1
|
Samaratunga R, Kantono K, Kam R, Gannabathula S, Hamid N. Microencapsulated Asiatic Pennywort (Centella asiatica) fortified chocolate oat milk beverage: Formulation, polyphenols content, and consumer acceptability. J Food Sci 2024; 89:5395-5410. [PMID: 39138633 DOI: 10.1111/1750-3841.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
This study investigated the use of microencapsulated Asiatic pennywort (Centella asiatica) (CA) as a functional ingredient to formulate a novel chocolate oat milk beverage. The main objectives of the study were to characterize and encapsulate bioactive components from CA and to determine the polyphenol content and sensory properties of the beverage. CA extract was microencapsulated using maltodextrin and gum Arabic as carriers and subsequently freeze-dried to produce microcapsules. Microencapsulated CA was incorporated into chocolate oat milk at varying concentrations. Polyphenol content of the beverages was quantified using liquid chromatography-mass spectrometry. Consumer acceptability and sensory perception of the beverages were evaluated through an acceptance test and a check-all-that-apply test, respectively, to assess the sensory characteristics of the chocolate oat milk beverage. CA fortified chocolate oat milk contained fourteen polyphenols. Increasing the concentration of microencapsulated CA led to an increase in the polyphenol content of the beverage. Among the identified polyphenols, asiatic acid and asiaticoside stood out as the unique and most abundant compounds in CA (p < 0.05). Additionally, the incorporation of cocoa powder into the beverage further contributed to the polyphenol content, introducing bioactive compounds such as benzoic acid, caffeic acid, catechin, chlorogenic acid, kaempferol, luteolin, madecassic acid, p-coumaric acid, and quercetin. Evaluation of consumer acceptability revealed that chocolate oat milk beverages containing 2% and 4% microencapsulated CA were liked by consumers. However, beverages with higher concentrations of CA were perceived as less acceptable, characterized by grassy, bitter, and earthy attributes. In conclusion, this study demonstrates the potential of microencapsulated CA as a functional ingredient in chocolate oat milk beverages. PRACTICAL APPLICATION: This study reveals new insights on the microencapsulation of bioactive compounds in CA, proposing its potential as a novel functional ingredient in food and beverage applications in Western markets. The study revealed microencapsulated CA retained polyphenols in CA including asiatic acid and asiaticoside responsible for its bioactive properties. Consumer perception of CA added to oat milk revealed that it can be added at an acceptable level of 4%; however, higher amounts can decrease consumer acceptability. As practitioners explore the incorporation of CA as a functional component in food products, it is crucial to explore preservation techniques for the sensitive bioactive components while balancing the optimal amount of CA to enhance overall consumer liking.
Collapse
Affiliation(s)
- Roselle Samaratunga
- Centre for Future Foods, Auckland University of Technology, Auckland, New Zealand
| | - Kevin Kantono
- Centre for Future Foods, Auckland University of Technology, Auckland, New Zealand
| | - Rothman Kam
- Centre for Future Foods, Auckland University of Technology, Auckland, New Zealand
| | - Swapna Gannabathula
- Centre for Future Foods, Auckland University of Technology, Auckland, New Zealand
| | - Nazimah Hamid
- Centre for Future Foods, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
2
|
Yasmin R, Gogoi S, Bora J, Chakraborty A, Dey S, Ghaziri G, Bhattacharjee S, Singh LH. Novel Insight into the Cellular and Molecular Signalling Pathways on Cancer Preventing Effects of Hibiscus sabdariffa: A Review. J Cancer Prev 2023; 28:77-92. [PMID: 37830114 PMCID: PMC10564632 DOI: 10.15430/jcp.2023.28.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 10/14/2023] Open
Abstract
A category of diseases known as cancer includes abnormal cell development and the ability to infiltrate or spread to other regions of the body, making them a major cause of mortality worldwide. Chemotherapy, radiation, the use of cytotoxic medicines, and surgery are the mainstays of cancer treatment today. Plants or products produced from them hold promise as a source of anti-cancer medications that have fewer adverse effects. Due to the presence of numerous phytochemicals that have been isolated from various parts of the Hibiscus sabdariffa (HS) plant, including anthocyanin, flavonoids, saponins, tannins, polyphenols, organic acids, caffeic acids, citric acids, protocatechuic acid, and others, extracts of this plant have been reported to have anti-cancer effects. These compounds have been shown to reduce cancer cell proliferation, induce apoptosis, and cause cell cycle arrest. They also increase the expression levels of the cell cycle inhibitors (p53, p21, and p27) and the pro-apoptotic proteins (BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9). This review highlights various intracellular signalling pathways involved in cancer preventive potential of HS.
Collapse
Affiliation(s)
- Raihana Yasmin
- Department of Zoology, Royal Global University, Guwahati, India
| | - Sangeeta Gogoi
- Department of Zoology, Royal Global University, Guwahati, India
| | - Jumi Bora
- Department of Zoology, Royal Global University, Guwahati, India
| | - Arijit Chakraborty
- Department of Sports Physiology and Nutrition, National Sports University, Imphal, India
| | - Susmita Dey
- Department of Zoology, Royal Global University, Guwahati, India
| | - Ghazal Ghaziri
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Surajit Bhattacharjee
- Department of Biological Sciences, Dr. BR Ambedkar English Model School, Agartala, India
| | | |
Collapse
|
3
|
Bandopadhyay S, Mandal S, Ghorai M, Jha NK, Kumar M, Radha, Ghosh A, Proćków J, Pérez de la Lastra JM, Dey A. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J Cell Mol Med 2023; 27:593-608. [PMID: 36756687 PMCID: PMC9983323 DOI: 10.1111/jcmm.17635] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.
Collapse
Affiliation(s)
| | - Sujata Mandal
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaIndia,Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliIndia,Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR – Central Institute for Research on Cotton TechnologyMumbaiIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | | | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA)Consejo Superior de Investigaciones científicas (CSIS)Santa Cruz de TenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataIndia
| |
Collapse
|
4
|
Ramya H, Ravikumar KS, Ajith TA, Fathimathu Z, Janardhanan KK. Anticancer Activity of the Bioactive Extract of the Morel Mushroom (Morchella elata, Ascomycetes) from Kashmir Himalaya (India) and Identification of Major Bioactive Compounds. Int J Med Mushrooms 2023; 25:41-52. [PMID: 37831511 DOI: 10.1615/intjmedmushrooms.2023050169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Morel mushrooms, Morchella species are highly nutritional, excellently edible and medicinal. Anticancer activity of M. elata, growing in forests of Kashmir Himalaya was studied. Ethyl acetate extract of fruiting bodies of M. elata (MEAE) was evaluated for cytotoxicity by MTT assay using Daltons lymphoma ascites (DLA), human colon cancer (HCT-116) and normal cell lines. Anti-carcinogenic and antiangiogenic activities of MEAE were tested using mouse models. Proapoptotic activity was detected by double staining of acridine orange-ethidium bromide assay. MEAE was partially purified by column chromatography and the bioactive compounds were identified by LC-MS analysis. The bioactive extract of M. elata showed significant cytotoxicic activity against DLA (P < 0.05), HCT-116 cell lines (P < 0.05) and did not possess appreciable adverse effect on the viability of normal cells. At a concentration of 100 µg/mL, 60% cell death was observed in HCT-116 cell line while 80% cell death was found in DLA cell line. The extract also possessed profound anticarcinogenic, antiangiogenic and proapoptotic activities. LC-MS analysis showed celastrol (RT 9.504, C29H38O4, MW 450.27), convallatoxin (RT 9.60, C29H42O10, MW 550.27), cucurbitacin A (RT 11.97, C32H46O9, MW 574.71) and madecassic acid (RT 14.35, C30H48O6, MW 504.70) as the major bioactive components. Current experimental studies indicated that bioactive extract of M. elata possessed significant anticancer activity. Being an excellently edible mushroom, the potential therapeutic use of M. elata and its bioactive extract in complementary therapy of cancer is envisaged.
Collapse
Affiliation(s)
| | | | | | - Zuhara Fathimathu
- Department of Life Sciences, University of Calicut, Thenjipalam 673636, India
| | | |
Collapse
|
5
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Chen ZH, Chen ZY, Kang J, Chu XP, Fu R, Zhang JT, Qi YF, Chen JH, Lin JT, Jiang BY, Yang XN, Wu YL, Zhong WZ, Nie Q. Investigation on the incidence and risk factors of lung cancer among Chinese hospital employees. Thorac Cancer 2022; 13:2210-2222. [PMID: 35818719 PMCID: PMC9346177 DOI: 10.1111/1759-7714.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Objective In recent years, the lung cancer incidence has grown and the population is younger. We intend to find out the true detection rate of pulmonary nodules and the incidence of lung cancer in the population and search for the risk factors. Method Hospital employees ≥40 years old who underwent low‐dose computed tomography (CT) lung cancer screening from January 2019 to March 2022 were selected to record CT‐imaging characteristics, pathology, staging, and questionnaires to investigate past history, smoking history, diet, mental health, etc. PM2.5 and radiation intake in radiation‐related occupation received monitoring in hospital. Result The detection rate of suspicious pulmonary nodules was 9.1% (233/2552), and the incidence rate of lung cancer (including adenocarcinoma in situ) was 4.0% (103/2552). Morbidity among doctors, nurses, technicians, administers, and logistics was no difference (p = 0.184), but higher in women than in men (4.7% vs 2.4% p = 0.002). The invasiveness increased with age and CT density of nodules (p = 0.018). The relationship between lung cancer morbidity and PM2.5 was not clear (p = 0.543); and no lung cancer has been found in employees related ionizing radiation. Conclusion The high screening rate has brought about a high incidence of lung cancer. At present, the risk factor analysis of lung cancer based on small samples cannot find the direct cause. Most of the ground glass opacity (GGO)s detected by LDCT screening are indolent, but there are also rapidly progressive lung cancer. A predictive model to identify active and indolent GGO is necessary.
Collapse
Affiliation(s)
- Zi-Hao Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Yong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiang-Peng Chu
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui Fu
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Fan Qi
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Hua Chen
- 12th People's Hospital of Guangzhou, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiang Nie
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Khatua A, Prasad A, Behuria HG, Patel AK, Singh M, Yasasve M, Saravanan M, Meena R. Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs. BIOMATERIALS ADVANCES 2022; 138:212855. [PMID: 35913247 DOI: 10.1016/j.bioadv.2022.212855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
The use of chemically synthesized nanoparticles and crude plant extracts as antimicrobial -anticancer agents have many limitations. In this study, we have used Centella asiatica extract (CaE) having relatively less explored but tremendous medicinal properties, as reducing and stabilizing agents to green synthesize magnesium oxide nanoparticles (MgONPs) using magnesium nitrate. In comparison to the bulk material, capabilities of Ca-MgONPs as an improved antibacterial, antifungal, and anticancer agent in human prostatic carcinoma cells (PC3), as well as membranolytic capability in model cell membrane, were studied. The phyto-functionalized Ca-MgONPs were characterized using UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FT-IR) and Atomic Force Microscopy (AFM). Observation of characteristic peaks by spectroscopic and microscopic analysis confirmed the synthesis of Ca-MgONPs. The Ca-MgONPs showed broad spectrum of bactericidal activity against both gram-positive and gram-negative bacteria and fungicidal activity against two species of the Candida fungus. The Ca-MgONPs also exhibited dose-dependent and selective inhibition of proliferating PC3 cells with IC50 of 123.65 ± 4.82 μg/mL at 24 h, however, without having any cytotoxicity toward non-cancerous HEK293 cells. Further studies aimed at understanding the probable mechanism of toxicity of Ca-MgONPs in PC3 cells, the results indicated a significant reduction in cell migration capacities, increment in cytosolic ROS, loss of mitochondrial transmembrane potential, DNA damage and S-phase cell cycle arrest. Ca-MgONPs also induced pore formation in a synthetic large unilamellar vesicle. Thus, Ca-MgONPs might be useful in the effective management of several human pathogens of concern and some more cancer types.
Collapse
Affiliation(s)
- Ashapurna Khatua
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab#103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Himadri Gourav Behuria
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha 757003, India
| | - Amiya Kumar Patel
- School of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha 768019, India
| | - Mani Singh
- Department of Environmental Sciences, Lakshmibai College, University of Delhi, New Delhi 110052, India
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Ramovatar Meena
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Huang CF, Hung TW, Yang SF, Tsai YL, Yang JT, Lin CL, Hsieh YH. Asiatic acid from centella asiatica exert anti-invasive ability in human renal cancer cells by modulation of ERK/p38MAPK-mediated MMP15 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154036. [PMID: 35316724 DOI: 10.1016/j.phymed.2022.154036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Asiatic acid (AA) is a naturally pentacyclic triterpenoids extracted from traditional medicine Centella asiatica l. that has demonstrated possesses potential health benefits and antitumor ability. However, the precise anticancer effects and mechanisms by which AA impact RCC cells remains unclear. METHODS Cell proliferation and cell cycle distribution were detected by MTT, colony formation assay and PI stain by flow cytometry, respectively. Cell mobility and invasiveness were determined by in vitro migration and invasion assay. The secretory MMP15 was detected by ELISA assay. Quantitative RT-PCR, siRNA, and immunoblot were used to determine gene expression/regulation and protein expression, respectively. Antimetastatic effect of AA were performed to lung nodule numbers in vivo metastasis mice model. MMP15, pERK1/2 and p-p38MAPK expressions were determined by immunohistochemistry. RESULTS Our findings indicated cell proliferation and cell cycle distribution of RCC cells were not significantly influenced by AA treatment. AA suppressed cell migration, invasion and significantly down-regulated mRNA and protein expression of MMP-15 (Matrix Metallopeptidase-15). Activation of ERK1/2 and p38MAPK were inhibited with AA, whereas combined AA with siRNA-ERK or siRNA-p38MAPK markedly reduced the metastatic effect and decreased MMP-15 expression in 786-O and A498 cells. Finally, AA significantly reduced the lung metastasis formation and metastasis-related proteins of human 786-O cells in vivo metastasis mice model. CONCLUSION AA inhibits the metastatic properties of RCC cells via inhibition of the p-ERK/p-p38MAPK axis and the subsequent down-regulation of MMP-15 in vitro and in vivo. Further study of AA as a potential anti-metastatic agent for RCC is warranted.
Collapse
Affiliation(s)
- Chien-Feng Huang
- Department of Critical Care Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Lun Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jen-Te Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Madecassic acid protects human periodontal ligament fibroblasts against hydrogen peroxide-induced cell damage by maintaining mitochondrial membrane potential. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00174-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Inhibition of A549 Lung Cancer Cell Migration and Invasion by Ent-Caprolactin C via the Suppression of Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition. Mar Drugs 2021; 19:md19080465. [PMID: 34436304 PMCID: PMC8398538 DOI: 10.3390/md19080465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) of cancer cells is a crucial process in cancer cell metastasis. An Aquimarina sp. MC085 extract was found to inhibit A549 human lung cancer cell invasion, and caprolactin C (1), a new natural product, α-amino-ε-caprolactam linked to 3-methyl butanoic acid, was purified through bioactivity-guided isolation of the extract. Furthermore, its enantiomeric compound, ent-caprolactin C (2), was synthesized. Both 1 and 2 inhibited the invasion and γ-irradiation-induced migration of A549 cells. In transforming growth factor-β (TGF-β)-treated A549 cells, 2 inhibited the phosphorylation of Smad2/3 and suppressed the EMT cell marker proteins (N-cadherin, β-catenin, and vimentin), as well as the related messenger ribonucleic acid expression (N-cadherin, matrix metalloproteinase-9, Snail, and vimentin), while compound 1 did not suppress Smad2/3 phosphorylation and the expression of EMT cell markers. Therefore, compound 2 could be a potential candidate for antimetastatic agent development, because it suppresses TGF-β-induced EMT.
Collapse
|
11
|
Dendrobine Inhibits γ-Irradiation-Induced Cancer Cell Migration, Invasion and Metastasis in Non-Small Cell Lung Cancer Cells. Biomedicines 2021; 9:biomedicines9080954. [PMID: 34440158 PMCID: PMC8392411 DOI: 10.3390/biomedicines9080954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
The use of ionizing radiation (IR) during radiotherapy can induce malignant effects, such as metastasis, which contribute to poor prognoses in lung cancer patients. Here, we explored the ability of dendrobine, a plant-derived alkaloid from Dendrobium nobile, to improve the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). We employed Western blotting, quantitative real-time (qRT)-PCR, transwell migration assays, and wound-healing assays to determine the effects of dendrobine on the migration and invasion of A549 lung cancer cells in vitro. Dendrobine (5 mm) inhibited γ-irradiation-induced migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus inhibiting IR-induced signaling. To investigate the inhibitory effects of dendrobine in vivo, we established a mouse model of IR-induced metastasis by injecting BALB/c nude mice with γ-irradiated A549 cells via the tail vein. As expected, injection with γ-irradiated cells increased the number of pulmonary metastatic nodules in mice (0 Gy/DPBS, 9.8 ± 1.77; 2 Gy/DPBS, 20.87 ± 1.42), which was significantly reduced with dendrobine treatment (2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signaling. Together, these findings demonstrate that dendrobine exerts inhibitory effects against γ-irradiation-induced invasion and metastasis in NSCLC cells in vitro and in vivo at non cytotoxic concentrations. Thus, dendrobine could serve as a therapeutic enhancer to overcome the malignant effects of radiation therapy in patients with NSCLC.
Collapse
|
12
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|