiology and Immunology, Center of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
15
|
A Potent anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Rhesus Macaques. J Virol 2021; 95:JVI.02455-20. [PMID: 33441342 PMCID: PMC8092685 DOI: 10.1128/jvi.02455-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.
Collapse
|
16
|
|
17
|
Diallo D, Santal C, Lagrée M, Martinot A, Dubos F. Vaccination coverage of children with chronic diseases is inadequate especially for specifically recommended vaccines. Acta Paediatr 2020; 109:2677-2684. [PMID: 32239549 DOI: 10.1111/apa.15275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 03/24/2020] [Indexed: 11/30/2022]
Abstract
AIM Our objectives were to measure the vaccine coverage rates for children with chronic diseases as well as the prevalence of potentially harmful delays for generally recommended vaccines. We also identified the factors influencing non-adherence to vaccines specifically recommended for chronic conditions. METHODS Three non-interventional point-prevalence surveys were performed in 2014 in all paediatric units at Lille University Hospital among children aged 2 months-18 years with chronic diseases and vaccination data. Vaccine coverage and delays for generally recommended vaccines were studied. The children who were up-to-date and those under-vaccinated for specifically indicated vaccines were compared and the factors potentially associated with under-vaccination were studied with multivariable analysis. RESULTS We screened 682 patients: of 207 with chronic diseases, mainly neurological, muscular and respiratory disorders, 146 had vaccination data. Only 47% (95% confidence interval 39-55) were up-to-date for all generally recommended vaccinations; potentially harmful vaccination delays were high (26%-75%). Only 11% of the 81% of patients for whom some vaccines were specifically recommended were up-to-date. Low maternal education level was significantly associated with under-vaccination (adjusted odds ratio 10.5, 95% confidence interval 1.3-86.9, P = .03). CONCLUSION This study showed inadequate vaccine coverage rates and significant delays among children with chronic diseases.
Collapse
Affiliation(s)
- Diariatou Diallo
- Paediatric Emergency Unit & Infectious Diseases CHU Lille Lille France
| | - Claire Santal
- Paediatric Emergency Unit & Infectious Diseases CHU Lille Lille France
| | - Marion Lagrée
- Paediatric Emergency Unit & Infectious Diseases CHU Lille Lille France
| | - Alain Martinot
- Paediatric Emergency Unit & Infectious Diseases CHU Lille Lille France
- ULR 2694 – METRICS: Evaluation of Health Technology and Medical Practice University of Lille Lille France
| | - François Dubos
- Paediatric Emergency Unit & Infectious Diseases CHU Lille Lille France
- ULR 2694 – METRICS: Evaluation of Health Technology and Medical Practice University of Lille Lille France
| |
Collapse
|
18
|
Safety biomarkers for development of vaccines and biologics: Report from the safety biomarkers symposium held on November 28-29, 2017, Marcy l'Etoile, France. Vaccine 2020; 38:8055-8063. [PMID: 33187767 DOI: 10.1016/j.vaccine.2020.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Vaccines prevent infectious diseases, but vaccination is not without risk and adverse events are reported although they are more commonly reported for biologicals than for vaccines. Vaccines and biologicals must undergo vigorous assessment before and after licensure to minimise safety concerns. Potential safety concerns should be identified as early as possible during the development for vaccines and biologicals to minimize investment risk. State-of-the art tools and methods to identify safety concerns and biomarkers that are predictive of clinical outcomes are indispensable. For vaccines and adjuvant formulations, systems biology approaches, supported by single-cell microfluidics applied to translational studies between preclinical and clinical studies, could improve reactogenicity and safety predictions. Next-generation animal models for clinical assessment of injection-site reactions with greater relevance for target human population and criteria to define the level of acceptability of local reactogenicity at vaccine injection sites in pre-clinical animal species should be assessed. Advanced in silico machine-learning-based analytics, species-specific cell or tissue expression, receptor occupancy and kinetics and cell-based assays for functional activity are needed to improve pre-clinical safety assessment of biologicals. The in vitro MIMIC® system could be used to compliment preclinical and clinical studies for assessing immune-toxicity, immunogenicity, immuno-inflammatory and mode of action of biologicals and vaccines. Sanofi Pasteur brought together leading experts in this field to review the state-of-the-art at a unique 'Safety Biomarkers Symposium' on 28-29 November 2017. Here we summarise the proceedings of this symposium. This unique scientific meeting confirmed the importance for institutions and industrial organizations to collaborate to develop tools and methods needed for predicting reactogenicity and immune-inflammatory reactions to vaccines and biologicals, and to develop more accuracy, reliability safety biomarkers, to inform decisions on the attrition or advancement of vaccines and biologicals.
Collapse
|
19
|
Soni D, Van Haren SD, Idoko OT, Evans JT, Diray-Arce J, Dowling DJ, Levy O. Towards Precision Vaccines: Lessons From the Second International Precision Vaccines Conference. Front Immunol 2020; 11:590373. [PMID: 33178222 PMCID: PMC7593811 DOI: 10.3389/fimmu.2020.590373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Other than clean drinking water, vaccines have been the most effective public health intervention in human history, yet their full potential is still untapped. To date, vaccine development has been largely limited to empirical approaches focused on infectious diseases and has targeted entire populations, potentially disregarding distinct immunity in vulnerable populations such as infants, elders, and the immunocompromised. Over the past few decades innovations in genetic engineering, adjuvant discovery, formulation science, and systems biology have fueled rapid advances in vaccine research poised to consider demographic factors (e.g., age, sex, genetics, and epigenetics) in vaccine discovery and development. Current efforts are focused on leveraging novel approaches to vaccine discovery and development to optimize vaccinal antigen and, as needed, adjuvant systems to enhance vaccine immunogenicity while maintaining safety. These approaches are ushering in an era of precision vaccinology aimed at tailoring immunization for vulnerable populations with distinct immunity. To foster collaboration among leading vaccinologists, government, policy makers, industry partners, and funders from around the world, the Precision Vaccines Program at Boston Children's Hospital hosted the 2nd International Precision Vaccines Conference (IPVC) at Harvard Medical School on the 17th-18th October 2019. The conference convened experts in vaccinology, including vaccine formulation and adjuvantation, immunology, cell signaling, systems biology, biostatistics, bioinformatics, as well as vaccines for non-infectious indications such as cancer and opioid use disorder. Herein we review highlights from the 2nd IPVC and discuss key concepts in the field of precision vaccines.
Collapse
Affiliation(s)
- Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. Van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Olubukola T. Idoko
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Vaccine Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| |
Collapse
|
20
|
Cotugno N, Santilli V, Pascucci GR, Manno EC, De Armas L, Pallikkuth S, Deodati A, Amodio D, Zangari P, Zicari S, Ruggiero A, Fortin M, Bromley C, Pahwa R, Rossi P, Pahwa S, Palma P. Artificial Intelligence Applied to in vitro Gene Expression Testing (IVIGET) to Predict Trivalent Inactivated Influenza Vaccine Immunogenicity in HIV Infected Children. Front Immunol 2020; 11:559590. [PMID: 33123133 PMCID: PMC7569088 DOI: 10.3389/fimmu.2020.559590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
The number of patients affected by chronic diseases with special vaccination needs is burgeoning. In this scenario, predictive markers of immunogenicity, as well as signatures of immune responses are typically missing even though it would especially improve the identification of personalized immunization practices in these populations. We aimed to develop a predictive score of immunogenicity to Influenza Trivalent Inactivated Vaccination (TIV) by applying deep machine learning algorithms using transcriptional data from sort-purified lymphocyte subsets after in vitro stimulation. Peripheral blood mononuclear cells (PBMCs) collected before TIV from 23 vertically HIV infected children under ART and virally controlled were stimulated in vitro with p09/H1N1 peptides (stim) or left unstimulated (med). A multiplexed-qPCR for 96 genes was made on fixed numbers of 3 B cell subsets, 3 T cell subsets and total PBMCs. The ability to respond to TIV was assessed through hemagglutination Inhibition Assay (HIV) and ELIspot and patients were classified as Responders (R) and Non Responders (NR). A predictive modeling framework was applied to the data set in order to define genes and conditions with the higher predicted probability able to inform the final score. Twelve NR and 11 R were analyzed for gene expression differences in all subsets and 3 conditions [med, stim or Δ (stim-med)]. Differentially expressed genes between R and NR were selected and tested with the Adaptive Boosting Model to build a prediction score. The score obtained from subsets revealed the best prediction score from 46 genes from 5 different subsets and conditions. Calculating a combined score based on these 5 categories, we achieved a model accuracy of 95.6% and only one misclassified patient. These data show how a predictive bioinformatic model applied to transcriptional analysis deriving from in-vitro stimulated lymphocytes subsets may predict poor or protective vaccination immune response in vulnerable populations, such as HIV-infected individuals. Future studies on larger cohorts are needed to validate such strategy in the context of vaccination trials.
Collapse
Affiliation(s)
- Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Rubens Pascucci
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lesley De Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Annalisa Deodati
- Academic Department of Pediatrics (DPUO), Research Unit of Growth Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sonia Zicari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Rajendra Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
21
|
Luetscher RND, McKitrick TR, Gao C, Mehta AY, McQuillan AM, Kardish R, Boligan KF, Song X, Lu L, Heimburg-Molinaro J, von Gunten S, Alter G, Cummings RD. Unique repertoire of anti-carbohydrate antibodies in individual human serum. Sci Rep 2020; 10:15436. [PMID: 32963315 PMCID: PMC7509809 DOI: 10.1038/s41598-020-71967-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20-60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease.
Collapse
Affiliation(s)
- Ralph N D Luetscher
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Tanya R McKitrick
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Chao Gao
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Alyssa M McQuillan
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Robert Kardish
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Scienion US, 2640 West Medtronic Way, Tempe, AZ, 85281, USA
| | | | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30303, USA
| | - Lenette Lu
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | | | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Richard D Cummings
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Russo G, Reche P, Pennisi M, Pappalardo F. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin Drug Discov 2020; 15:1267-1281. [PMID: 32662677 DOI: 10.1080/17460441.2020.1791076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION A new body of evidence depicts the applications of artificial intelligence and systems biology in vaccine design and development. The combination of both approaches shall revolutionize healthcare, accelerating clinical trial processes and reducing the costs and time involved in drug research and development. AREAS COVERED This review explores the basics of artificial intelligence and systems biology approaches in the vaccine development pipeline. The topics include a detailed description of epitope prediction tools for designing epitope-based vaccines and agent-based models for immune system response prediction, along with a focus on their potentiality to facilitate clinical trial phases. EXPERT OPINION Artificial intelligence and systems biology offer the opportunity to avoid the inefficiencies and failures that arise in the classical vaccine development pipeline. One promising solution is the combination of both methodologies in a multiscale perspective through an accurate pipeline. We are entering an 'in silico era' in which scientific partnerships, including a more and more increasing creation of an 'ecosystem' of collaboration and multidisciplinary approach, are relevant for addressing the long and risky road of vaccine discovery and development. In this context, regulatory guidance should be developed to qualify the in silico trials as evidence for intelligent vaccine development.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Drug Sciences, University of Catania , Catania, Italy
| | - Pedro Reche
- Department of Immunology, Universidad Complutense De Madrid, Ciudad Universitaria , Madrid, Spain
| | - Marzio Pennisi
- Computer Science Institute, DiSIT, University of Eastern Piedmont , Italy
| | | |
Collapse
|
23
|
Wagner A, Weinberger B. Vaccines to Prevent Infectious Diseases in the Older Population: Immunological Challenges and Future Perspectives. Front Immunol 2020; 11:717. [PMID: 32391017 PMCID: PMC7190794 DOI: 10.3389/fimmu.2020.00717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are a major cause for morbidity and mortality in the older population. Demographic changes will lead to increasing numbers of older persons over the next decades. Prevention of infections becomes increasingly important to ensure healthy aging for the individual, and to alleviate the socio-economic burden for societies. Undoubtedly, vaccines are the most efficient health care measure to prevent infections. Age-associated changes of the immune system are responsible for decreased immunogenicity and clinical efficacy of most currently used vaccines in older age. Efficacy of standard influenza vaccines is only 30-50% in the older population. Several approaches, such as higher antigen dose, use of MF59 as adjuvant and intradermal administration have been implemented in order to specifically target the aged immune system. The use of a 23-valent polysaccharide vaccine against Streptococcus pneumoniae has been amended by a 13-valent conjugated pneumococcal vaccine originally developed for young children several years ago to overcome at least some of the limitations of the T cell-independent polysaccharide antigens, but still is only approximately 50% protective against pneumonia. A live-attenuated vaccine against herpes zoster, which has been available for several years, demonstrated efficacy of 51% against herpes zoster and 67% against post-herpetic neuralgia. Protection was lower in the very old and decreased several years after vaccination. Recently, a recombinant vaccine containing the viral glycoprotein gE and the novel adjuvant AS01B has been licensed. Phase III studies demonstrated efficacy against herpes zoster of approx. 90% even in the oldest age groups after administration of two doses and many countries now recommend the preferential use of this vaccine. There are still many infectious diseases causing substantial morbidity in the older population, for which no vaccines are available so far. Extensive research is ongoing to develop vaccines against novel targets with several vaccine candidates already being clinically tested, which have the potential to substantially reduce health care costs and to save many lives. In addition to the development of novel and improved vaccines, which specifically target the aged immune system, it is also important to improve uptake of the existing vaccines in order to protect the vulnerable, older population.
Collapse
Affiliation(s)
- Angelika Wagner
- Department of Pathophysiology, Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
25
|
Amodio D, Santilli V, Zangari P, Cotugno N, Manno EC, Rocca S, Rossi P, Cancrini C, Finocchi A, Chassiakos A, Petrovas C, Palma P. How to dissect the plasticity of antigen-specific immune response: a tissue perspective. Clin Exp Immunol 2020; 199:119-130. [PMID: 31626717 PMCID: PMC6954674 DOI: 10.1111/cei.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/01/2022] Open
Abstract
Generation of antigen-specific humoral responses following vaccination or infection requires the maturation and function of highly specialized immune cells in secondary lymphoid organs (SLO), such as lymph nodes or tonsils. Factors that orchestrate the dynamics of these cells are still poorly understood. Currently, experimental approaches that enable a detailed description of the function of the immune system in SLO have been mainly developed and optimized in animal models. Conversely, methodological approaches in humans are mainly based on the use of blood-associated material because of the challenging access to tissues. Indeed, only few studies in humans were able to provide a discrete description of the complex network of cytokines, chemokines and lymphocytes acting in tissues after antigenic challenge. Furthermore, even fewer data are currently available on the interaction occurring within the complex micro-architecture of the SLO. This information is crucial in order to design particular vaccination strategies, especially for patients affected by chronic and immune compromising medical conditions who are under-vaccinated or who respond poorly to immunizations. Analysis of immune cells in different human tissues by high-throughput technologies, able to obtain data ranging from gene signature to protein expression and cell phenotypes, is needed to dissect the peculiarity of each immune cell in a definite human tissue. The main aim of this review is to provide an in-depth description of the current available methodologies, proven evidence and future perspectives in the analysis of immune mechanisms following immunization or infections in SLO.
Collapse
Affiliation(s)
- D. Amodio
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - V. Santilli
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Zangari
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - N. Cotugno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - E. C. Manno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - S. Rocca
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Rossi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - C. Cancrini
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Finocchi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Chassiakos
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - C. Petrovas
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - P. Palma
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| |
Collapse
|