1
|
Fragoso-Medina JA, López Vaquera SR, Domínguez-Uscanga A, Luna-Vital D, García N. Single anthocyanins effectiveness modulating inflammation markers in obesity: dosage and matrix composition analysis. Front Nutr 2023; 10:1255518. [PMID: 38024376 PMCID: PMC10651755 DOI: 10.3389/fnut.2023.1255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Anthocyanins (ACNs) are phytochemicals with numerous bioactivities, e.g., antioxidant and anti-inflammatory. Health benefits from consuming ACN-rich foods, extracts, and supplements have been studied in clinical trials (CT). However, the individual effect of single ACNs and their correlation with doses and specific bioactivities or molecular targets have not been thoroughly analyzed. This review shows a recompilation of single anthocyanins composition and concentrations used in CT, conducted to investigate the effect of these anti-inflammatory derivatives in obese condition. Single anthocyanin doses with changes in the levels of frequently monitored markers were correlated. In addition, the analysis was complemented with reports of studies made in vitro with single ACNs. Anthocyanins' efficacy in diseases with high baseline obesity-related inflammation markers was evidenced. A poor correlation was found between most single anthocyanin doses and level changes of commonly monitored markers. Correlations between cyanidin, delphinidin, and pelargonidin derivatives and specific molecular targets were proposed. Our analysis showed that knowledge of specific compositions and anthocyanin concentrations determined in future studies would provide more information about mechanisms of action.
Collapse
Affiliation(s)
- Jorge Alberto Fragoso-Medina
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Selma Romina López Vaquera
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Astrid Domínguez-Uscanga
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Diego Luna-Vital
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Preclinical Research Unit, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
2
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Maqsood M, Khan MI, Sharif MK, Faisal MN. Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential. J Food Biochem 2022; 46:e14335. [PMID: 35848720 DOI: 10.1111/jfbc.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
The current work investigated the phytochemical profile of ultrasound-assisted ethanolic extract of Morus nigra (M. nigra) fruit. FTIR analysis of M. nigra fruit extract revealed the presence of alcohols (O-H), alkanes (C-H stretch), alkenes (C=C), and alkynes (C≡C). The HPLC analysis quantified the quercetin, gallic acid, vanillic acid, chlorogenic acid, syringic acid, cinnamic acid, sinapic acid, and kaempferol. Furthermore, the cardioprotective activity of ethanolic extract of M. nigra fruit was investigated. Cholesterol supplementation (2%) in the daily diet and exposure to cigarette smoke (2 cigarettes twice a day) were to induce hypertension in rats. The experimental animals were categorized into four groups: G0 (negative control), G1 (positive control), G2 (standard drug), and G3 (M. nigra fruit). The fruit extract administration at 300 mg/kg BW/day orally for 2 months significantly (p < .001) enhanced the activities of serum and cardiac tissue antioxidants in hypertensive rats. Meanwhile, the fruit extract reduced the elevated serum lipid profile while significantly increasing the high-density lipoproteins in G3 than G1 and G2. The increase in blood pressure, liver transaminases, and serum lactate dehydrogenase also reduced significantly in M. nigra fruit extract-treated rats. Histopathological findings revealed mild normalization of cardiac myocytes with central nuclei, branching, and cross-striations. Consequently, the M. nigra fruit extract exerted the cardioprotective potential via increasing the antioxidant enzymes and reducing the lipids, lactate dehydrogenase, liver transaminases, and blood pressure. The therapeutic potential of M. nigra fruit can be due to flavonols and phenolic acids. PRACTICAL APPLICATIONS: The present work quantified the Morus nigra fruit phytochemicals and its significant role in reducing lipid markers and blood pressure and improving antioxidant status in rats fed a hypercholesterolemic diet and exposed to cigarette smoke. Conclusively, the inclusion of M. nigra fruit in daily diet could improve the cardiac health of the individuals. Furthermore, the therapeutic potential of M. nigra fruit and its isolated constituents in modulating the gene expression against cardiac problems can explore after clinical trials and standardization in higher animals.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Guarneiri LL, Paton CM, Cooper JA. Pecan-enriched diets decrease postprandial lipid peroxidation and increase total antioxidant capacity in adults at-risk for cardiovascular disease. Nutr Res 2021; 93:69-78. [PMID: 34428717 DOI: 10.1016/j.nutres.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
Pecans are a rich source of antioxidants, but the effect of regular consumption on post-meal responses is unknown. The objective of this study was to examine the impact of daily pecan consumption for 8 weeks on fasting and postprandial lipid peroxidation, total antioxidant capacity (TAC), and tocopherols in adults at higher risk for cardiovascular disease (CVD) (hypercholesterolemia or elevated adiposity). We hypothesized that daily pecan consumption would result in increased fasting γ-tocopherol, increased fasting and postprandial TAC, and decreased fasting and postprandial lipid peroxidation. This was a randomized, parallel, controlled trial with 3 treatments: two pecan groups and a nut free control (n = 16). The ADD group (n = 15) consumed pecans as part of a free-living diet, and the SUB group (n = 16) substituted the pecans for isocaloric foods from their habitual diet. At the pre- and post-intervention, a high saturated fat breakfast shake was consumed with postprandial blood draws over 2h. In the ADD and SUB groups, postprandial lipid peroxidation was suppressed (iAUC: 0.9 ± 1.3 to -2.9 ± 2.0 and 4.5 ± 1.7 to 0.7 ± 1.1 µM/2h, respectively; P <0.05) and TAC was elevated (iAUC: -240.8 ± 110.2 to 130.9 ± 131.7 and -227.6 ± 131.2 to 208.7 ± 145.7 µM Trolox Equivalents/2h, respectively; P <0.01) from pre- to post-intervention. Furthermore, there was an increase in γ-tocopherol from pre- to post-intervention within the ADD (1.4 ± 0.1 to 1.8 ± 0.1 µg/mL; P <0.001) and SUB groups (1.8 ± 0.2 to 2.1 ± 0.2 µg/mL; P <0.05). There were no changes in any variable within the control group. These findings suggest that daily pecan consumption protects against oxidative stress that occurs following a high-fat meal in adults at risk for CVD.
Collapse
Affiliation(s)
- Liana L Guarneiri
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia; Department of Food Science and Technology, University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia.
| |
Collapse
|
5
|
Jan B, Parveen R, Zahiruddin S, Khan MU, Mohapatra S, Ahmad S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J Biol Sci 2021; 28:3909-3921. [PMID: 34220247 PMCID: PMC8241616 DOI: 10.1016/j.sjbs.2021.03.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Mulberry is a fast growing deciduous plant found in wide variety of climatic, topographical and soil conditions, and is widely distributed from temperate to subtropical regions. Due to presence of valuable phytochemical constituents, mulberry as a whole plant has been utilized as a functional food since long time. Mulberry fruits are difficult to preserve as they have relatively high water content. Therefore for proper utilization, different value-added products like syrups, squashes, teas, pestil sand köme, pekmez (turkuish by-products), yogurts, jams, jellies, wines, vinegar, breads, biscuits, parathas, and many more are made. In overseas, these value-added products are commercially sold and easily available, though in India, this versatile medicinal plant is still missing its identity at commercial and industrial scale. Leaves of mulberry are economically viable due to their important role in the sericulture industry since ancient times. Mulberries or its extracts exhibit excellent anti-microbial, anti-hyperglycaemic, anti-hyperlipidemic, anti-inflammatory, anti-cancer effects and is used to combat different acute and chronic diseases. Different parts of Morus species like fruits, leaves, twigs, and bark exhibit strong anti-tyrosinase inhibition activity that makes it a suitable candidate in cosmetic industries as a whitening agent. The current review provides a comprehensive discussion concerning the phytochemical constituents, functionality and nutraceutical potential of mulberry and as a common ingredient in various cosmetic products.
Collapse
Affiliation(s)
- Bisma Jan
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Department of Biosciences, Human Genetics and Laboratory, Jamia Milia Islamia, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Umar Khan
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sradhanjali Mohapatra
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India.,Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|