1
|
Bugajska-Liedtke M, Fatyga N, Brzozowski A, Bajek A, Maj M. Anaesthetics reduce the viability of adipose-derived stem cells. Adipocyte 2024; 13:2351870. [PMID: 38779963 PMCID: PMC11123512 DOI: 10.1080/21623945.2024.2351870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are characterized by their low immunogenicity and unique immunosuppressive properties, providing many opportunities for autologous transplantation in regenerative medicine and plastic surgery. These methods are characterized by low rejection rates and intense stimulation of tissue regeneration. However, procedures during which fat tissue is harvested occur under local anaesthesia. To better understand the effects and mechanisms of anaesthetic compounds in cosmetic and therapeutic procedures, the present study used a mixture of these compounds (0.1% epinephrine, 8.4% sodium bicarbonate, and 4% articaine) and examined their impact on a human adipose-derived stem cell line. The results showed anesthetics' negative, dose-dependent effect on cell viability and proliferation, especially during the first 24 h of incubation. After extending the exposure to 48 and 72 h of incubation, cells adapted to new culture conditions. In contrast, no significant changes were observed in immunophenotype, cell cycle progression, and apoptosis. The results obtained from this study provide information on the effect of the selected mixture of anaesthetics on the characteristics and function of ASC52telo cells. The undesirable changes in the metabolic activity of cells suggest the need to search for new drugs to harvest cells with unaltered properties and higher efficacy in aesthetic medicine treatments.
Collapse
Affiliation(s)
- Maria Bugajska-Liedtke
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Nadia Fatyga
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aleksander Brzozowski
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Małgorzata Maj
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
2
|
Seabra Robalo Gomes Jorge AC, Feng YS, Santos Stahl A, Grözinger G, Nikolaou K, Glanemann M, Daigeler A, Stahl S. Danger Zones of the Gluteal Anatomy: Improving the Safety Profile of the Gluteal Fat Grafting. Aesthetic Plast Surg 2024; 48:1597-1605. [PMID: 38302712 PMCID: PMC11058931 DOI: 10.1007/s00266-023-03824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Knowledge of the vascular anatomy is critical to performing safe gluteal surgery. To date, only the course of the main blood vessels within the muscles has been outlined. These findings are based on MRI and CTA images that do not conform to a topographically standardized and normalized probability distribution. OBJECTIVES The aim of this study was to develop a three-dimensional mapping of the gluteal zones of high vascular density in relation to anatomical landmarks. MATERIALS AND METHODS This single-center retrospective cohort analysis comprised all consecutive patients who underwent cone-beam computed tomography (CBCT) scans between January 2016 and October 2021. The location of blood vessels in the gluteal region was allometrically normalized in relation to anatomical landmarks. Moreover, the caliber and area of the blood vessels were assessed. RESULTS CBCT scans of 32 patients with an average age of 64 ± 12 years (range 34-87 years) were included. Fifty-three percent were female. The median [IQR] caliber of the intramuscular gluteal vessels was 1.47 [1.15-1.88] mm, significantly greater than that of the subcutaneous vessels 1.09 [0.72-1.44] mm (p < 0.001). Vascular density was higher intramuscularly, as 4.5% of the area of the muscle was occupied by blood vessels, as opposed to 0.3% in the adipose tissue. CONCLUSION The analysis of the CBCT scans showed a higher vascular density and larger vessels intramuscularly. We, therefore, recommend the injection of autologous fat merely to the subcutaneous plane. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - You-Shan Feng
- Institute for Clinical Epidemiology and Applied Biometrics, Medical University of Tübingen, Tübingen, Germany
| | | | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Matthias Glanemann
- Department of General, Visceral, Vascular, and Pediatric Surgery, Saarland University Hospital, Kirrberger Straße, 66421, Homburg, Saarland, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Clinic Tübingen, Tübingen, Germany
| | - Stéphane Stahl
- CenterPlast private practice, Bahnhofstraße 36, 66111, Saarbrücken, Germany
| |
Collapse
|
3
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
4
|
Klimek K, Benko A, Vandrovcova M, Travnickova M, Douglas TEL, Tarczynska M, Broz A, Gaweda K, Ginalska G, Bacakova L. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro. BIOMATERIALS ADVANCES 2022; 135:212724. [PMID: 35929204 DOI: 10.1016/j.bioadv.2022.212724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlan-based scaffold was designed for osteochondral tissue engineering applications. To achieve biomimetic properties, it was enriched with a protein component - whey protein isolate as well as a ceramic ingredient - hydroxyapatite granules. The scaffold was fabricated via a simple and cost-efficient method, which represents a significant advantage. Importantly, this technique allowed generation of a scaffold with two distinct, but integrated phases. Scanning electron microcopy and optical profilometry observations demonstrated that phases of biomaterial possessed different structural properties. The top layer of the biomaterial (mimicking the cartilage) was smoother than the bottom one (mimicking the subchondral bone), which is beneficial from a biological point of view because unlike bone, cartilage is a smooth tissue. Moreover, mechanical testing showed that the top layer of the biomaterial had mechanical properties close to those of natural cartilage. Although the mechanical properties of the bottom layer of scaffold were lower than those of the subchondral bone, it was still higher than in many analogous systems. Most importantly, cell culture experiments indicated that the biomaterial possessed high cytocompatibility towards adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells in vitro. Both phases of the scaffold enhanced cell adhesion, proliferation, and chondrogenic differentiation of stem cells (revealing its chondroinductive properties in vitro) as well as osteogenic differentiation of these cells (revealing its osteoinductive properties in vitro). Given all features of the novel curdlan-based scaffold, it is worth noting that it may be considered as promising candidate for osteochondral tissue engineering applications.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Aleksandra Benko
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30 A. Mickiewicza Av., 30-059 Krakow, Poland
| | - Marta Vandrovcova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Martina Travnickova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Gillow Avenue, LA1 4YW Lancaster, United Kingdom; Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Marta Tarczynska
- Medical University of Lublin, Department and Clinic of Orthopaedics and Traumatology, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Antonin Broz
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| | - Krzysztof Gaweda
- Medical University of Lublin, Department and Clinic of Orthopaedics and Traumatology, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Grazyna Ginalska
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Biomaterials and Tissue Engineering, Videnska 1083 Street, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
Adipose-Derived Stem Cells for Facial Rejuvenation. J Pers Med 2022; 12:jpm12010117. [PMID: 35055432 PMCID: PMC8781097 DOI: 10.3390/jpm12010117] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
The interest in regenerative medicine is increasing, and it is a dynamically developing branch of aesthetic surgery. Biocompatible and autologous-derived products such as platelet-rich plasma or adult mesenchymal stem cells are often used for aesthetic purposes. Their application originates from wound healing and orthopaedics. Adipose-derived stem cells are a powerful agent in skin rejuvenation. They secrete growth factors and anti-inflammatory cytokines, stimulate tissue regeneration by promoting the secretion of extracellular proteins and secrete antioxidants that neutralize free radicals. In an office procedure, without cell incubation and counting, the obtained product is stromal vascular fraction, which consists of not only stem cells but also other numerous active cells such as pericytes, preadipocytes, immune cells, and extra-cellular matrix. Adipose-derived stem cells, when injected into dermis, improved skin density and overall skin appearance, and increased skin hydration and number of capillary vessels. The main limitation of mesenchymal stem cell transfers is the survival of the graft. The final outcomes are dependent on many factors, including the age of the patient, technique of fat tissue harvesting, technique of lipoaspirate preparation, and technique of fat graft injection. It is very difficult to compare available studies because of the differences and multitude of techniques used. Fat harvesting is associated with potentially life-threatening complications, such as massive bleeding, embolism, or clots. However, most of the side effects are mild and transient: primarily hematomas, oedema, and mild pain. Mesenchymal stem cells that do not proliferate when injected into dermis promote neoangiogenesis, that is why respectful caution should be taken in the case of oncologic patients. A longer clinical observation on a higher number of participants should be performed to develop reliable indications and guidelines for transferring ADSCs.
Collapse
|
6
|
The Influence of Low- and High-Negative-Pressure Liposuction and Different Harvesting Sites on the Viability and Yield of Adipocytes and Other Nucleated Cells. Aesthetic Plast Surg 2021; 45:2952-2970. [PMID: 34128093 DOI: 10.1007/s00266-021-02396-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The volume effect of fat grafting is highly dependent on the presence of viable adipocytes and other nucleated cells within the lipoaspirate. We suspected that one of the crucial factors influencing cell viability is the negative pressure applied during the fat graft harvesting and the suitability of various harvest sites when compared to others. Despite much discussion, there is no consensus on the optimal negative pressure or the best site for harvesting so we designed an experiment to test this. METHODS Fat graft taken under low negative pressure (- 200 mmHg) or high negative pressure (- 700 mmHg) from the thigh or abdominal regions from 21 healthy human donors was evaluated. The principal variables studied were: a) total number and viability of nucleated cells, b) liposuction duration and c) blood admixture. Other variables studied were body mass index, the impact of age and enzymatic digestion. RESULTS The absolute number and viability of nucleated cells and the blood admixture did not differ significantly between lipoaspirates obtained under different vacuum conditions or from different regions. The time taken to acquire the same volume of lipoaspirate was significantly increased using low negative pressure. The time taken to collect cells in the thigh region significantly increased with increasing BMI but this correlation was not found when harvesting in the abdominal region. The BMI and age did not impact the results in any of the measured variables. The enzymatic digestion rate was independent of the negative pressure used to harvest. CONCLUSION Our results indicate that neither the negative pressure used nor the area chosen has any significant influence on the viability and yield of harvested cells. The time taken to obtain lipoaspirate using low pressure is significantly longer than when using high pressure. No significant difference was found in the value of blood admixture using different vacuum pressures, and no correlation exists between the body mass index and the cell viability or age of the patients and the time of liposuction. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors www.springer.com/00266 .
Collapse
|
7
|
Invited Discussion on: The Influence of Low and High Negative Pressure Liposuction and Different Harvesting Sites on the Viability and Yield of Adipocytes and Other Nucleated Cells-Does Pressure Matter? Swapping the Paradigm with Comparative Facts. Aesthetic Plast Surg 2021; 45:2971-2972. [PMID: 34508281 DOI: 10.1007/s00266-021-02477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
|
8
|
Molitor M, Trávníčková M, Měšťák O, Christodoulou P, Sedlář A, Bačáková L, Lucchina S. The Influence of High and Low Negative Pressure Liposuction and Various Harvesting Techniques on the Viability and Function of Harvested Cells-a Systematic Review of Animal and Human Studies. Aesthetic Plast Surg 2021; 45:2379-2394. [PMID: 33876289 DOI: 10.1007/s00266-021-02249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND An understanding of fat grafting methodology, techniques and patient-related factors is crucial when considering fat grafting. Multiple factors can influence the success of a fat graft and consequently the outcome of the procedure. The aim of this systematic review is to elucidate the influence of negative pressure and various techniques of fat harvesting on the viability and function of cells, particularly adipocytes and adipose-derived stem cells. METHODS We conducted a literature search from 1975 to 2020 using the PubMed bibliography, ScienceDirect, SCOPUS and the Google Scholar databases which produced 168,628 articles on the first pass. After applying all the exclusion criteria by two independent reviewers, we were left with 21 articles (level IV of Oxford Centre for Evidence-Based Studies and Grade C of Grade Practice Recommendation from the American Society of Plastic Surgeons) on which this review is based. RESULTS From 11 studies focused on different negative pressures, no one found using high negative pressure advantageous. Summarising 13 studies focused on various harvesting techniques (excision, syringe, and pump-machine), most often equal results were reported, followed by excision being better than either syringe or liposuction. CONCLUSION From our systematic review, we can conclude that the low negative pressure seems to yield better results and that the excision seems to be the most sparing method for fat graft harvesting. However, we have to point out that this conclusion is based on a very limited number of statistically challengeable articles and we recommend well-conducted further research. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Martin Molitor
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic.
| | - Martina Trávníčková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Ondřej Měšťák
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic
| | - Petros Christodoulou
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic
| | - Antonín Sedlář
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Lucie Bačáková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Stefano Lucchina
- Hand Unit, General Surgery Department, Locarno's Regional Hospital, Via Ospedale 1, 6600, Locarno, Switzerland
| |
Collapse
|
9
|
Fan P, Fang M, Li J, Solari MG, Wu D, Tan W, Wang Y, Yang X, Lei S. A Novel Fat Making Strategy With Adipose-Derived Progenitor Cell-Enriched Fat Improves Fat Graft Survival. Aesthet Surg J 2021; 41:NP1228-NP1236. [PMID: 34387330 DOI: 10.1093/asj/sjab216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A low survival rate is one of the main challenges in fat grafting. OBJECTIVES This study aimed to evaluate whether microfat obtained by a novel strategy promoted the survival and retention of fat grafts. METHODS A 5-mm-diameter blunt tip cannula with large side holes (~30 mm2/hole) was used to obtain macrofat. A novel strategy based on a newly invented extracorporeal cutting device was then used to cut the macrofat into microfat, which was named adipose-derived progenitor cell enrichment fat (AER fat); Coleman fat was used as the control. Aliquots (0.5 mL) of both types of fat were transplanted into 10 nude mice and analyzed 10 weeks later. Western blotting, flow cytometry, and immunofluorescence were performed to assess the AER fat characteristics and underlying mechanisms. RESULTS The retention rate of fat grafts in AER fat-treated animals was significantly higher than that in the Coleman group (mean [standard deviation] 54.6% [13%] vs 34.8% [9%]; P < 0.05) after 10 weeks. AER fat contained more dipeptidyl peptidase-4-expressing progenitor cells (3.3 [0.61] × 103 vs 2.0 [0.46] × 103 cells/mL; P < 0.05), adipose-derived plastic-adherent cells (6.0 [1.10] × 104 vs 2.6 [0.17] × 104 cells/mL; P < 0.001), and viable adipocytes than Coleman fat. Moreover, histologic analysis showed that AER fat grafts had better histologic structure and higher capillary density. CONCLUSIONS AER fat transplantation is a potential strategy to improve the survival and long-term retention of fat grafts. AER fat contained more dipeptidyl peptidase-4-expressing progenitor cells.
Collapse
Affiliation(s)
- Pengju Fan
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Man Fang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jingjing Li
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dingyu Wu
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Wuyuan Tan
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yongjie Wang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xinghua Yang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Shaorong Lei
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
10
|
Koper F, Swiergosz T, Żaba A, Flis A, Trávníčková M, Bačáková L, Pamuła E, Bogdał D, Kasprzyk WP. Advancements in structure-property correlation studies of cross-linked citric acid-based elastomers from the perspective of medical application. J Mater Chem B 2021; 9:6425-6440. [PMID: 34323912 DOI: 10.1039/d1tb01078f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a renewed prominence towards the synthesis of poly(alkylene citrate) (PAC) biomaterials and their detailed chemical, structural and mechanical characterization has been reported. Based on the modifications to the PAC synthesis protocol introduced in this study, the fabrication process was significantly streamlined, the reaction yields were increased, and the homogeneity of the final materials was found to be substantially improved. Comprehensive nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies of the fabricated prepolymers shed light on the mechanism of the PAC cross-linking process and supported the design of materials with enhanced biocompatibility. Therefore, the initial molar ratio of the reagents involved in the synthesis of PAC materials was found to be pivotal to both the biological and mechanical properties of the final products. Moreover, cell viability and proliferation assays revealed enhanced biocompatibility of the materials formulated with a molar ratio of diol over citric acid (3 : 2 mol/mol) in comparison to the most commonly described 1 : 1 analogue without affecting the possibility of further functionalization. Furthermore, this work creates a new paradigm for prospective studies on the properties of modified PAC materials and their application in medicine and tissue engineering.
Collapse
Affiliation(s)
- Filip Koper
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
François P, Rusconi G, Arnaud L, Mariotta L, Giraudo L, Minonzio G, Veran J, Bertrand B, Dumoulin C, Grimaud F, Lyonnet L, Casanova D, Giverne C, Cras A, Magalon G, Dignat-George F, Sabatier F, Magalon J, Soldati G. Inter-center comparison of good manufacturing practices-compliant stromal vascular fraction and proposal for release acceptance criteria: a review of 364 productions. Stem Cell Res Ther 2021; 12:373. [PMID: 34210363 PMCID: PMC8252207 DOI: 10.1186/s13287-021-02445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though the manufacturing processes of the stromal vascular fraction for clinical use are performed in compliance with the good manufacturing practices applying to advanced therapy medicinal products, specifications related to stromal vascular fraction quality remain poorly defined. We analyzed stromal vascular fraction clinical batches from two independent good manufacturing practices-compliant manufacturing facilities, the Swiss Stem Cell Foundation (SSCF) and Marseille University Hospitals (AP-HM), with the goal of defining appropriate and harmonized release acceptance criteria. Methods This retrospective analysis reviewed the biological characteristics of 364 batches of clinical-grade stromal vascular fraction. Collected data included cell viability, recovery yield, cell subset distribution of stromal vascular fraction, and microbiological quality. Results Stromal vascular fraction from SSCF cohort demonstrated a higher viability (89.33% ± 4.30%) and recovery yield (2.54 × 105 ± 1.22 × 105 viable nucleated cells (VNCs) per mL of adipose tissue) than stromal vascular fraction from AP-HM (84.20% ± 5.96% and 2.25 × 105 ± 1.11 × 105 VNCs per mL). AP-HM batches were significantly less contaminated (95.71% of sterile batches versus 74.15% for SSCF batches). The cell subset distribution was significantly different (higher proportion of endothelial cells and lower proportion of leukocytes and pericytes in SSCF cohort). Conclusions Both centers agreed that a good manufacturing practices-compliant stromal vascular fraction batch should exert a viability equal or superior to 80%, a minimum recovery yield of 1.50 × 105 VNCs per mL of adipose tissue, a proportion of adipose-derived stromal cells at least equal to 20%, and a proportion of leukocytes under 50%. In addition, a multiparameter gating strategy for stromal vascular fraction analysis is proposed. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02445-z.
Collapse
Affiliation(s)
- Pauline François
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Giulio Rusconi
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laurent Arnaud
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Luca Mariotta
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Greta Minonzio
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Baptiste Bertrand
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Chloé Dumoulin
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Fanny Grimaud
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Luc Lyonnet
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Dominique Casanova
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Camille Giverne
- Normandie Univ, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Audrey Cras
- Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Cell Therapy Unit, Cord blood Bank and CIC-BT501, Paris, France
| | | | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Remedex, Marseille, France
| | - Jeremy Magalon
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France. .,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France. .,Remedex, Marseille, France.
| | - Gianni Soldati
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| |
Collapse
|
12
|
Sedlář A, Trávníčková M, Bojarová P, Vlachová M, Slámová K, Křen V, Bačáková L. Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22105144. [PMID: 34067978 PMCID: PMC8152275 DOI: 10.3390/ijms22105144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 128 44 Prague 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná, CZ 272 01 Kladno, Czech Republic
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| | - Miluše Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| |
Collapse
|
13
|
Travnickova M, Kasalkova NS, Sedlar A, Molitor M, Musilkova J, Slepicka P, Svorcik V, Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed Mater 2021; 16:025016. [PMID: 33599213 DOI: 10.1088/1748-605x/abaf97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of our research was to study the behaviour of adipose tissue-derived stem cells (ADSCs) and vascular smooth muscle cells (VSMCs) on variously modified poly(L-lactide) (PLLA) foils, namely on pristine PLLA, plasma-treated PLLA, PLLA grafted with polyethylene glycol (PEG), PLLA grafted with dextran (Dex), and the tissue culture polystyrene (PS) control. On these materials, the ADSCs were biochemically differentiated towards VSMCs by a medium supplemented with TGFβ1, BMP4 and ascorbic acid (i.e. differentiation medium). ADSCs cultured in a non-differentiation medium were used as a negative control. Mature VSMCs cultured in both types of medium were used as a positive control. The impact of the variously modified PLLA foils and/or differences in the composition of the medium were studied with reference to cell adhesion, growth and differentiation. We observed similar adhesion and growth of ADSCs on all PLLA samples when they were cultured in the non-differentiation medium. The differentiation medium supported the expression of specific early, mid-term and/or late markers of differentiation (i.e. type I collagen, αSMA, calponin, smoothelin, and smooth muscle myosin heavy chain) in ADSCs on all tested samples. Moreover, ADSCs cultured in the differentiation medium revealed significant differences in cell growth among the samples that were similar to the differences observed in the cultures of VSMCs. The round morphology of the VSMCs indicated worse adhesion to pristine PLLA, and this sample was also characterized by the lowest cell proliferation. Culturing VSMCs in the differentiation medium inhibited their metabolic activity and reduced the cell numbers. Both cell types formed the most stable monolayer on plasma-treated PLLA and on the PS control. The behaviour of ADSCs and VSMCs on the tested PLLA foils differed according to the specific cell type and culture conditions. The suitable biocompatibility of both cell types on the tested PLLA foils seems to be favourable for vascular tissue engineering purposes.
Collapse
Affiliation(s)
- Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Antonin Sedlar
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martin Molitor
- Department of Plastic Surgery, Na Bulovce Hospital and First Faculty of Medicine, Charles University, Budinova 67/2, 180 81, Prague 8, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
14
|
Sedlář A, Trávníčková M, Matějka R, Pražák Š, Mészáros Z, Bojarová P, Bačáková L, Křen V, Slámová K. Growth Factors VEGF-A 165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int J Mol Sci 2021; 22:1843. [PMID: 33673317 PMCID: PMC7917819 DOI: 10.3390/ijms22041843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 12844 Praha 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Roman Matějka
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Šimon Pražák
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, CZ 16628 Praha 6, Czech Republic
| | - Pavla Bojarová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| |
Collapse
|
15
|
Pajorova J, Skogberg A, Hadraba D, Broz A, Travnickova M, Zikmundova M, Honkanen M, Hannula M, Lahtinen P, Tomkova M, Bacakova L, Kallio P. Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for Regenerative Applications. Biomacromolecules 2020; 21:4857-4870. [PMID: 33136375 DOI: 10.1021/acs.biomac.0c01097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Engineering artificial skin constructs is an ongoing challenge. An ideal material for hosting skin cells is still to be discovered. A promising candidate is low-cost cellulose, which is commonly fabricated in the form of a mesh and is applied as a wound dressing. Unfortunately, the structure and the topography of current cellulose meshes are not optimal for cell growth. To enhance the surface structure and the physicochemical properties of a commercially available mesh, we coated the mesh with wood-derived cellulose nanofibrils (CNFs). Three different types of mesh coatings are proposed in this study as a skin cell carrier: positively charged cationic cellulose nanofibrils (cCNFs), negatively charged anionic cellulose nanofibrils (aCNFs), and a combination of these two materials (c+aCNFs). These cell carriers were seeded with normal human dermal fibroblasts (NHDFs) or with human adipose-derived stem cells (ADSCs) to investigate cell adhesion, spreading, morphology, and proliferation. The negatively charged aCNF coating significantly improved the proliferation of both cell types. The positively charged cCNF coating significantly enhanced the adhesion of ADSCs only. The number of NHDFs was similar on the cCNF coatings and on the noncoated pristine cellulose mesh. However, the three-dimensional (3D) structure of the cCNF coating promoted cell survival. The c+aCNF construct proved to combine benefits from both types of CNFs, which means that the c+aCNF cell carrier is a promising candidate for further application in skin tissue engineering.
Collapse
Affiliation(s)
- Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.,2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Daniel Hadraba
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Antonin Broz
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.,2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Marketa Zikmundova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Mari Honkanen
- Tampere Microscopy Center, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Markus Hannula
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Panu Lahtinen
- VTT Technical Research Center of Finland, Tietotie 4E, 02150 Espoo, Finland
| | - Maria Tomkova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology (MET), Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|