1
|
Xie D, Sun Y, Li X, Zheng J, Ren S. Study of the effect of calcium signal participating in the antioxidant mechanism of yeast under high-sugar environment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5776-5788. [PMID: 38390983 DOI: 10.1002/jsfa.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae is susceptible to high-sugar stress in the production of bioethanol, wine and bread. Calcium signal is widely involved in various physiological and metabolic activities of cells. The present study aimed to explore the effects of Ca2+ signal on the antioxidant mechanism of yeast during high-sugar fermentation. RESULTS Compared to yeast without available Ca2+, yeast in the high glucose with Ca2+ group had higher dry weight, higher ethanol output at 12 and 24 h and higher glycerol output at 24 and 36 h. During the whole growth process, the trehalose synthesis capacity of yeast in the high glucose with Ca2+ group was lower and intracellular reactive oxygen species content was higher compared to yeast without available Ca2+. Intracellular malondialdehyde content of yeast under high glucose with Ca2+ was significantly lower than yeast under high glucose without available Ca2+ except for 6 h. The superoxide dismutase and catalase activities of yeast and glutathione content were higher in the high glucose with Ca2+ group compared to yeast in high glucose without available Ca2+. The expression levels of SOD1, GSH1, GPX2 genes were higher for high glucose without available Ca2+ at 6 h, while yeast in the high glucose with Ca2+ group had a higher expression of antioxidant-related genes except SOD1 and CTT1 at 12 h. The expression levels of antioxidant-related genes of yeast for high glucose with Ca2+ were higher at 24 h, and those of genes except SOD1 of yeast in the high glucose with Ca2+ group were higher at 36 h. CONCLUSION High-glucose stress limited the growth of yeast, while a moderate extracellular Ca2+ signal could improve the antioxidant capacity of yeast in a high-glucose environment by regulating protectant metabolism and enhancing the antioxidant enzyme activity and expression of antioxidant genes in a high-sugar environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Liu Y, Shen L, Matsuura A, Xiang L, Qi J. Isoquercitrin from Apocynum venetum L. Exerts Antiaging Effects on Yeasts via Stress Resistance Improvement and Mitophagy Induction through the Sch9/Rim15/Msn Signaling Pathway. Antioxidants (Basel) 2023; 12:1939. [PMID: 38001792 PMCID: PMC10669743 DOI: 10.3390/antiox12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND With the development of an aging sociality, aging-related diseases, such as Alzheimer's disease, cardiovascular disease, and diabetes, are dramatically increasing. To find small molecules from natural products that can prevent the aging of human beings and the occurrence of these diseases, we used the lifespan assay of yeast as a bioassay system to screen an antiaging substance. Isoquercitrin (IQ), an antiaging substance, was isolated from Apocynum venetum L., an herbal tea commonly consumed in Xinjiang, China. AIM OF THE STUDY In the present study, we utilized molecular-biology technology to clarify the mechanism of action of IQ. METHODS The replicative lifespans of K6001 yeasts and the chronological lifespans of YOM36 yeasts were used to screen and confirm the antiaging effect of IQ. Furthermore, the reactive oxygen species (ROS) and malondialdehyde (MDA) assay, the survival assay of yeast under stresses, real-time polymerase chain reaction (RT-PCR) and Western blotting analyses, the replicative-lifespan assay of mutants, such as Δsod1, Δsod2, Δgpx, Δcat, Δskn7, Δuth1, Δatg32, Δatg2, and Δrim15 of K6001, autophagy flux analysis, and a lifespan assay of K6001 yeast after giving a mitophagy inhibitor and activator were performed. RESULTS IQ extended the replicative lifespans of the K6001 yeasts and the chronological lifespans of the YOM36 yeasts. Furthermore, the reactive nitrogen species (RNS) showed no change during the growth phase but significantly decreased in the stationary phase after treatment with IQ. The survival rates of the yeasts under oxidative- and thermal-stress conditions improved upon IQ treatment, and thermal stress was alleviated by the increasing superoxide dismutase (Sod) activity. Additionally, IQ decreased the ROS and MDA of the yeast while increasing the activity of antioxidant enzymes. However, it could not prolong the replicative lifespans of Δsod1, Δsod2, Δgpx, Δcat, Δskn7, and Δuth1 of K6001. IQ significantly increased autophagy and mitophagy induction, the presence of free green fluorescent protein (GFP) in the cytoplasm, and ubiquitination in the mitochondria of the YOM38 yeasts at the protein level. IQ did not prolong the replicative lifespans of Δatg2 and Δatg32 of K6001. Moreover, IQ treatment led to a decrease in Sch9 at the protein level and an increase in the nuclear translocation of Rim15 and Msn2. CONCLUSIONS These results indicated that the Sch9/Rim15/Msn signaling pathway, as well as antioxidative stress, anti-thermal stress, and autophagy, were involved in the antiaging effects of IQ in the yeasts.
Collapse
Affiliation(s)
- Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Le Shen
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
4
|
Yan Y, Zou Q, Zhou Y, He H, Yu W, Yan H, Yi Y, Zhao Z. Water extract from Ligusticum chuanxiong delays the aging of Saccharomyces cerevisiae via improving antioxidant activity. Heliyon 2023; 9:e19027. [PMID: 37600358 PMCID: PMC10432717 DOI: 10.1016/j.heliyon.2023.e19027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Ligusticum chuanxiong is a common traditional edible-medicinal herb that has various pharmacological activities. However, its effects on Saccharomyces cerevisiae (S. cerevisiae) remains unknown. In this study, we found that water extract of Ligusticum chuanxiong (abbreviated as WEL) exhibited excellent free radical scavenging ability in-vitro. Moreover, WEL treatment could delay the aging of S. cerevisiae, an important food microorganism sensitive to reactive oxygen species (ROS) stress. Biochemical analyses revealed that WEL significantly increased the activity of antioxidant enzymes in S. cerevisiae, including superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), as well as their gene expression. As a result, ROS level was significantly decreased and accompanied with the decline of malondialdehyde (MDA), which represented a state of low oxidative stress. The reduction of oxidative stress could elevate S. cerevisiae's ethanol fermentation efficiency. Taken together, WEL plays a protective role against S. cerevisiae aging via improving antioxidant activity.
Collapse
Affiliation(s)
- Yinhui Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Qianxing Zou
- Department of Reproductive Medicine, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545006, PR China
| | - Yueqi Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Huan He
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Wanguo Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Zaoya Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| |
Collapse
|
5
|
Xie D, Sun Y, Li X, Ren S. Effect of calcium levels on structure and function of mitochondria in yeast under high glucose fermentation. FOOD SCI TECHNOL INT 2023:10820132231170409. [PMID: 37089015 DOI: 10.1177/10820132231170409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In this study, the effects of calcium levels on structure and function of mitochondria under high glucose environment were studied. In the high glucose environment, yeast growth capacity was inhibited, and intracellular reactive oxygen species (ROS) content was increased from 6 h to 12 h, while ROS content was reduced in group with 1 × 10-1 and 1 g/L CaCl2 level from 24 h to 36 h. Exogenous calcium addition had a significant effect on the elevation of intracellular Ca2+ and cytochrome C content in yeast from 6 h to 12 h; mitochondrial membrane potential decreased with the increase of CaCl2 level under high glucose levels. Mitochondrial swelling of yeast was influenced by high glucose levels and showed a regulatory dynamic change by Ca2+ levels. Isocitrate dehydrogenase activity increased in 1 × 10-3 g/L CaCl2 level from 6 h to 12 h, α-ketoglutarate dehydrogenase activity increased with an increase in CaCl2 level from 6 h to 24 h. Calcium affected the structure and function of mitochondria by regulating the intracellular signal, enzymes in tricarboxylic acid cycle, and cytochrome system of yeast under high glucose stress.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Zhang R, Yan C, Yang X, Hu K, Hao F, Yang S, Deng Q, Duan Z, Liu Y, Wen X. Determination of lead in Gentiana rigescens and evaluation of the effect of lead exposure on the liver protection of the natural medicine. Anal Chim Acta 2023; 1251:340992. [PMID: 36925284 DOI: 10.1016/j.aca.2023.340992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
In this work, ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) and inductively coupled plasma optical emission spectrometry (ICP-OES) were combined to determine trace Pb in Gentiana rigescens Franch. ex Hemsl. (G. rigescens) samples. Under the optimal conditions, the enhancement factor (EF), limit of detection (LOD), limit of quantitation (LOQ) and precision were 33, 0.11 μg L-1, 0.37 μg L-1 and 1.3%, respectively. This method was applied to the analysis of G. rigescens samples, and the outcomes were in good agreement with the results determined by inductively coupled plasma mass spectrometry (ICP-MS). A mice model of immune liver injury induced by concanavalin A (ConA) was established, and the liver protection of G. rigescens and gentiopicroside (GPS) on it and the effects of various dosages of Pb exposure on its liver protection were studied. Pb at a dosage of 5 mg kg-1 had little effect on the liver protection of G. rigescens and GPS, while 25, 125 mg kg-1 dosages of Pb could significantly attenuate the liver protection of both. In addition, it aggravated the necrosis of hepatocytes and inflammatory cell infiltration, and these effects were dose-dependent.
Collapse
Affiliation(s)
- Rui Zhang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Caixia Yan
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Zhenjuan Duan
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
7
|
Jia F, Ji R, Qiao G, Sun Z, Chen X, Zhang Z. Amarogentin inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia via AMPK activation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166667. [PMID: 36906074 DOI: 10.1016/j.bbadis.2023.166667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES Recent studies validated the expression of extraoral bitter taste receptors and established the importance of regulatory functions that are associated with various cellular biological processes of these receptors. However, the importance of bitter taste receptors' activity in neointimal hyperplasia has not yet been recognized. The bitter taste receptors activator amarogentin (AMA) is known to regulate a variety of cellular signals, including AMP-activated protein kinase (AMPK), STAT3, Akt, ERK, and p53, which are associated with neointimal hyperplasia. MATERIALS AND METHODS The present study assessed the effects of AMA on neointimal hyperplasia and explored the potential underlying mechanisms. RESULTS No cytotoxic concentration of AMA significantly inhibited the proliferation and migration of VSMCs induced by serum (15 % FBS) and PDGF-BB. In addition, AMA significantly inhibited neointimal hyperplasia of the cultured great saphenous vein in vitro and ligated mouse left carotid arteries in vivo, while the inhibitory effect of AMA on the proliferation and migration of VSMCs was mediated via the activation of AMPK-dependent signaling, which could be blocked via AMPK inhibition. CONCLUSION The present study revealed that AMA inhibited the proliferation and migration of VSMCs and attenuated neointimal hyperplasia, both in ligated mice carotid artery and cultured saphenous vein, which was mediated via a mechanism that involved AMPK activation. Importantly, the study highlighted the potential of AMA to be explored as a new drug candidate for neointimal hyperplasia.
Collapse
Affiliation(s)
- Fangyuan Jia
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Ji
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China; Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Qiao
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Zhigang Sun
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Xiaosan Chen
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Zhidong Zhang
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China.
| |
Collapse
|
8
|
Mao J, Liang Y, Wang X, Zhang D. Comparison of plastid genomes and ITS of two sister species in Gentiana and a discussion on potential threats for the endangered species from hybridization. BMC PLANT BIOLOGY 2023; 23:101. [PMID: 36800941 PMCID: PMC9940437 DOI: 10.1186/s12870-023-04088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gentiana rigescens Franchet is an endangered medicinal herb from the family Gentianaceae with medicinal values. Gentiana cephalantha Franchet is a sister species to G. rigescens possessing similar morphology and wider distribution. To explore the phylogeny of the two species and reveal potential hybridization, we adopted next-generation sequencing technology to acquire their complete chloroplast genomes from sympatric and allopatric distributions, as along with Sanger sequencing to produce the nrDNA ITS sequences. RESULTS The plastid genomes were highly similar between G. rigescens and G. cephalantha. The lengths of the genomes ranged from 146,795 to 147,001 bp in G. rigescens and from 146,856 to 147,016 bp in G. cephalantha. All genomes consisted of 116 genes, including 78 protein-coding genes, 30 tRNA genes, four rRNA genes and four pseudogenes. The total length of the ITS sequence was 626 bp, including six informative sites. Heterozygotes occurred intensively in individuals from sympatric distribution. Phylogenetic analysis was performed based on chloroplast genomes, coding sequences (CDS), hypervariable sequences (HVR), and nrDNA ITS. Analysis based on all the datasets showed that G. rigescens and G. cephalantha formed a monophyly. The two species were well separated in phylogenetic trees using ITS, except for potential hybrids, but were mixed based on plastid genomes. This study supports that G. rigescens and G. cephalantha are closely related, but independent species. However, hybridization was confirmed to occur frequently between G. rigescens and G. cephalantha in sympatric distribution owing to the lack of stable reproductive barriers. Asymmetric introgression, along with hybridization and backcrossing, may probably lead to genetic swamping and even extinction of G. rigescens. CONCLUSION G. rigescens and G. cephalantha are recently diverged species which might not have undergone stable post-zygotic isolation. Though plastid genome shows obvious advantage in exploring phylogenetic relationships of some complicated genera, the intrinsic phylogeny was not revealed because of matrilineal inheritance here; nuclear genomes or regions are hence crucial for uncovering the truth. As an endangered species, G. rigescens faces serious threats from both natural hybridization and human activities; therefore, a balance between conservation and utilization of the species is extremely critical in formulating conservation strategies.
Collapse
Affiliation(s)
- Jiuyang Mao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Yuze Liang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xue Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Dequan Zhang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China.
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, 671000, Yunnan, China.
| |
Collapse
|
9
|
Xiang L, Disasa D, Liu Y, Fujii R, Yang M, Wu E, Matsuura A, Qi J. Gentirigeoside B from Gentiana rigescens Franch Prolongs Yeast Lifespan via Inhibition of TORC1/Sch9/Rim15/Msn Signaling Pathway and Modification of Oxidative Stress and Autophagy. Antioxidants (Basel) 2022; 11:antiox11122373. [PMID: 36552582 PMCID: PMC9774393 DOI: 10.3390/antiox11122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Gentirigeoside B (GTS B) is a dammaren-type triterpenoid glycoside isolated from G. rigescens Franch, a traditional Chinese medicinal plant. In the present study, the evaluation of the anti-aging effect and action mechanism analysis for this compound were conducted. GTS B significantly extended the replicative lifespan and chronological lifespan of yeast at doses of 1, 3 and 10 μM. Furthermore, the inhibition of Sch9 and activity increase of Rim15, Msn2 proteins which located downstream of TORC1 signaling pathway were observed after treatment with GTS B. Additionally, autophagy of yeast was increased. In addition, GTS B significantly improved survival rate of yeast under oxidative stress conditions as well as reduced the levels of ROS and MDA. It also increased the gene expression and enzymatic activities of key anti-oxidative enzymes such as Sod1, Sod2, Cat and Gpx. However, this molecule failed to extend the lifespan of yeast mutants such as ∆cat, ∆gpx, ∆sod1, ∆sod2, ∆skn7 and ∆uth1. These results suggested that GTS B exerts an anti-aging effect via inhibition of the TORC1/Sch9/Rim15/Msn signaling pathway and enhancement of autophagy. Therefore, GTS B may be a promising candidate molecule to develop leading compounds for the treatment of aging and age-related disorders.
Collapse
Affiliation(s)
- Lan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
- Correspondence: (L.X.); (J.Q.); Tel.: +86-571-88208627 (J.Q.)
| | - Dejene Disasa
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Yanan Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Rui Fujii
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Mengya Yang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Enchan Wu
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Jianhua Qi
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
- Correspondence: (L.X.); (J.Q.); Tel.: +86-571-88208627 (J.Q.)
| |
Collapse
|
10
|
Song B, Zhou W. Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway. Brain Res Bull 2022; 189:44-56. [PMID: 35985610 DOI: 10.1016/j.brainresbull.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 02/05/2023]
Abstract
Amarogentin (AMA), a secoiridoid glycoside that is mainly derived from SwertiaandGentiana roots, has been confirmed to exhibit antioxidative, tumor-suppressive and anti-diabetic properties. This research intends to investigate the protective effect of AMA against sepsis-induced brain injury and its mechanism. NSC-34 and HT22 cells were treated with lipopolysaccharide (LPS) to induce an in-vitro sepsis model and then treated with varying concentrations (1, 5, 10 µM) of AMA. Cell proliferation and apoptosis were evaluated. The intensity of inflammation and oxidative stress were assessed by different methods. The AMPK/SIRT1/NF-κB pathway expression was determined by WB. An in-vitro sepsis model was set up with cecal ligation and puncture (CLP) in adult C57/BL6J mice, and different concentrations (25, 50, 100 mg/kg) of AMA were applied for treatment. Neurological function was evaluated using the modified neurological severity scores (mNSS), and the brain tissue damage was measured using hematoxylin-eosin (H&E) staining and Nissl staining. Tissue apoptosis was tested using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Then, the AMPK inhibitor Compound C (CC) was administered to confirm AMA-mediated mechanism. Our finding illustrated that AMA mitigated LPS-induced neuronal damage, inflammation and oxidative stress, activated the AMPK/SIRT1 pathway and choked NF-κB phosphorylation. Furthermore, AMA improved neurological functions of sepsis mice by reliving neuroinflammation and oxidative stress. Inhibition of AMPK attenuated the protective effect of AMA on neurons or the mice's brain tissues. In conclusion, AMA protected against sepsis-induced brain injury by modulating the AMPK/SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Bihui Song
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China
| | - Wenhao Zhou
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China.
| |
Collapse
|
11
|
Diversification of phenolic glucosides by two UDP-glucosyltransferases featuring complementary regioselectivity. Microb Cell Fact 2022; 21:208. [PMID: 36217200 PMCID: PMC9549646 DOI: 10.1186/s12934-022-01935-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.
Collapse
|
12
|
Leonurine Reduces Oxidative Stress and Provides Neuroprotection against Ischemic Injury via Modulating Oxidative and NO/NOS Pathway. Int J Mol Sci 2022; 23:ijms231710188. [PMID: 36077582 PMCID: PMC9456230 DOI: 10.3390/ijms231710188] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Leonurine (Leo) has been found to have neuroprotective effects against cerebral ischemic injury. However, the exact molecular mechanism underlying its neuroprotective ability remains unclear. The aim of the present study was to investigate whether Leo could provide protection through the nitric oxide (NO)/nitric oxide synthase (NOS) pathway. We firstly explored the effects of NO/NOS signaling on oxidative stress and apoptosis in in vivo and in vitro models of cerebral ischemia. Further, we evaluated the protective effects of Leo against oxygen and glucose deprivation (OGD)-induced oxidative stress and apoptosis in PC12 cells. We found that the rats showed anxiety-like behavior, and the morphology and number of neurons were changed in a model of photochemically induced cerebral ischemia. Both in vivo and in vitro results show that the activity of superoxide dismutase (SOD) and glutathione (GSH) contents were decreased after ischemia, and reactive oxygen species (ROS) and malondialdehyde (MDA) levels were increased, indicating that cerebral ischemia induced oxidative stress and neuronal damage. Moreover, the contents of NO, total NOS, constitutive NOS (cNOS) and inducible NOS (iNOS) were increased after ischemia in rat and PC12 cells. Treatment with L-nitroarginine methyl ester (L-NAME), a nonselective NOS inhibitor, could reverse the change in NO/NOS expression and abolish these detrimental effects of ischemia. Leo treatment decreased ROS and MDA levels and increased the activity of SOD and GSH contents in PC12 cells exposed to OGD. Furthermore, Leo reduced NO/NOS production and cell apoptosis, decreased Bax expression and increased Bcl-2 levels in OGD-treated PC12 cells. All the data suggest that Leo protected against oxidative stress and neuronal apoptosis in cerebral ischemia by inhibiting the NO/NOS system. Our findings indicate that Leo could be a potential agent for the intervention of ischemic stroke and highlighted the NO/NOS-mediated oxidative stress signaling.
Collapse
|
13
|
Xie D, Sun Y, Lei Y. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5333-5347. [PMID: 35318660 DOI: 10.1002/jsfa.11887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The physiological metabolism of yeast has a significant impact on the quality of fermentation products. The present study aimed to investigate yeast metabolism in response to a changing glucose content environment, especially in fermentation products, as well as the change of carbon flow rate, antioxidant status, and yeast enzyme activity. RESULTS Yeast in a 0 g L-1 glucose level was subjected to carbon starvation stress, cell growth retardation and cell proliferation was significantly inadequate; in the logarithmic growth stage of yeast, at a 30 g L-1 glucose level, the carbon source mainly flowed to tricarboxylic acid cycle and pentose phosphate metabolism, cell division, proliferation, and increased cell growth. In later logarithmic growth period and stable period, carbon flowed into glycerol and trehalose metabolism, to cope with the environmental stress; yeast in 60 and 150 g L-1 glucose levels faced high glucose stress at the beginning, the content of reactive oxygen increased, malondialdehyde content increased, cell damage was reduced through the regulation of superoxide dismutase and catalase enzyme activities, and most of the carbon flowed into the metabolic pathway of ethanol, glycerol, and trehalose to cope with high glucose stress, the pentose phosphate pathway showed a large late influx, and NADPH also started to increase rapidly after 24 h. CONCLUSION Yeast was stressed in a high-sugar environment and ensured the activity of yeast by preferentially increasing the metabolic intensity of trehalose, glycerol, and glycolytic metabolism, weakening tricarboxylic acid metabolism, and first weakening and then increasing pentose phosphate metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
14
|
Gupta R, Sood H. Optimizing nutrient media conditions for continuous production of shoot biomass enriched in major medicinal constituents, amarogentin and mangiferin of endangered medicinal herb, Swertia chirayita. VEGETOS (BAREILLY, INDIA) 2022; 36:1-9. [PMID: 36061345 PMCID: PMC9423889 DOI: 10.1007/s42535-022-00464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
Biosynthesis and accumulation of Amarogentin and Mangiferin from shoot culture of endangered herb Swertia chirayita helped in rescuing its natural population along with continuous production of quality rich herbal material. Although, presence of Amarogentin and Mangiferin had already been reported, but such studies did not elaborate the significant developmental stages at two varying temperature (15 ± 1 °C and 25 ± 1 °C) in shoot cultures of S. chirayita. Different developmental stages involved throughout from callus induction to complete regeneration of plant by using shoot cultures of S. chirayita, reveal different amounts of significant medicinal compounds having high pharmacological importance like bearing anti-diabetic and anti-cancerous properties. So in the present study, different developmental stages i.e. plant segment as leaf disc explants, initiation of callus formation, callus mass development, shoots primordial, manifold shoot formation and shoot elongation with complete growth were explored for accumulation of Amarogentin and Mangiferin. The Amarogentin content was 4.72 µg/mg at 15 ± 1 °C and 4.41 µg/mg at 25 ± 1 °C whereas Mangiferin content was 15.54 µg/mg at 15 ± 1 °C and 9.70 µg/mg at 25 ± 1 °C in leaf discs provided with the medium MS + 2,4D = 1 mg/L, 6BAP = 0.5 mg/L, TDZ = 0.5 mg/L, respectively. The accumulation of Amarogentin and Mangiferin started from callus cultures differentiating into shoots and reached to the detectable amount equivalent to actual leaf explants in fully grown shoots with content of 5.79 µg/mg at 15 ± 1 °C and 5.35 µg/mg at 25 ± 1 °C whereas 15.56 µg/mg at 15 ± 1 °C and 13.15 µg/mg at 25 ± 1 °C provided with the medium MS + IBA = 3 mg/L, KN = 1 mg/L, respectively. Maximum accumulation of bioactive compounds was observed in ≈3 months old in-vitro grown shoots at 15 ± 1˚ C wherein, the content of Amarogentin was ≈8.51 folds higher and Mangiferin was ≈4.09 folds higher than the ≈3 months old green house grown shoots. So, the in-vitro raised shoots of S. chirayita enriched with marker medicinal compounds would be utilized as ready to use raw material for pharmaceutical industries for herbal drug formulations and can be utilized to transfer under natural habitats for conserving its diminishing population.
Collapse
Affiliation(s)
- Rolika Gupta
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 India
| |
Collapse
|
15
|
Buza V, Niculae M, Hanganu D, Pall E, Burtescu RF, Olah NK, Matei-Lațiu MC, Vlasiuc I, Iozon I, Szakacs AR, Ielciu I, Ștefănuț LC. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules 2022; 27:molecules27113560. [PMID: 35684497 PMCID: PMC9182457 DOI: 10.3390/molecules27113560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic potential of ethanolic extracts obtained from Gentiana asclepiadea L. and Inula helenium L. roots, in relation to their chemical composition. The total polyphenols, flavonoids, and phenolic acids were determined by spectrophotometric methods, while LC-MS analysis was used to evaluate the individual constituents. The antioxidant properties were tested using the FRAP and DPPH methods. The standard well diffusion and broth microdilution assays were carried out to establish in vitro antimicrobial efficacy and minimum inhibitory and bactericidal concentrations. The cytotoxicity was tested on rat intestinal epithelial cells using the MTT assay. The results pointed out important constituents such as secoiridoid glycoside (amarogentin), phenolic acids (caffeic acid, chlorogenic acid, trans-p-coumaric acid, salicylic acid), and flavonoids (apigenin, chrysin, luteolin, luteolin-7-O-glucoside, quercetin, rutoside, and naringenin) and promising antioxidant properties. The in vitro antimicrobial effect was noticed towards several pathogens (Bacillus cereus > Staphylococcus aureus > Enterococcus faecalis > Salmonella typhimurium and Salmonella enteritidis > Escherichia coli), with a pronounced bactericidal activity. Rat intestinal epithelial cell viability was not affected by the selected concentrations of these two extracts. These data support the ethnomedicinal recommendations of these species and highlight them as valuable sources of bioactive compounds.
Collapse
Affiliation(s)
- Victoria Buza
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
- Correspondence: (V.B.); (M.N.)
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence: (V.B.); (M.N.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Emoke Pall
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | | | - Neli-Kinga Olah
- SC PlantExtrakt SRL, 407059 Rădaia, Romania; (R.F.B.); (N.-K.O.)
- Faculty of Pharmacy, Vasile Goldiș Western University of Arad, 310045 Arad, Romania
| | - Maria-Cătălina Matei-Lațiu
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| | - Ion Vlasiuc
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania;
| | - Ilinca Iozon
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| | - Andrei Radu Szakacs
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania;
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Laura Cristina Ștefănuț
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| |
Collapse
|
16
|
Liu Y, Liu Q, Chen D, Matsuura A, Xiang L, Qi J. Inokosterone from Gentiana rigescens Franch Extends the Longevity of Yeast and Mammalian Cells via Antioxidative Stress and Mitophagy Induction. Antioxidants (Basel) 2022; 11:antiox11020214. [PMID: 35204097 PMCID: PMC8868264 DOI: 10.3390/antiox11020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, replicative lifespan and chronological lifespan assays of yeast were used to double-screen antiaging compounds from Gentiana rigescens Franch, a Chinese herb medicine. Inokosterone from G. rigescens Franch extended not only the replicative lifespan of K6001 yeast but also the chronological lifespan of YOM36 yeast. Furthermore, it can enhance the survival ability of mammalian cells. In order to understand the mechanism of action of this compound, this study focused on antioxidative stress and autophagy when performing the analysis. The increased cell survival rate under oxidative stress conditions, antioxidant enzyme activity and gene expression were observed in the inokosterone-treated groups. Meanwhile, the reactive oxygen species (ROS) and lipid peroxidation of yeast were obviously decreased. Additionally, the macroautophagy and mitophagy in YOM38-GFP-ATG8 yeast were increased upon inokosterone treatment, respectively. At the same time, the cleavage-free GFP from GFP-ATG8 in the cytoplasm and the ubiquitin of the mitochondria at the protein level were markedly enhanced after incubation with inokosterone. Furthermore, we investigated the effect of inokosterone on antioxidative stress and autophagy in mammalian cells, and the relationship between ROS and autophagy. The ROS, malondialdehyde (MDA) were significantly decreased, and the autophagosomes in mammalian cells were obviously increased after inokosterone treatment. The autophagosomes in ∆sod1 yeast with a K6001 background had no obvious changes, and the ROS and MDA of ∆sod1 yeast were increased compared with K6001 yeast. The increase of autophagosomes and the reduction of ROS and MDA in ∆sod1 yeast were observed after treatment with inokosterone. Meanwhile, the reduction of the ROS level and the increase of the SOD1 gene expression of K6001 yeast lacking autophagy were observed after treatment with inokosterone. In order to indicate whether the genes related to antioxidant enzymes and autophagy were involved in the antiaging effect of inokosterone, mutants of K6001 yeast were constructed to conduct a lifespan assay. The replicative lifespans of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆gpx, ∆cat, ∆atg2, and ∆atg32 of K6001 yeast were not affected by inokosterone. These results suggest that inokosterone exerted an antiaging activity via antioxidative stress and increased autophagy activation; autophagy affected the ROS levels of yeast via the regulation of SOD1 gene expression.
Collapse
Affiliation(s)
- Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Qian Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Danni Chen
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
- Correspondence: (L.X.); (J.Q.); Tel.: +86-0571-8820-8627 (J.Q.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (Q.L.); (D.C.)
- Correspondence: (L.X.); (J.Q.); Tel.: +86-0571-8820-8627 (J.Q.)
| |
Collapse
|
17
|
Chung MG, Kim Y, Cha YK, Park TH, Kim Y. Bitter taste receptors protect against skin aging by inhibiting cellular senescence and enhancing wound healing. Nutr Res Pract 2022; 16:1-13. [PMID: 35116124 PMCID: PMC8784259 DOI: 10.4162/nrp.2022.16.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/OBJECTIVES Bitter taste receptors are taste signaling pathway mediators, and are also expressed and function in extra-gustatory organs. Skin aging affects the quality of life and may lead to medical issues. The purpose of this study was to better understand the anti-skin aging effects of bitter taste receptors in D-galactose (D-gal)-induced aged human keratinocytes, HaCaT cells. MATERIALS/METHODS Expressions of bitter taste receptors in HaCaT cells and mouse skin tissues were examined by polymerase chain reaction assay. Bitter taste receptor was overexpressed in HaCaT cells, and D-gal was treated to induce aging. We examined the effects of bitter taste receptors on aging by using β-galactosidase assay, wound healing assay, and Western blot assay. RESULTS TAS2R16 and TAS2R10 were expressed in HaCaT cells and were upregulated by D-gal treatment. TAS2R16 exerted protective effects against skin aging by regulating p53 and p21, antioxidant enzymes, the SIRT1/mechanistic target of rapamycin pathway, cell migration, and epithelial-mesenchymal transition markers. TAS2R10 was further examined to confirm a role of TAS2R16 in cellular senescence and wound healing in D-gal-induced aged HaCaT cells. CONCLUSIONS Our results suggest a novel potential preventive role of these receptors on skin aging by regulating cellular senescence and wound healing in human keratinocyte, HaCaT.
Collapse
Affiliation(s)
- Min Gi Chung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Wang Y, Pan Y, Liu Y, Disasa D, Akira M, Xiang L, Qi J. A New Geniposidic Acid Derivative Exerts Antiaging Effects through Antioxidative Stress and Autophagy Induction. Antioxidants (Basel) 2021; 10:987. [PMID: 34205671 PMCID: PMC8234659 DOI: 10.3390/antiox10060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Two compounds that can prolong the replicative lifespan of yeast, geniposidic acid (Compound 1) and geniposide (Compound 2), were isolated from Gardenia jasminoides Ellis. Compared with Compound 1, Compound 2 was different at C11 and showed better bioactivity. On this basis, seven new geniposidic derivatives (3-9) were synthesized. Geniposidic 4-isoamyl ester (8, GENI), which remarkably prolonged the replicative and chronological lifespans of K6001 yeast at 1 µM, was used as the lead compound. Autophagy and antioxidative stress were examined to clarify the antiaging mechanism of GENI. GENI increased the enzymes activities and gene expression levels of superoxide dismutase (SOD) and reduced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) to improve the survival rate of yeast under oxidative stress. In addition, GENI did not extend the replicative lifespan of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆cat, and ∆gpx mutants with K6001 background. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 was increased by GENI. The protein level of free GFP showed a considerable increase and was time-dependent. Furthermore, GENI failed to extend the replicative lifespans of ∆atg32 and ∆atg2 yeast mutants. These results indicated that antioxidative stress and autophagy induction were involved in the antiaging effect of GENI.
Collapse
Affiliation(s)
- Ying Wang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Yanjun Pan
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Dejene Disasa
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Matsuura Akira
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| |
Collapse
|
19
|
Li YJ, Zhang DZ, Xi Y, Wu CA. Protective effect of dexmedetomidine on neuronal hypoxic injury through inhibition of miR-134. Hum Exp Toxicol 2021; 40:2145-2155. [PMID: 34121490 DOI: 10.1177/09603271211023784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the mechanism of dexmedetomidine (DEX)-mediated miR-134 inhibition in hypoxia-induced damage in PC12 cells. METHODS Hydrogen peroxide (H2O2)-stimulated PC12 cells were divided into control, H2O2, DEX + H2O2, miR-NC/inhibitor + H2O2, and miR-NC/ mimic + DEX + H2O2 groups. Cell viability and apoptosis were assessed by the 3-(4,5-dimethylthiazol(-2-y1)-2,5-diphenytetrazolium bromide (MTT) assay and Annexin V-FITC/PI staining, while gene and protein expression levels were detected by qRT-PCR and western blotting. Reactive oxygen species (ROS) levels were tested by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining, and malondialdehyde (MDA) content was determined with a detection kit. RESULTS DEX treatment decreased H2O2-elevated miR-134 expression. H2O2-induced PC12 cell damage was improved by DEX and miR-134 inhibitor; additionally, cell viability was increased, while cell apoptosis was reduced. In addition, both DEX and miR-134 inhibitor reduced the upregulated expression of cleaved caspase-3 and increased the downregulated expression of Bcl-2 in H2O2-induced PC12 cells. However, compared to that in the DEX + H2O2 group, cell viability in the mimic + DEX + H2O2 group was decreased, and the apoptotic rate was elevated with increased cleaved caspase-3 and decreased Bcl-2 expression. Inflammation and oxidative stress were increased in H2O2-induced PC12 cells but improved with DEX or miR-134 inhibitor treatment. However, this improvement of H2O2-induced inflammation and oxidative stress induced by DEX in PC12 cells could be reversed by the miR-134 mimic. CONCLUSION DEX exerts protective effects to promote viability and reduce cell apoptosis, inflammation, and oxidative stress in H2O2-induced PC12 cells by inhibiting the expression of miR-134.
Collapse
Affiliation(s)
- Y-J Li
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - D-Z Zhang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Y Xi
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - C-A Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| |
Collapse
|
20
|
The Insulin Receptor: A Potential Target of Amarogentin Isolated from Gentiana rigescens Franch That Induces Neurogenesis in PC12 Cells. Biomedicines 2021; 9:biomedicines9050581. [PMID: 34065446 PMCID: PMC8160887 DOI: 10.3390/biomedicines9050581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
Amarogentin (AMA) is a secoiridoid glycoside isolated from the traditional Chinese medicine, Gentiana rigescens Franch. AMA exhibits nerve growth factor (NGF)-mimicking and NGF-enhancing activities in PC12 cells and in primary cortical neuron cells. In this study, a possible mechanism was found showing the remarkable induction of phosphorylation of the insulin receptor (INSR) and protein kinase B (AKT). The potential target of AMA was predicted by using a small-interfering RNA (siRNA) and the cellular thermal shift assay (CETSA). The AMA-induced neurite outgrowth was reduced by the siRNA against the INSR and the results of the CETSA suggested that the INSR showed a significant thermal stability-shifted effect upon AMA treatment. Other neurotrophic signaling pathways in PC12 cells were investigated using specific inhibitors, Western blotting and PC12(rasN17) and PC12(mtGAP) mutants. The inhibitors of the glucocorticoid receptor (GR), phospholipase C (PLC) and protein kinase C (PKC), Ras, Raf and mitogen-activated protein kinase (MEK) significantly reduced the neurite outgrowth induced by AMA in PC12 cells. Furthermore, the phosphorylation reactions of GR, PLC, PKC and an extracellular signal-regulated kinase (ERK) were significantly increased after inducing AMA and markedly decreased after treatment with the corresponding inhibitors. Collectively, these results suggested that AMA-induced neuritogenic activity in PC12 cells potentially depended on targeting the INSR and activating the downstream Ras/Raf/ERK and PI3K/AKT signaling pathways. In addition, the GR/PLC/PKC signaling pathway was found to be involved in the neurogenesis effect of AMA.
Collapse
|
21
|
Tsai YT, Yeh HY, Chao CT, Chiang CK. Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6675548. [PMID: 33728027 PMCID: PMC7935587 DOI: 10.1155/2021/6675548] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC) describes the pathophysiological phenotype of calcium apatite deposition within the vascular wall, leading to vascular stiffening and the loss of compliance. VC is never benign; the presence and severity of VC correlate closely with the risk of myocardial events and cardiovascular mortality in multiple at-risk populations such as patients with diabetes and chronic kidney disease. Mitochondrial dysfunction involving each of vascular wall constituents (endothelia and vascular smooth muscle cells (VSMCs)) aggravates various vascular pathologies, including atherosclerosis and VC. However, few studies address the pathogenic role of mitochondrial dysfunction during the course of VC, and mitochondrial reactive oxygen species (ROS) seem to lie in the pathophysiologic epicenter. Superoxide dismutase 2 (SOD2), through its preferential localization to the mitochondria, stands at the forefront against mitochondrial ROS in VSMCs and thus potentially modifies the probability of VC initiation or progression. In this review, we will provide a literature-based summary regarding the relationship between SOD2 and VC in the context of VSMCs. Apart from the conventional wisdom of attenuating mitochondrial ROS, SOD2 has been found to affect mitophagy and the formation of the autophagosome, suppress JAK/STAT as well as PI3K/Akt signaling, and retard vascular senescence, all of which underlie the beneficial influences on VC exerted by SOD2. More importantly, we outline the therapeutic potential of a novel SOD2-targeted strategy for the treatment of VC, including an ever-expanding list of pharmaceuticals and natural compounds. It is expected that VSMC SOD2 will become an important druggable target for treating VC in the future.
Collapse
Affiliation(s)
- You-Tien Tsai
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- 2School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Chia-Ter Chao
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
- 3Nephrology Division, Department of Internal Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| |
Collapse
|