1
|
Velázquez-Enríquez JM, Santos-Álvarez JC, Ramírez-Hernández AA, Reyes-Jiménez E, Pérez-Campos Mayoral L, Romero-Tlalolini MDLÁ, Jiménez-Martínez C, Arellanes-Robledo J, Villa-Treviño S, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Chlorogenic acid attenuates idiopathic pulmonary fibrosis: An integrated analysis of network pharmacology, molecular docking, and experimental validation. Biochem Biophys Res Commun 2024; 734:150672. [PMID: 39260206 DOI: 10.1016/j.bbrc.2024.150672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. MAIN METHODS Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. KEY FINDINGS Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. SIGNIFICANCE CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Facultad Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - María de Los Ángeles Romero-Tlalolini
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City, 07738, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, México City, 14610, Mexico; Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades, Ciencias y Tecnologías - CONAHCYT, México City, 03940, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| |
Collapse
|
2
|
Guo Y, Ye Z, Deng C, Wang L, Gu Q, Ji K, Li X, Dong K. Effect of Preoperative Glucocorticoid Application on Vitreous Parthanatos-Related Protein Expression in Patients with Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment. Curr Eye Res 2024:1-8. [PMID: 39373217 DOI: 10.1080/02713683.2024.2408755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE The protein concentrations of apoptosis inducing factor (AIF), macrophage migration inhibitory factor (MIF), interleukin-1β (IL-1β), poly ADP ribose polymerase-1 (PARP-1), poly (ADP-ribose) (PAR), α-synuclein (α-SYN), monocyte chemotactic protein‑1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the vitreous of eyes with rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) were observed and analyzed. METHODS A total of 57 patients' samples were included. 30 patients with RRD were set as the control group, 27 patients with RRDCD were set as the experimental group (16 patients with preoperative glucocorticosteroid (GC+) and 11 patients without preoperative glucocorticosteroid (GC-)). The levels of AIF, MIF, IL-1β, PARP-1, PAR, α-SYN, MCP-1 and TNF-α in vitreous of patients in the control and experimental groups were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS The concentration of AIF in the vitreous was higher in the RRD group (9.96 ± 2.78 ng/ml) than in the RRDCD (GC+) group (7.65 ± 2.13 ng/ml, p = 0.006),the RRDCD (GC+) group was lower than the RRDCD (GC-) group (10.28 ± 2.81 ng/ml) (p = 0.013). The concentration of MIF in vitreous fluid was lower in the RRDCD (GC+) group (61.21 ± 17.56 ng/ml) than in the RRDCD (GC-) group (74.30 ± 9.66 ng/ml, p = 0.039). In the experimental group, the protein concentration of MCP-1 in the RRDCD (GC+) group was higher in the preoperative PVR grading C (284.93 ± 54.96 ng/ml) grade than in the D grade (225.94 ± 24.05 ng/ml) (p = 0.050); The protein concentration of MIF was lower in the RRDCD (GC+) group of patients with an ocular axis of <26 mm (56.19 ± 6.99 ng/ml) than in those with an ocular axis of ≥26 mm (76.26 ± 26.60 ng/ml, p = 0.043). CONCLUSION Low expression of Parthanatos-related proteins is present in the vitreous of patients with RRDCD (GC+), and preoperative treatment with glucocorticoids may reduce the expression of Parthanatos-related proteins.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Ziyang Ye
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Can Deng
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Lin Wang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Qihong Gu
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Kangkang Ji
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaomeng Li
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Kai Dong
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
3
|
Luo X, Xiang F. Acute exacerbation of idiopathic pulmonary fibrosis a narrative review primary focus on treatments. J Thorac Dis 2024; 16:4727-4741. [PMID: 39144320 PMCID: PMC11320219 DOI: 10.21037/jtd-23-1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/17/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial pneumonia, which is the commonest type of idiopathic interstitial pneumonia in the clinic. For most patients, the course of the disease is slow and prolonged, but a percentage of them develop an acute respiratory worsening during the disease, known as an acute exacerbation of IPF (AE-IPF). The updated guidelines define AE-IPF as an acute worsening of dyspnea in an IPF patient within 1 month and exclude other conditions such as left heart failure and pulmonary embolism. However, the prevention and treatment of AE-IPF are still unclear. Based on the high mortality rate caused by AE, in this article, we will focus on the latest research advances in AE-IPF treatment strategies and provide a comprehensive review of its pathogenesis, risk factors, clinical features, and diagnosis. Methods This study searched for relevant literature published from 2018 to 2023 in the PubMed database. The search terms used were as follows: "Acute exacerbation", "Idiopathic pulmonary fibrosis", "Biomarker", "Pathogenesis", "Treatment", "HRCT", "Antifibrotic", "Infection", "Immunosuppressant", "Autoantibody", "Oxygen therapy", "Hemoperfusion", "Inflammation". Key Content and Findings The review found that corticosteroids are still the primary treatment strategy at present, although there is some controversy regarding the dosing and tapering of corticosteroids. However, corticosteroids combined with intravenous cyclophosphamide have been shown to be detrimental to the prognosis of patients with AE-IPF. Given its deadly high mortality rate, early intervention is crucial. Pirfenidone and nintedanib have been proven to reduce incidence of AE. Meanwhile, in the future, the lung microbiome may also be a break-through. Conclusions This study reviewed the pathogenesis and risk factors of AE-IPF and updated the current and potential treatment strategies regarding AE-IPF. The pathogenesis of AE-IPF is not exact, multiple mechanisms may be involved simultaneously. Corticosteroids remain the mainstream treatment modality in the medical treatment of AE-IFP. Many other treatment modalities have been proposed in succession, but no clear conclusions can be drawn about the effectiveness and safety of these interventions.
Collapse
Affiliation(s)
- Xiaohui Luo
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiang
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Read J, Reid AT, Thomson C, Plit M, Mejia R, Knight DA, Lize M, El Kasmi K, Grainge CL, Stahl H, Schuliga M. Alveolar epithelial cells of lung fibrosis patients are susceptible to severe virus-induced injury. Clin Sci (Lond) 2024; 138:537-554. [PMID: 38577922 DOI: 10.1042/cs20240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1β were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.
Collapse
Affiliation(s)
- Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew T Reid
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Claire Thomson
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Saint Vincent's Hospital, Sydney, NSW, Australia
| | | | - Ross Mejia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Muriel Lize
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Heiko Stahl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
5
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Drakopanagiotakis F, Markart P, Steiropoulos P. Acute Exacerbations of Interstitial Lung Diseases: Focus on Biomarkers. Int J Mol Sci 2023; 24:10196. [PMID: 37373339 DOI: 10.3390/ijms241210196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a large group of pulmonary disorders characterized histologically by the cardinal involvement of the pulmonary interstitium. The prototype of ILDs is idiopathic pulmonary fibrosis (IPF), an incurable disease characterized by progressive distortion and loss of normal lung architecture through unchecked collagen deposition. Acute exacerbations are dramatic events during the clinical course of ILDs, associated with high morbidity and mortality. Infections, microaspiration, and advanced lung disease might be involved in the pathogenesis of acute exacerbations. Despite clinical scores, the prediction of the onset and outcome of acute exacerbations is still inaccurate. Biomarkers are necessary to characterize acute exacerbations better. We review the evidence for alveolar epithelial cell, fibropoliferation, and immunity molecules as potential biomarkers for acute exacerbations of interstitial lung disease.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| | - Philipp Markart
- Department of Respiratory Medicine, Klinikum Fulda and University Medicine Campus Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| |
Collapse
|
7
|
Zinellu A, Fois AG, Pirina P, Carru C, Mangoni AA. A Systematic Review and Meta-analysis of Clinical, Respiratory, and Biochemical Risk Factors for Acute Exacerbation of idiopathic Pulmonary Fibrosis. Arch Med Res 2023:S0188-4409(23)00058-9. [PMID: 37137756 DOI: 10.1016/j.arcmed.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A better capacity to identify patients with idiopathic pulmonary fibrosis (IPF) at risk of acute exacerbation (AEIPF) might improve outcomes and reduce healthcare costs. AIMS We critically appraised the available evidence of the differences in clinical, respiratory, and biochemical parameters between AEIPF and IPF patients with stable disease (SIPF) by conducting a systematic review and meta-analysis. METHODS PubMed, Web of Science and Scopus were reviewed up until August 1, 2022, for studies reporting differences in clinical, respiratory, and biochemical parameters (including investigational biomarkers) between AEIPF and SIPF patients. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the risk of bias. RESULTS Twenty-nine cross-sectional studies published between 2010 and 2022 were identified (all with a low risk of bias). Of the 32 meta-analysed parameters, significant differences were observed between groups, assessed through standard mean differences or relative ratios, with age, forced vital capacity, vital capacity, carbon monoxide diffusion capacity, total lung capacity, oxygen partial pressure, alveolar-arterial oxygen gradient, P/F ratio, 6 min walk test distance, C-reactive protein, lactate dehydrogenase, white blood cell count, albumin, Krebs von den Lungen 6, surfactant protein D, high mobility group box 1 protein, and interleukin-1β, 6, and 8. CONCLUSIONS We identified significant differences between AEIPF and SIPF patients in age and specific parameters of respiratory function, inflammation, and epithelial lung damage. Prospective studies are warranted to determine the capacity of these parameters to predict AEIPF more accurately (PROSPERO registration number: CRD42022356640).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro G Fois
- Department of Respiratory Diseases, University Hospital Sassari, Sassari, Italy; Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Respiratory Diseases, University Hospital Sassari, Sassari, Italy; Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
8
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
9
|
Correlation of Serum C-Peptide, Soluble Intercellular Adhesion Molecule-1, and NLRP3 Inflammasome-Related Inflammatory Factor Interleukin-1β after Brain Magnetic Resonance Imaging Examination with Cerebral Small Vessel Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4379847. [PMID: 35169393 PMCID: PMC8813282 DOI: 10.1155/2022/4379847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the correlation of serum c-peptide, soluble intercellular adhesion molecule-1 (sICAM-1), and NLRP3 inflammasome-related inflammatory factor interleukin-1β (IL-1β) after brain magnetic resonance imaging (MRI) examination with cerebral small vessel disease (CSVD). Methods. A total of 72 CSVD patients treated in our hospital from December 2018 to December 2019 were selected as the case group and another 72 patients who presented cerebrovascular risk factors but obtained normal brain MRI examination result in the same period were selected as the control group. The serum specimen of patients in the two groups were collected, their serum c-peptide levels were measured by radio immunoassay, and their serum sICAM-1 and NLRP3 inflammasome-related inflammatory factor IL-1β were measured by enzyme-linked immunosorbent assay (ELISA), so as to analyze the correlation between these indicators and CSVD. Results. Compared with the control group, the level values of serum c-peptide, sICAM-1, and IL-1β were significantly higher in the case group (
), with CSVD being the dependent variable, and age, smoking, uric acid, history of stroke, serum c-peptide, sICAM-1, and IL-1β being the independent variables. A logistic regression analysis was conducted, and the result showed that age, smoking, serum c-peptide, sICAM-1, and IL-1β were the risk factors for CSVD, and by drawing the ROC curves, it could be concluded that the area under sICAM-1 curve was larger than that of other single indicator. Conclusion. Elevation of level values of serum c-peptide, sICAM-1, and NLRP3 inflammasome-related inflammatory factor IL-1β is correlative with CSVD, and age, smoking, serum c-peptide, sICAM-1, and IL-1β are the independent risk factors for CSVD.
Collapse
|
10
|
Li X, Cai H, Cai Y, Zhang Q, Ding Y, Zhuang Q. Investigation of a Hypoxia-Immune-Related Microenvironment Gene Signature and Prediction Model for Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:629854. [PMID: 34194423 PMCID: PMC8236709 DOI: 10.3389/fimmu.2021.629854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background There is growing evidence found that the role of hypoxia and immune status in idiopathic pulmonary fibrosis (IPF). However, there are few studies about the role of hypoxia and immune status in the lung milieu in the prognosis of IPF. This study aimed to develop a hypoxia-immune-related prediction model for the prognosis of IPF. Methods Hypoxia and immune status were estimated with microarray data of a discovery cohort from the GEO database using UMAP and ESTIMATE algorithms respectively. The Cox regression model with the LASSO method was used for identifying prognostic genes and developing hypoxia-immune-related genes. Cibersort was used to evaluate the difference of 22 kinds of immune cell infiltration. Three independent validation cohorts from GEO database were used for external validation. Peripheral blood mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) were collected to be tested by Quantitative reverse transcriptase-PCR (qRT-PCR) and flow cytometry from 22 clinical samples, including 13 healthy controls, six patients with non-fibrotic pneumonia and three patients with pulmonary fibrosis. Results Hypoxia and immune status were significantly associated with the prognosis of IPF patients. High hypoxia and high immune status were identified as risk factors for overall survival. CD8+ T cell, activated CD4+ memory T cell, NK cell, activated mast cell, M1 and M0 macrophages were identified as key immune cells in hypoxia-immune-related microenvironment. A prediction model for IPF prognosis was established based on the hypoxia-immune-related one protective and nine risk DEGs. In the independent validation cohorts, the prognostic prediction model performed the significant applicability in peripheral whole blood, peripheral blood mononuclear cell, and lung tissue of IPF patients. The preliminary clinical specimen validation suggested the reliability of most conclusions. Conclusions The hypoxia-immune-based prediction model for the prognosis of IPF provides a new idea for prognosis and treatment.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Haozheng Cai
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yufeng Cai
- School of Life Science, Central South University, Changsha, China
| | - Quyan Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yinghe Ding
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|