1
|
Kim DH, Shin H, Stybayeva G, Hwang SH. Predictive Value of Nasal Nitric Oxide for Diagnosing Eosinophilic Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis. Am J Rhinol Allergy 2024; 38:264-271. [PMID: 38679754 DOI: 10.1177/19458924241251387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
OBJECTIVES The primary aim of this study was to assess disparities in nasal nitric oxide (NO) levels between individuals diagnosed with eosinophilic chronic rhinosinusitis (ECRS) and those without ECRS. The second aim was to ascertain the comparative predictive efficacy of these nasal NO levels for the presence of ECRS. METHODS A systematic analysis was conducted on relevant studies that compared nasal NO levels in individuals with ECRS and those without. Furthermore, the discriminatory capacity of nasal NO in distinguishing ECRS from non-ECRS cohorts was quantified. The risk of bias across studies was evaluated utilizing the Newcastle-Ottawa scale. RESULTS The comprehensive review encompassed a total of 5 studies involving 470 participants. Findings revealed that patients diagnosed with ECRS exhibited significantly higher levels of nasal NO, as measured in parts per billion (ppb), compared to their non-ECRS patients. The mean difference was 130.03 ppb (95% confidence interval: [66.30, 193.75], I2 = 58.7%). The diagnostic odds ratio for nasal NO in identifying ECRS was 9.29 ([5.85, 14.75], I2 = 26.4%). The area under the summary receiver operating characteristic curve was 0.82. The correlation between sensitivity and false positive rate was 0.53, suggesting a lack of heterogeneity. Sensitivity, specificity, negative predictive value, and positive predictive value were 69% ([0.55, 0.79], I2 = 77.0%), 83% ([0.73, 0.90], I2 = 68.5%), 77% ([0.69, 0.83], I2 = 50.1%), and 75% ([0.67, 0.82], I2 = 41.5%), respectively. CONCLUSION Nasal NO has the potential as a noninvasive diagnostic measure and endotype tool for ECRS.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyesoo Shin
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Lin J, Zheng H, Jia Q, Shi J, Wang S, Wang J, Ge M. A meta-analysis of MRI radiomics-based diagnosis for BI-RADS 4 breast lesions. J Cancer Res Clin Oncol 2024; 150:254. [PMID: 38748373 PMCID: PMC11096203 DOI: 10.1007/s00432-024-05697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE The aim of this study is to conduct a systematic evaluation of the diagnostic efficacy of Breast Imaging Reporting and Data System (BI-RADS) 4 benign and malignant breast lesions using magnetic resonance imaging (MRI) radiomics. METHODS A systematic search identified relevant studies. Eligible studies were screened, assessed for quality, and analyzed for diagnostic accuracy. Subgroup and sensitivity analyses explored heterogeneity, while publication bias, clinical relevance and threshold effect were evaluated. RESULTS This study analyzed a total of 11 studies involving 1,915 lesions in 1,893 patients with BI-RADS 4 classification. The results showed that the combined sensitivity and specificity of MRI radiomics for diagnosing BI-RADS 4 lesions were 0.88 (95% CI 0.83-0.92) and 0.79 (95% CI 0.72-0.84). The positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 4.2 (95% CI 3.1-5.7), 0.15 (95% CI: 0.10-0.22), and 29.0 (95% CI 15-55). The summary receiver operating characteristic (SROC) analysis yielded an area under the curve (AUC) of 0.90 (95% CI 0.87-0.92), indicating good diagnostic performance. The study found no significant threshold effect or publication bias, and heterogeneity among studies was attributed to various factors like feature selection algorithm, radiomics algorithms, etc. Overall, the results suggest that MRI radiomics has the potential to improve the diagnostic accuracy of BI-RADS 4 lesions and enhance patient outcomes. CONCLUSION MRI-based radiomics is highly effective in diagnosing BI-RADS 4 benign and malignant breast lesions, enabling improving patients' medical outcomes and quality of life.
Collapse
Affiliation(s)
- Jie Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiyu Jia
- The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jingjing Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiwei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Junna Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Min Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
3
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
4
|
Wang J, Chen Z, Chen J. Diagnostic value of MRI radiomics in differentiating high‑grade glioma from low‑grade glioma: A meta‑analysis. Oncol Lett 2023; 26:436. [PMID: 37664663 PMCID: PMC10472021 DOI: 10.3892/ol.2023.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
No clear conclusions have yet been reached regarding the accuracy of magnetic resonance imaging (MRI) radiomics in distinguishing high-grade glioma (HGG) from low-grade glioma (LGG). In the present study, a meta-analysis was conducted to determine the diagnostic value of MRI radiomics in differentiating between HGG and LGG, in order to guide their clinical diagnosis. PubMed, Embase and the Cochrane Library databases were searched up to November 2022. The search included studies in which true positive, false positive, true negative and false negative values for the differentiation of HGG from LGG were reported or could be calculated by retrograde extrapolation. Duplicate publications, research without full text, studies with incomplete information or unextractable data, animal studies, reviews and systematic reviews were excluded. STATA 15.1 was used to analyze the data. The meta-analysis included 15 studies, which comprised a total of 1,124 patients, of which 701 had HGG and 423 had LGG. The pooled sensitivity and specificity of the studies overall were 0.92 (95% CI: 0.89-0.95) and 0.89 (95% CI: 0.85-0.92), respectively. The positive and negative likelihood ratios of the studies overall were 7.89 (95% CI: 6.01-10.37) and 0.09 (95% CI: 0.07-0.12), respectively. The pooled diagnostic odds ratio of the studies was 85.20 (95% CI: 54.52-133.14). The area under the summary receiver operating characteristic curve was 0.91. These findings indicate that radiomics may be an accurate tool for the differentiation of glioma grades. However, further research is needed to verify the most appropriate of these technologies.
Collapse
Affiliation(s)
- Jiefang Wang
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhichao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jieyun Chen
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
5
|
Zhong J, Lu J, Zhang G, Mao S, Chen H, Yin Q, Hu Y, Xing Y, Ding D, Ge X, Zhang H, Yao W. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging 2023; 14:111. [PMID: 37336830 DOI: 10.1186/s13244-023-01437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE To conduct an overview of meta-analyses of radiomics studies assessing their study quality and evidence level. METHODS A systematical search was updated via peer-reviewed electronic databases, preprint servers, and systematic review protocol registers until 15 November 2022. Systematic reviews with meta-analysis of primary radiomics studies were included. Their reporting transparency, methodological quality, and risk of bias were assessed by PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 checklist, AMSTAR-2 (A MeaSurement Tool to Assess systematic Reviews, version 2) tool, and ROBIS (Risk Of Bias In Systematic reviews) tool, respectively. The evidence level supporting the radiomics for clinical use was rated. RESULTS We identified 44 systematic reviews with meta-analyses on radiomics research. The mean ± standard deviation of PRISMA adherence rate was 65 ± 9%. The AMSTAR-2 tool rated 5 and 39 systematic reviews as low and critically low confidence, respectively. The ROBIS assessment resulted low, unclear and high risk in 5, 11, and 28 systematic reviews, respectively. We reperformed 53 meta-analyses in 38 included systematic reviews. There were 3, 7, and 43 meta-analyses rated as convincing, highly suggestive, and weak levels of evidence, respectively. The convincing level of evidence was rated in (1) T2-FLAIR radiomics for IDH-mutant vs IDH-wide type differentiation in low-grade glioma, (2) CT radiomics for COVID-19 vs other viral pneumonia differentiation, and (3) MRI radiomics for high-grade glioma vs brain metastasis differentiation. CONCLUSIONS The systematic reviews on radiomics were with suboptimal quality. A limited number of radiomics approaches were supported by convincing level of evidence. CLINICAL RELEVANCE STATEMENT The evidence supporting the clinical application of radiomics are insufficient, calling for researches translating radiomics from an academic tool to a practicable adjunct towards clinical deployment.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
6
|
Sun W, Song C, Tang C, Pan C, Xue P, Fan J, Qiao Y. Performance of deep learning algorithms to distinguish high-grade glioma from low-grade glioma: A systematic review and meta-analysis. iScience 2023; 26:106815. [PMID: 37250800 PMCID: PMC10209541 DOI: 10.1016/j.isci.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to evaluate deep learning (DL) performance in differentiating low- and high-grade glioma. Search online database for studies continuously published from 1st January 2015 until 16th August 2022. The random-effects model was used for synthesis, based on pooled sensitivity (SE), specificity (SP), and area under the curve (AUC). Heterogeneity was estimated using the Higgins inconsistency index (I2). 33 were ultimately included in the meta-analysis. The overall pooled SE and SP were 94% and 93%, with an AUC of 0.98. There was great heterogeneity in this field. Our evidence-based study shows DL achieves high accuracy in glioma grading. Subgroup analysis reveals several limitations in this field: 1) Diagnostic trials require standard method for data merging for AI; 2) small sample size; 3) poor-quality image preprocessing; 4) not standard algorithm development; 5) not standard data report; 6) different definition of HGG and LGG; and 7) poor extrapolation.
Collapse
Affiliation(s)
- Wanyi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Song
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Tang
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chenghao Pan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
8
|
Merkaj S, Bahar RC, Zeevi T, Lin M, Ikuta I, Bousabarah K, Cassinelli Petersen GI, Staib L, Payabvash S, Mongan JT, Cha S, Aboian MS. Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers (Basel) 2022; 14:cancers14112623. [PMID: 35681603 PMCID: PMC9179416 DOI: 10.3390/cancers14112623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Technological innovation has enabled the development of machine learning (ML) tools that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-oncology have expanded significantly, with the pre-operative prediction of glioma grade using medical imaging as a specific area of interest. We introduce the subject of ML models for glioma grade prediction by remarking upon the models reported in the literature as well as by describing their characteristic developmental workflow and widely used classifier algorithms. The challenges facing these models-including data sources, external validation, and glioma grade classification methods -are highlighted. We also discuss the quality of how these models are reported, explore the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the reporting of prospective works. Finally, this review offers insights into next steps that the field of ML glioma grade prediction can take to facilitate clinical implementation.
Collapse
Affiliation(s)
- Sara Merkaj
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ryan C. Bahar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Visage Imaging, Inc., 12625 High Bluff Dr, Suite 205, San Diego, CA 92130, USA
| | - Ichiro Ikuta
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | | | - Gabriel I. Cassinelli Petersen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - John T. Mongan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Mariam S. Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Correspondence: ; Tel.: +650-285-7577
| |
Collapse
|
9
|
Bahar RC, Merkaj S, Cassinelli Petersen GI, Tillmanns N, Subramanian H, Brim WR, Zeevi T, Staib L, Kazarian E, Lin M, Bousabarah K, Huttner AJ, Pala A, Payabvash S, Ivanidze J, Cui J, Malhotra A, Aboian MS. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Front Oncol 2022; 12:856231. [PMID: 35530302 PMCID: PMC9076130 DOI: 10.3389/fonc.2022.856231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Objectives To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9. Results The search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%). Conclusions The application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice. Systematic Review Registration PROSPERO, identifier CRD42020209938.
Collapse
Affiliation(s)
- Ryan C. Bahar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Sara Merkaj
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Neurosurgery, University of Ulm, Ulm, Germany
| | | | - Niklas Tillmanns
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Harry Subramanian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Waverly Rose Brim
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Eve Kazarian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Visage Imaging, Inc., San Diego, CA, United States
| | | | - Anita J. Huttner
- Department of Pathology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Andrej Pala
- Department of Neurosurgery, University of Ulm, Ulm, Germany
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jin Cui
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Mariam S. Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Mariam S. Aboian,
| |
Collapse
|
10
|
Li L, Zhang J, Zhe X, Tang M, Zhang X, Lei X, Zhang L. A meta-analysis of MRI-based radiomic features for predicting lymph node metastasis in patients with cervical cancer. Eur J Radiol 2022; 151:110243. [DOI: 10.1016/j.ejrad.2022.110243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
|
11
|
Zhang J, Li L, Zhe X, Tang M, Zhang X, Lei X, Zhang L. The Diagnostic Performance of Machine Learning-Based Radiomics of DCE-MRI in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Meta-Analysis. Front Oncol 2022; 12:799209. [PMID: 35186739 PMCID: PMC8854258 DOI: 10.3389/fonc.2022.799209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The aim of this study was to perform a meta‐analysis to evaluate the diagnostic performance of machine learning(ML)-based radiomics of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) DCE-MRI in predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis(SLNM) in breast cancer. Methods English and Chinese databases were searched for original studies. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) were used to assess the methodological quality of the included studies. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were used to summarize the diagnostic accuracy. Spearman’s correlation coefficient and subgroup analysis were performed to investigate the cause of the heterogeneity. Results Thirteen studies (1618 participants) were included in this meta-analysis. The pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.82 (0.75, 0.87), 0.83 (0.74, 0.89), 21.56 (10.60, 43.85), and 0.89 (0.86, 0.91), respectively. The meta-analysis showed significant heterogeneity among the included studies. There was no threshold effect in the test. The result of subgroup analysis showed that ML, 3.0 T, area of interest comprising the ALN, being manually drawn, and including ALNs and combined sentinel lymph node (SLN)s and ALNs groups could slightly improve diagnostic performance compared to deep learning, 1.5 T, area of interest comprising the breast tumor, semiautomatic scanning, and the SLN, respectively. Conclusions ML-based radiomics of DCE-MRI has the potential to predict ALNM and SLNM accurately. The heterogeneity of the ALNM and SLNM diagnoses included between the studies is a major limitation.
Collapse
|