1
|
Zhang Y, Liu M, Yu D, Wang J, Li J. 17β-Estradiol Ameliorates Postoperative Cognitive Dysfunction in Aged Mice via miR-138-5p/SIRT1/HMGB1 Pathway. Int J Neuropsychopharmacol 2024; 27:pyae054. [PMID: 39520138 PMCID: PMC11631145 DOI: 10.1093/ijnp/pyae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication in older patients and correlated with adverse outcomes. 17β-estradiol treatment was reported to provide neuroprotective protection in various neurologic disorders, but whether it attenuated POCD was unknown. The purpose of this study was to explore the effects of 17β-estradiol treatment on POCD and its mechanisms. METHODS We generated a POCD model in 15-month-old mice via laparotomy, followed by subcutaneous injection of 17β-estradiol, intraperitoneal injection of EX527 (a Sirtuin 1 [SIRT1] inhibitor), or bilateral hippocampal injection of miR-138-5p-agomir. Morris water maze test and open field test were applied to evaluate the cognitive function. The neuronal apoptosis in the hippocampus was detected using the terminal transferase dUTP nick end labeling assay. Meanwhile, the levels of interleukin-1β (IL-1β) and microglia activation were measured by enzymelinked immunosorbent assay and immunofluorescence, respectively. Western blot was utilized to assess the expression of SIRT1 and high mobility group box 1 (HMGB1) protein, and gene expression of miR-138-5p was determined through quantitative real-time polymerase chain reaction. RESULTS Behavioral tests showed that 17β-estradiol treatment improved cognitive function in aged POCD mice. In addition, 17β-estradiol attenuated neuronal apoptosis and microglia activation as well as IL-1β expression in the hippocampus. Nonetheless, injection with EX527 abolished the beneficial impacts of 17β-estradiol against POCD. Furthermore, miR-138-5p was verified to bind with SIRT1, which regulated the expression of HMGB1. After treatment with 17β-estradiol, miR-138-5p expression was reduced in the hippocampus, and the neuroprotective influence of 17β-estradiol on aged POCD mice was reversed after administration of miR-138-5p-agomir. CONCLUSIONS 17β-estradiol treatment exerted neuroprotection effects on POCD in aged mice, which might be relevant to alleviating neuroinflammation via miR-138-5p/SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Graduate Faculty, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jing Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
2
|
Li L, Chen Q, Qin Y, Yu G, Qi T, Sui H, Qi X, Huang L. Regulation of TREM2 on BV2 inflammation through PI3K/AKT/mTOR pathway. Biotechnol Genet Eng Rev 2024; 40:4040-4061. [PMID: 37125903 DOI: 10.1080/02648725.2023.2204719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
This work sought to determine how lipopolysaccharide (LPS)-induced pro-inflammatory factor production in BV2 microglia was influenced by myeloid cell 2 (TREM2) expressions. LPS (0.1, 1, and 10 µg/mL) induced inflammation in BV2 cells, MTT and QPCR were used to detect the occurrence of inflammation; TREM2 activation and inhibition vectors were used to activate and inhibit TREM2; Cell Proliferation was detected using CCK-8 and cell cloning experiments. LY294002 was used to inhibit the activity of PI3K/AKT signal pathway; Western blot and ELISA were used to detect cell polarization and signal pathway changes. CCK-8 and cell clone experiments found that the activation of TERM2 can promote the proliferation of BV2 cells; and the activation of TERM2 can promote the expression of IL6, IL1β, TNFα and the expression of M2 cell phenotype molecules Arg-1 and CD206. The effect of adding LY294002 signaling pathway by TERM2 activation was inhibited, indicating that TERM2 can affect the occurrence of inflammation by regulating the activity of PI3K/AKT signaling pathway. Finally, Western blotting and ELISA showed that activation of TERM2 can promote the expression of Arg-1 and CD206 in BV2 cells, and promote the transformation of BV2 cells to M2 polarization. TERM2 can affect the inflammatory response in microglia through the PI3K/AKT signaling pathway, suggesting that TERM2 may be a target for the treatment of inflammatory response in glial cells. This study provides a treatment plan for alleviating the impact of inflammation on central nervous system.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Qingyou Chen
- Department of Electrical Biology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yinghui Qin
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Guangna Yu
- Medical examination center, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Tingting Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Hesong Sui
- Department of Orthopedic surgery, Qiqihar Jianhua Hospital, Qiqihar, China
| | - Xin Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lijuan Huang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
3
|
Wang M, Zhu W, Guo Y, Zeng H, Liu J, Liu J, Zou Y. Astragalus polysaccharide treatment relieves cerebral ischemia‒reperfusion injury by promoting M2 polarization of microglia by enhancing O-GlcNAcylation. Metab Brain Dis 2024; 40:16. [PMID: 39560836 DOI: 10.1007/s11011-024-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Cerebral ischemia‒reperfusion (I/R) injury seriously threatens the lives of patients. Astragalus polysaccharide (APS) is the main active ingredient of Astragalus membranaceus and has a wide range of pharmacological activities. Here, we aimed to explore the impacts of APS on cerebral I/R injury and its specific mechanisms. We established a cerebral I/R injury model using middle cerebral artery occlusion (MCAO)-treated rats and oxygen glucose deprivation/reoxygenation (OGD/R)-treated BV2 cells. The interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin (IL-10) levels were determined using corresponding ELISA kits and RT‒qPCR. The levels of M1 microglial markers (INOS and CD16) and M2 microglial markers (Arg-1 and CD206) were measured by RT‒qPCR. The O-linked N-acetylglucosamine modification (O-GlcNAcylation), O-GlcNAc transfer (OGT) and O-GlcNAc glycosidase (OGA) protein levels were measured by Western blot. Our results showed that APS treatment decreased IL-1β (179.72 ± 9.08 vs. 81.33 ± 6.30) and IL-6 (445.56 ± 33.09 vs. 234.75 ± 27.62) levels and increased IL-10 (41.95 ± 4.18 vs. 86.40 ± 7.16) levels in OGD/R-treated BV2 cells (p < 0.001). In addition, APS promoted the M2 polarization of OGD/R-treated BV2 cells, manifested by an increase in Arg-1 (0.43 ± 0.04 vs. 0.76 ± 0.03) and CD206 (0.36 ± 0.03 vs. 0.65 ± 0.06) and a decrease in INOS (2.84 ± 0.39 vs. 1.56 ± 0.19) and CD16 (4.04 ± 0.36 vs. 1.88 ± 0.09) in OGD/R-treated BV2 cells (p < 0.001). Additionally, APS treatment increased the O-GlcNAcylation and OGT levels in OGD/R-treated BV2 cells, while OGT knockdown reversed the effect of APS in OGD/R-treated BV2 cells and MCAO-treated rats (p < 0.05). Our study demonstrated that APS alleviated cerebral I/R injury by promoting the M2 polarization of microglia by enhancing OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Mingyi Wang
- Department of Rehabilitation Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), No.39, Donghua Road, Longjiang Town, Shunde District, Foshan City, Guangdong Province, 528318, China.
| | - Wenfeng Zhu
- Department of Ultrasound, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Yingmei Guo
- Department of Traditional Chinese Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Huan Zeng
- Endoscopy Center, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Jincan Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Yucong Zou
- Department of Rehabilitation, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| |
Collapse
|
4
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2024:10.1007/s10787-024-01595-9. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
5
|
Li X, Xu X, Zhang J, Wang X, Zhao C, Liu Q, Fan K. Review of the therapeutic effects of traditional Chinese medicine in sepsis-associated encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118588. [PMID: 39029543 DOI: 10.1016/j.jep.2024.118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Xingyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jun Zhang
- Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wu Han, 430014, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Chunming Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Yu H, Zhou D, Wang W, Wang Q, Li M, Ma X. Protective effect of baicalin on oxidative stress injury in retinal ganglion cells through the JAK/STAT signaling pathway in vitro and in vivo. Front Pharmacol 2024; 15:1443472. [PMID: 39555089 PMCID: PMC11565601 DOI: 10.3389/fphar.2024.1443472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background and Purpose The damage or apoptosis of retinal ganglion cells (RGCs) is one of the leading causes of various blinding eye diseases, such as glaucoma, diabetic retinopathy, optic neuritis, and ischemic optic neuropathy. Oxidative stress is involved in RGCs death. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis, has various beneficial effects, including anti-inflammatory, anti-apoptotic, and antioxidant properties. However, the effects of baicalin on RGCs and the underlying mechanisms require further investigation. Methods In this study, a glutamate-induced oxidative stress damage model of R28 cells and a rat retinal injury model were established to investigate the effects of baicalin on oxidative stress damage to RGCs and try to elucidate the underlying mechanism. Results In vitro experiments demonstrated that the survival rate of R28 cells after glutamate treatment dropped to 33.4%, while 10 μM baicalin significantly inhibited glutamate-induced damage in RGCs (P < 0.001) and enhanced cell viability through decreasing ROS levels, increasing antioxidant enzyme activity, and suppressing the expression of inflammatory factors iNOS, TNF-α, IL-6, and IL-1β (P < 0.001). In vivo, baicalin effectively mitigated structural damage to retinal tissue and RGCs morphology induced by glutamate, increasing the thickness of the retinal ganglion cell layer, improving RGCs density, and reducing overall retinal thinning in rats (P < 0.001) in a time- and dose-dependent effects. Mechanistic studies revealed that glutamate evaluated the phosphorylation levels of JAK/STAT, while baicalin effectively inhibited the activation of the JAK/STAT signaling pathway. Conclusion This study confirmed that baicalin protects against glutamate-induced oxidative stress damage in RGCs. It effectively alleviates oxidative stress and inflammatory responses, reduces cell apoptosis, and improves the pathological changes in the retina of rat models of RGCs damage, thereby decreasing RGCs death. Further exploration of its mechanism revealed that baicalin effectively inhibits the JAK/STAT signaling pathway, protecting RGCs from oxidative stress damage. This provides an experimental basis for the application of baicalin in the treatment of RGCs damage.
Collapse
Affiliation(s)
- Huan Yu
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dan Zhou
- Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Qingxia Wang
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xiaoyun Ma
- Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2024; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Gu L, Yin Y, Liu M, Yu L. Acacetin protects against acute lung injury by upregulating SIRT1/ NF-κB pathway. Heliyon 2024; 10:e37083. [PMID: 39296097 PMCID: PMC11409107 DOI: 10.1016/j.heliyon.2024.e37083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Acacetin is one of the natural flavone components found in many plants and possesses diverse pharmacological activities. The anti-inflammatory properties and definite mechanism of acacetin remains incompletely illuminated. Here, we evaluated the efficacy of acacetin on lipopolysaccharide (LPS)-induced acute lung injury in vivo and TNF-α-stimulated cellular injury in vitro. As indicated by survival experiments, acacetin reduced mortality and improved survival time of LPS-induced acute lung injury in mice. 50 mg/kg of acacetin obtained higher survival (about 60 %), and 20 mg/kg of acacetin was about 46.7 %. In addition, 20 mg/kg of acacetin rescued lung histopathologic damage in LPS treated mice, lowered lung-to-body weight and lung wet-to-dry ratios, suppressed myeloperoxidase activity in lung tissue, the contents of protein, the numbers of total cells and neutrophils in bronchoalveolar lavage fluid (BALF), and the contents of inflammatory cytokines such as TNF-α, IL-6, IL-17 and IL-1β in BALF. Acacetin also increased the activity and expression of SIRT1, thereby suppressing acetylation-dependent activation NF-κB. Similarly, in vitro, acacetin increased cell viability, reduced levels of TNF-α, IL-6, IL-17, and IL-1β, increased NAD+ levels as well as NAD/NADH ratio, and then up-regulated the activity and expression of SIRT1, and restrained acetylation-dependent activation NF-κB in TNF-α-stimulated A549 cells, which could be abolished by SIRT1 siRNA. Collectively, the current study showed that acacetin exerts a protective effiect on acute lung injury by improving the activity and expression SIRT1, thereby suppressing the acetylation-dependent activation of NF-κB-p65 and the release of downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Lanxin Gu
- Yale School of Public Health, New Haven, CT, 06510, United States
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
10
|
Chen P, Guo Z, Lei J, Wang Y. Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-кB pathway. Phytother Res 2024; 38:3489-3508. [PMID: 38695373 DOI: 10.1002/ptr.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 07/12/2024]
Abstract
Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1β, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aβ1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhilei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
11
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
12
|
Yu C, Xiang Y, Zhang M, Wen J, Duan X, Wang L, Deng G, Fang P. Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity Through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. J Neuroimmune Pharmacol 2024; 19:21. [PMID: 38771510 PMCID: PMC11108907 DOI: 10.1007/s11481-024-10128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1β), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.
Collapse
Affiliation(s)
- Changwei Yu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Yalan Xiang
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, 410015, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Gongying Deng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Zheng Y, Wang C, Liu W, Chen J, Sun Y, Chang D, Wang H, Xu W, Lu JJ, Zhou X, Huang M. Upregulation of Nrf2 signaling: A key molecular mechanism of Baicalin's neuroprotective action against diabetes-induced cognitive impairment. Biomed Pharmacother 2024; 174:116579. [PMID: 38631145 DOI: 10.1016/j.biopha.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND AIM Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aβ and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.
Collapse
Affiliation(s)
- Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Chenxiang Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Wenjing Liu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Jiaying Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Yibin Sun
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Huan Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| |
Collapse
|
14
|
Tian R, Liu X, Xiao Y, Jing L, Tao H, Yang L, Meng X. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1β secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117686. [PMID: 38160864 DOI: 10.1016/j.jep.2023.117686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD), a famous traditional Chinese medicine prescription with heat-clearing and detoxifying effects, has been widely used to treat diabetes, dementia, stroke, and other diseases. However, the detailed mechanisms of HLJDD against type 2 diabetes associated cognitive dysfunction (DACD) through inhibiting interleukin-1β (IL-1β) mediated neuroinflammation remain to be further elucidated. AIM OF THE STUDY The aim of this study was to investigate the effect and potential mechanism of HLJDD on IL-1β secretion in a DACD model of BV2 cells induced by D-glucose and palmitic acid (PA). MATERIALS AND METHOD sUltra-performance liquid chromatography-quadrupole/electrostatic field orbital well high-resolution mass spectrometry technology was used to analyze the compounds in HLJDD drug-containing serum. The cytotoxicity was detected by cell counting kit-8. Enzyme-linked immunosorbent assay was used to measure the secretion of IL-1β in BV2 cells. Reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde kits were used to detect the intracellular oxidative stress levels. The autophagy level was determined by autophagy staining kit and transmission electron microscope. The expression levels of autophagy-related 7 (Atg7), P62, LC3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3(NLRP3), Caspase1, and IL-1β were detected by real-time PCR, immunofluorescence, and western blotting. The Atg7siRNA was transfected into BV2 cells to produce autophagy inhibitory effect. Then the effect of HLJDD drug-containing serum on IL-1β secretion in D-glucose and PA induced BV2 cells and the potential mechanism of autophagy-NLRP3 inflammasome activation were further observed. RESULTS Eighty-eight compounds were preliminarily identified in HLJDD drug-containing serum, among which geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid were identified as the main prototype components of HLJDD into the blood. In this study, the DACD model of BV2 cells induced by high concentrations of glucose and PA was successfully constructed. HLJDD drug-containing serum significantly reduced the secretion of IL-1β and the activity of NLRP3 inflammasome with improving the oxidative stress level. Interestingly, the enhanced autophagy level was also found. After transfection of Atg7siRNA into BV2 cells, the effect of HLJDD drug-containing serum on autophagy promotion was reversed, but the inhibitory effects on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were reduced. CONCLUSIONS These results indicated that the inhibition of HLJDD drug-containing serum on the IL-1β secretion in D-glucose and PA induced BV2 cells was related to autophagy promotion, the decreased NLRP3 inflammasome activation, and the improved oxidative stress. Moreover, the improvement of HLJDD drug-containing serum on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were all closely associated with Atg7 mediated autophagy promotion. Geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid may be the potential active ingredients of HLJDD drug-containing serum.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Zhang YM, Wei RM, Zhang JY, Liu S, Zhang KX, Kong XY, Ge YJ, Li XY, Chen GH. Resveratrol prevents cognitive deficits induced by sleep deprivation via modulating sirtuin 1 associated pathways in the hippocampus. J Biochem Mol Toxicol 2024; 38:e23698. [PMID: 38501767 DOI: 10.1002/jbt.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1β, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Shuang Liu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| |
Collapse
|
16
|
LI Z, WANG X, Luis U, Ayman Y, BAI Y, XU X, LIU Q. Complementary and alternative medicine on cognitive defects and neuroinflammation after sepsis. J TRADIT CHIN MED 2024; 44:408-416. [PMID: 38504548 PMCID: PMC10927414 DOI: 10.19852/j.cnki.jtcm.20240203.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis, ranging from mild confusion and delirium to severe cognitive impairment and deep coma. SAE is associated with higher mortality and long-term outcomes, particularly substantial declines in cognitive function. The mechanisms of SAE probably include neuroinflammation that is mediated by systemic inflammation and ischemic lesions in the brain, a disrupted blood-brain barrier, oxidative stress, neurotransmitter dysfunction, and severe microglial activation. Increasing evidence suggests that complementary and alternative medicine, especially Traditional Chinese Medicine (TCM), is favorable in alleviating cognitive decline after sepsis. Here, we summarized the studies of traditional herbal remedies, TCM formulas and acupuncture therapy in animal models of neurological dysfunctions after sepsis in recent decades and reviewed their potential mechanisms.
Collapse
Affiliation(s)
- Zhenxuan LI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuerui WANG
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ulloa Luis
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Youssef Ayman
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yunjing BAI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaolong XU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qingquan LIU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Chang N, Li J, Lin S, Zhang J, Zeng W, Ma G, Wang Y. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci Rep 2024; 14:5521. [PMID: 38448466 PMCID: PMC10917792 DOI: 10.1038/s41598-024-55923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise.
Collapse
Affiliation(s)
- Ning Chang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Junyang Li
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Sufen Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Jinfeng Zhang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Weiqiang Zeng
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Guoda Ma
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| |
Collapse
|
18
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Kong E, Geng X, Wu F, Yue W, Sun Y, Feng X. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain in elderly mice. J Cell Mol Med 2024; 28:e18090. [PMID: 38140846 PMCID: PMC10844686 DOI: 10.1111/jcmm.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1β, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.
Collapse
Affiliation(s)
- Erliang Kong
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Feixiang Wu
- Department of Intensive Care Unit, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Yue
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Yuming Sun
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xudong Feng
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| |
Collapse
|
20
|
Sun L, Wang X, Guan S, Chi L, Liang M, Lu X, Luo T. Inhibition of voltage-gated Hv1 alleviates LPS-induced neuroinflammation via regulation of microglial metabolic reprogramming. Int Immunopharmacol 2024; 127:111361. [PMID: 38145600 DOI: 10.1016/j.intimp.2023.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
A growing body of evidence highlights the crucial role of metabolic reprogramming in activated immune cells, significantly contributing to both the initiation and progression of neuroinflammation and neurodegenerative diseases. The voltage-gated H channel (Hv1) has been reported to be involved in microglial activation and acts as a key driver of neuroinflammation. This study aimed to explore how Hv1-mediated metabolic reprogramming contributes to neuroinflammation and to assess the therapeutic potential of the Hv1 inhibitor 2-GBI in a model of lipopolysaccharide (LPS)-induced neuroinflammation. We investigated the influence of 2-GBI on the generation of ROS, metabolic reprogramming, and pro-inflammatory mediator production in vitro and examined the therapeutic effect of 2-GBI on microglial activation and hippocampal neuroinflammation in vivo. The results indicated that 2-GBI attenuated the LPS-induced pro-inflammatory response and aerobic glycolysis in microglia, specifically mitigating HIF1α-mediated upregulation of glycolysis. 2-GBI exerted a protective effect against LPS-induced neuroinflammation through HIF1α pathway-regulated aerobic glycolysis. Using a transwell coculture system, we demonstrated that 2-GBI reversed PC12 cell death caused by BV2-mediated neuroinflammation. In vivo experiments further suggested that 2-GBI mitigated neuroinflammatory processes and cognitive dysfunction via microglial metabolic reprogramming. Collectively, our results highlight the potential of Hv1 inhibition as a therapeutic strategy for alleviating LPS-induced neuroinflammation by modulating microglial metabolic reprogramming.
Collapse
Affiliation(s)
- Lingbin Sun
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Xihua Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Laiting Chi
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Mingjin Liang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Xiao Lu
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
21
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
22
|
Yang Q, Li M, Hou Y, He H, Sun S. High-mobility group box 1 emerges as a therapeutic target for asthma. Immun Inflamm Dis 2023; 11:e1124. [PMID: 38156383 PMCID: PMC10739362 DOI: 10.1002/iid3.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein found in the calf thymus and participates in a variety of intracellular processes such as DNA transcription, replication and repair. In the cytoplasm, HMGB1 promotes mitochondrial autophagy and is involved in in cellular stress response. Once released into the extracellular, HMGB1 becomes an inflammatory factor that triggers inflammatory responses and a variety of immune responses. In addition, HMGB1 binding with the corresponding receptor can activate the downstream substrate to carry out several biological effects. Meanwhile, HMGB1 is involved in various signaling pathways, such as the HMGB1/RAGE pathway, HMGB1/NF-κB pathway, and HMGB1/JAK/STAT pathway, which ultimately promote inflammation. Moreover, HMGB1 may be involved in the pathogenesis of asthma by regulating downstream signaling pathways through corresponding receptors and mediates a number of signaling pathways in asthma, such as HMGB1/TLR4/NF-κB, HMGB1/RAGE, HMGB1/TGF-β, and so forth. Accordingly, HMGB1 emerges as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Qianni Yang
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
- 2021 Class 2 of AnesthesiologyKunming Medical UniversityKunmingChina
| | - Min Li
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Huilin He
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Shibo Sun
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
23
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
24
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
25
|
Rojas DB, Vizuete AFK, de Andrade VS, de Andrade RB, Gemelli T, Kim TDH, Gonçalves CA, Leipnitz G, Wannmacher CMD. Lipopolysaccharide impairs neurodevelopment and induces changes in astroglial reactivity, antioxidant defenses and bioenergetics in the cerebral cortex of neonatal rats. Int J Dev Neurosci 2023; 83:600-614. [PMID: 37477051 DOI: 10.1002/jdn.10288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Neonates have an immature immune system, which increases their vulnerability to infectious agents and inflammatory insults. The administration of the immunostimulatory agent lipopolysaccharide (LPS) has been shown to induce the expression of pro-inflammatory cytokines and cause behavior alterations in rodents at different ages. However, the effects of LPS administration during the neonatal period and its consequences during immune system maturation remain to be elucidated. We showed here that a single intraperitoneal administration of LPS in rats on postnatal day (PND) 7 caused early and variable alterations in TNF-α, S100B and GFAP levels in the cerebral cortex, CSF and serum of the animals, indicating long-term induction of neuroinflammation and astroglial reactivity. However, on PND 21, only GFAP levels were increased by LPS. Additionally, LPS induced oxidative stress and altered energy metabolism enzymes in the cerebral cortex on PND 21, and caused neurodevelopment impairment over time. These data suggest that neuroinflammation induction during the neonatal period induces glial reactivity, oxidative stress and bioenergetic disruption that may lead to neurodevelopment impairment and cognitive deficit in adult life.
Collapse
Affiliation(s)
- Denise Bertin Rojas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Strassburger de Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Tanise Gemelli
- Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Tomas Duk Hwa Kim
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clovis Milton Duval Wannmacher
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Li Y, Li Y, Chen L, Li Y, Liu K, Hong J, Wang Q, Kang N, Song Y, Mi X, Yuan Y, Han D, Liu T, Yang N, Guo X, Li Z. Reciprocal interaction between mitochondrial fission and mitophagy in postoperative delayed neurocognitive recovery in aged rats. CNS Neurosci Ther 2023; 29:3322-3338. [PMID: 37208948 PMCID: PMC10580336 DOI: 10.1111/cns.14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Emerging evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis of postoperative delayed neurocognitive recovery (dNCR). Mitochondria exist in a dynamic equilibrium that involves fission and fusion to regulate morphology and maintains normal cell function via the removal of damaged mitochondria through mitophagy. Nonetheless, the relationship between mitochondrial morphology and mitophagy, and how they influence mitochondrial function in the development of postoperative dNCR, remains poorly understood. Here, we observed morphological alterations of mitochondria and mitophagy activity in hippocampal neurons and assessed the involvement of their interaction in dNCR following general anesthesia and surgical stress in aged rats. METHODS Firstly, we evaluated the spatial learning and memory ability of the aged rats after anesthesia/surgery. Hippocampal mitochondrial function and mitochondrial morphology were detected. Afterwards, mitochondrial fission was inhibited by Mdivi-1 and siDrp1 in vivo and in vitro separately. We then detected mitophagy and mitochondrial function. Finally, we used rapamycin to activate mitophagy and observed mitochondrial morphology and mitochondrial function. RESULTS Surgery impaired hippocampal-dependent spatial learning and memory ability and caused mitochondrial dysfunction. It also increased mitochondrial fission and inhibited mitophagy in hippocampal neurons. Mdivi-1 improved mitophagy and learning and memory ability of aged rats by inhibiting mitochondrial fission. Knocking down Drp1 by siDrp1 also improved mitophagy and mitochondrial function. Meanwhile, rapamycin inhibited excessive mitochondrial fission and improved mitochondrial function. CONCLUSION Surgery simultaneously increases mitochondrial fission and inhibits mitophagy activity. Mechanistically, mitochondrial fission/fusion and mitophagy activity interact reciprocally with each other and are both involved in postoperative dNCR. These mitochondrial events after surgical stress may provide novel targets and modalities for therapeutic intervention in postoperative dNCR.
Collapse
Affiliation(s)
- Yitong Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yue Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Lei Chen
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yi Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Kaixi Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Jingshu Hong
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Qian Wang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ning Kang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yanan Song
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xinning Mi
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yi Yuan
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Dengyang Han
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Taotao Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ning Yang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xiangyang Guo
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Zhengqian Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
27
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
28
|
Zhang Z, Ye J, Liu X, Zhao W, Zhao B, Gao X, Lan H, Wu Y, Yang Y, Cao P. Huangqi Guizhi Wuwu decoction alleviates oxaliplatin-induced peripheral neuropathy via the gut-peripheral nerve axis. Chin Med 2023; 18:114. [PMID: 37679804 PMCID: PMC10485938 DOI: 10.1186/s13020-023-00826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Oxaliplatin-induced peripheral neurotoxicity (OIPN) limits the dose of chemotherapy and seriously affects the quality of life. Huangqi Guizhi Wuwu Decoction (HGWD) is a classical Traditional Chinese Medicine (TCM) formula for the prevention of OIPN. However, its specific pharmacological mechanism of action remains unknown. Our study found that HGWD can effectively alleviate chronic OIPN and regulate intestinal flora. Therefore, we explored the mechanism of action of HGWD in alleviating chronic OIPN from the perspective of intestinal flora. METHODS In this study, we established an OIPN model in C57BL/6 mice treated with different concentrations of HGWD. Mechanical pain and cold pain were assessed at certain time points, and samples of mice colon, dorsal root ganglion (DRG), serum, and feces were collected. Associated inflammation levels in the colon and DRG were detected using immunohistochemical techniques; the serum lipopolysaccharide (LPS) levels and associated inflammation were assessed using the appropriate kits; and 16S rRNA sequencing was used to examine the dynamic changes in gut microorganisms. Finally, established fecal microbiota transplantation (FMT) and antibiotic (ABX) pretreatment models were used to validate flora's role in HGWD for chronic OIPN by pain scoring and related pathological analysis. RESULTS HGWD treatment significantly alleviated pain sensitivity in chronic OIPN mice. Pathological results showed that HGWD treatment improved intestinal ZO-1 expression and reduced serum LPS levels and associated inflammatory factors in the colon, serum, and DRG. The 16S rRNA results showed that HGWD restored the composition of the intestinal flora in a time-dependent manner to alleviate OIPN. FMT and ABX experiments demonstrated that HGWD can alleviate chronic OIPN by regulating intestinal flora homeostasis. CONCLUSIONS HGWD prevents chronic OIPN by dynamically regulating intestinal flora homeostasis, thereby ameliorating intestinal barrier damage and reducing serum LPS and relevant inflammatory factor levels in the colon, serum, and DRG.
Collapse
Affiliation(s)
- Zhengwei Zhang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Ye
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyu Liu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuze Wu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Yang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
29
|
Chen Y, Peng F, Yang C, Hou H, Xing Z, Chen J, Liu L, Peng C, Li D. SIRT1 activation by 2,3,5,6-tetramethylpyrazine alleviates neuroinflammation via inhibiting M1 microglia polarization. Front Immunol 2023; 14:1206513. [PMID: 37600790 PMCID: PMC10436537 DOI: 10.3389/fimmu.2023.1206513] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Background Neuroinflammation has been reported as a potential contributing factor to brain diseases, and is characterized by activated microglia with release of multiple inflammatory mediators. 2,3,5,6-Tetramethylpyrazine (TMP) is an active alkaloid in Ligusticum chuanxiong Hort. and has various biological activities, including anti-inflammatory and neuroprotection properties. However, the anti-neuroinflammatory activity of TMP has been less studied and its potential molecular mechanisms in this field remain unclear. This study aimed to investigate the effects of TMP and its underlying mechanisms in neuroinflammation. Methods In vitro, lipopolysaccharide (LPS)-stimulated BV2 microglia were used to assess the effects of TMP on inflammatory cytokines as well as the components of the SIRT1/NF-κB signaling pathway, which were measured by using ELISA, western blotting, qRT-qPCR and immunofluorescence. Moreover, LPS-induced acute neuroinflammation model in mice was performed to detect whether TMP could exert anti-neuroinflammatory effects in vivo, and the EX527, a SIRT1 inhibitor, were given intraperitoneally every two days prior to TMP treatment. Serums and spinal trigeminal nucleus (Sp5) tissues were collected for ELISA assay, and the Sp5 tissues were used for HE staining, Nissl staining, immunofluorescence, qRT-PCR and western blotting. Results In vitro, TMP treatment significantly reduced the secretion of pro-inflammatory cytokines, including TNF-α and IL-6, promoted SIRT1 protein expression and inactivated NF-κB signaling pathway in LPS-induced neuroinflammation. Interestingly, pretreatment with EX527 blocked the therapeutic effects of TMP on neuroinflammation in vitro. Furthermore, TMP reduced the levels of pro-inflammatory cytokines and chemokines, and prevented microglia from polarizing towards a pro-inflammatory state through activating SIRT1 and inhibiting NF-κB activation in LPS-induced neuroinflammation in mice. And EX527 reversed the beneficial effects of TMP against LPS exposure in mice. Conclusion In summary, this study unravels that TMP could mitigate LPS-induced neuroinflammation via SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Huan Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Cai Y, Jiang S, Huang C, Shen A, Zhang X, Yang W, Xiao Y, Gao S, Du R, Zheng G, Yan T, Craig Wan C. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154747. [PMID: 36931095 DOI: 10.1016/j.phymed.2023.154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain β (β-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichuan Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Rong Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
31
|
Jia Y, Shen K, Liu J, Li Y, Bai X, Yang Y, He T, Zhang Y, Tong L, Gao X, Zhang Z, Guan H, Hu D. The deacetylation of Akt by SIRT1 inhibits inflammation in macrophages and protects against sepsis. Exp Biol Med (Maywood) 2023; 248:922-935. [PMID: 37211747 PMCID: PMC10525408 DOI: 10.1177/15353702231165707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/12/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.
Collapse
Affiliation(s)
| | | | | | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lin Tong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhi Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
32
|
Wang M, Yang Y, Guo Y, Tan R, Sheng Y, Chui H, Chen P, Luo H, Ying Z, Li L, Zeng J, Zhao J. Xiaoxuming decoction cutting formula reduces LPS-stimulated inflammation in BV-2 cells by regulating miR-9-5p in microglia exosomes. Front Pharmacol 2023; 14:1183612. [PMID: 37266151 PMCID: PMC10229826 DOI: 10.3389/fphar.2023.1183612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The Background: Stroke is one of the leading causes of morbidity and mortality, and the inflammatory mechanism plays a crucial role in stroke-related brain injury and post-ischemic tissue damage. Xiaoxuming decoction (XXMD) is the first prescription for the treatment of "zhongfeng" (a broad concept referring to stroke) in the Tang and Song Dynasties of China and has a significant position in the history of stroke treatment. Through the study of ancient medical records and modern clinical evidence, it is evident that XXMD has significant efficacy in the treatment of stroke and its sequelae, and its pharmacological mechanism may be related to post-stroke inflammation. However, XXMD contains 12 medicinal herbs with complex composition, and therefore, a simplified version of XXMD, called Xiaoxuming decoction cutting (XXMD-C), was derived based on the anti-inflammatory effects of the individual herbs. Therefore, it is necessary to explore and confirm the anti-inflammatory mechanism of XXMD-C. Aim of the study: Based on the previous experiments of our research group, it was found that both XXMD and XXMD-C have anti-inflammatory effects on LPS-induced microglia, and XXMD-C has a better anti-inflammatory effect. Since miRNAs in exosomes also participate in the occurrence and development of cardiovascular diseases, and traditional Chinese medicine can regulate exosomal miRNAs through intervention, this study aims to explore the anti-inflammatory mechanism of XXMD-C in the treatment of post-stroke inflammation through transcriptome sequencing, providing a basis for the application of XXMD-C. Materials and methods: XXMD-C was extracted using water and filtered through a 0.22 μm membrane filter. The main chemical components of the medicinal herbs in XXMD-C were rapidly qualitatively analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Cell viability was determined using the CCK-8 assay, and an LPS-induced BV-2 cell inflammation model was established. The expression of inflammatory cytokines was detected using ELISA and Western blot (WB). Extracellular vesicles were extracted using ultracentrifugation, and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis, and WB. Differential miRNAs were screened using smallRNA-seq sequencing, and validated using RT-PCR and Western blot. Results: The UPLC-Q-TOF-MS analysis revealed that representative components including ephedrine, pseudoephedrine, cinnamaldehyde, baicalin, baicalein, wogonin, and ginsenoside Rg1 were detected in XXMD-C. The results of ELISA and WB assays showed that XXMD-C had a therapeutic effect on LPS-induced inflammation in BV-2 cells. TEM, nanoparticle tracking analysis, and WB results demonstrated the successful extraction of extracellular vesicles using high-speed centrifugation. Differential miRNA analysis by smallRNA-seq identified miR-9-5p, which was validated by RT-PCR and WB. Inhibition of miR-9-5p was found to downregulate the expression of inflammatory factors including IL-1β, IL-6, iNOS, and TNF-α. Conclusion: The study found that XXMD-C has anti-neuroinflammatory effects. Through smallRNA-seq sequencing of extracellular vesicles, miR-9-5p was identified as a key miRNA in the mechanism of XXMD-C for treating neuroinflammation, and its in vivo anti-inflammatory mechanism deserves further investigation.
Collapse
Affiliation(s)
- Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yuting Yang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanmei Sheng
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huawei Chui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhujun Ying
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Wang X, Xie Y, Niu Y, Wan B, Lu Y, Luo Q, Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front Cell Neurosci 2023; 17:1189348. [PMID: 37234914 PMCID: PMC10206058 DOI: 10.3389/fncel.2023.1189348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.
Collapse
|
34
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
35
|
Wang Y, Cai Z, Zhan G, Li X, Li S, Wang X, Li S, Luo A. Caffeic Acid Phenethyl Ester Suppresses Oxidative Stress and Regulates M1/M2 Microglia Polarization via Sirt6/Nrf2 Pathway to Mitigate Cognitive Impairment in Aged Mice following Anesthesia and Surgery. Antioxidants (Basel) 2023; 12:antiox12030714. [PMID: 36978961 PMCID: PMC10045012 DOI: 10.3390/antiox12030714] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe neurological complication after anesthesia and surgery. However, there is still a lack of effective clinical pharmacotherapy due to its unclear pathogenesis. Caffeic acid phenethyl ester (CAPE), which is obtained from honeybee propolis and medicinal plants, shows powerful antioxidant, anti-inflammatory, and immunomodulating properties. In this study, we aimed to evaluate whether CAPE mitigated cognitive impairment following anesthesia and surgery and its potential underlying mechanisms in aged mice. Here, isoflurane anesthesia and tibial fracture surgery were used as the POCD model, and H2O2-induced BV2 cells were established as the microglial oxidative stress model. We revealed that CAPE pretreatment suppressed oxidative stress and promoted the switch of microglia from the M1 to the M2 type in the hippocampus, thereby ameliorating cognitive impairment caused by anesthesia and surgery. Further investigation indicated that CAPE pretreatment upregulated hippocampal Sirt6/Nrf2 expression after anesthesia and surgery. Moreover, mechanistic studies in BV2 cells demonstrated that the potent effects of CAPE pretreatment on reducing ROS generation and promoting protective polarization were attenuated by a specific Sirt6 inhibitor, OSS_128167. In summary, our findings opened a promising avenue for POCD prevention through CAPE pretreatment that enhanced the Sirt6/Nrf2 pathway to suppress oxidative stress as well as favor microglia protective polarization.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Correspondence: (S.L.); (A.L.)
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Correspondence: (S.L.); (A.L.)
| |
Collapse
|
36
|
Zeng Z, Lan Y, Chen Y, Zuo F, Gong Y, Luo G, Peng Y, Yuan Z. LncRNA GAS5 suppresses inflammatory responses by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis. Eur J Pharmacol 2023; 942:175520. [PMID: 36693551 DOI: 10.1016/j.ejphar.2023.175520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Sepsis comprises a lethal immunologic response due to infection. Increasingly, evidence has demonstrated the important role of long non-coding RNA growth arrest-specific transcript 5 (GAS5) in the regulation of sepsis. Nevertheless, the mechanisms by which GAS5 participates in the progression of sepsis remain unclear. Our study demonstrated the role and underlying mechanism of GAS5 in regulating lipopolysaccharide (LPS)-induced inflammation. In this study, GAS5 expression was found to be markedly decreased in serum samples of sepsis patients and a sepsis mouse model, and was negatively related with HMGB1 expression. GAS5 overexpression inhibited cell inflammatory responses by decreasing HMGB1 release. Furthermore, GAS5 inhibited LPS-mediated hyperacetylation and the release of HMGB1 by increasing the expression of sirtuin1 (SIRT1). Additionally, upregulated GAS5 attenuated inflammatory responses in vitro and vivo, and the knockdown of a miR-155-5p mimic and SIRT1 rescued the effects of GAS5 upregulation. Mechanistically, GAS5 sponged miR-155-5p to upregulate SIRT1, thereby inhibiting HMGB1 acetylation and release. In conclusion, our findings indicate that GAS5 suppresses inflammatory responses by modulating the miR-155-5p/SIRT1/HMGB1 axis in sepsis, providing a novel therapeutic target for inflammation in sepsis.
Collapse
Affiliation(s)
- Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingying Lan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fangqing Zuo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Yuan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
37
|
Li J, Wang G, Zhang Y, Fan X, Yao M. Protective effects of baicalin against L-glutamate-induced oxidative damage in HT-22 cells by inhibiting NLRP3 inflammasome activation via Nrf2/HO-1 signaling. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:351-358. [PMID: 36865047 PMCID: PMC9922368 DOI: 10.22038/ijbms.2023.64318.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/18/2022] [Indexed: 03/04/2023]
Abstract
Objectives To explore the ability and underlying molecular mechanisms involved in the protective effects of Baicalin (BA) against L-Glutamate-induced mouse hippocampal neuron cell line HT-22. Materials and Methods The cell injury model of HT-22 cells was induced by L-glutamate, and cell viability and damage were detected by CCK-8 and LDH assays. Generation of intracellular reactive oxygen species (ROS) was measured by DCFH-DA in situ fluorescence method. The SOD activity and MDA concentration in the supernatants were determined by WST-8 and colorimetric method, respectively. Furthermore, Western blot and real-time qPCR analysis were utilized to detect the expression levels of the Nrf2/HO-1 signaling pathway and NLRP3 inflammasome proteins and genes. Results L-Glutamate exposure induced cell injuries in HT-22 cells, and the concentration of 5 mM L-Glutamate was chosen to be the modeling condition. Co-treatment with BA significantly promoted cell viability and reduced LDH release in a dose-dependent manner. In addition, BA attenuated the L-Glutamate-induced injuries by decreasing the ROS production and MDA concentration, while increasing the SOD activity. Moreover, we also found that BA treatment up-regulated the gene and protein expression of Nrf2 and HO-1, and then inhibited the expression of NLRP3. Conclusion Our study found that BA could relieve oxidative stress damage of HT-22 cells induced by L-Glutamate, and the mechanism might be related to the activation of Nrf2/HO-1 and inhibition of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Junyuan Li
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, No.1 Xiyuan Caochang, Haidian District, Beijing, 100091, China, Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing 100091, China,These authors contributed eqully to this work
| | - Gang Wang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, China,These authors contributed eqully to this work
| | - Yehao Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, No.1 Xiyuan Caochang, Haidian District, Beijing, 100091, China, Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing 100091, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, No.1 Xiyuan Caochang, Haidian District, Beijing, 100091, China, Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing 100091, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, No.1 Xiyuan Caochang, Haidian District, Beijing, 100091, China, Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing 100091, China,Corresponding author: Mingjiang Yao. Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, No.1 Xiyuan Caochang, Haidian District, Beijing, 100091, China. Tel: +86-10-62835609; Fax: +86-10-62874083;
| |
Collapse
|
38
|
P7C3-A20 Attenuates Microglial Inflammation and Brain Injury after ICH through Activating the NAD +/Sirt3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7857760. [PMID: 36819779 PMCID: PMC9936507 DOI: 10.1155/2023/7857760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is lethal but lacks effective therapies. Nicotinamide adenine dinucleotide (NAD+) is a central metabolite indispensable for a broader range of fundamental intracellular biological functions. Reduction of NAD+ usually occurs after acute brain insults, and supplementation of NAD+ has been proven neuroprotective. P7C3-A20 is a novel compound featuring its ability to facilitate the flux of NAD+. In this study, we sought to determine the potential therapeutic value of P7C3-A20 in ICH. In collagenase-induced ICH mouse models, we found that P7C3-A20 treatment could diminish lesion volume, reduce blood-brain barrier (BBB) damage, mitigate brain edema, attenuate neural apoptosis, and improve neurological outcomes after ICH. Further, RNA sequencing and subsequent experiments revealed that ICH-induced neuroinflammation and microglial proinflammatory activities were significantly suppressed following P7C3-A20 treatment. Mitochondrial damage is an important trigger of inflammatory response. We examined mitochondrial morphology and function and found that P7C3-A20 could attenuate OxyHb-induced impairment of mitochondrial dynamics and functions in vitro. Mechanistically, Sirt3, an NAD+-dependent deacetylase located in mitochondria, was then found to play a vital role in the protection of P7C3-A20 against mitochondrial damage and inflammatory response. In rescue experiments, P7C3-A20 failed to exert those protective effects in microglia-specific Sirt3 conditional knockout (CKO) mice. Finally, preclinical research revealed a correlation between the plasma NAD+ level and the neurological outcome in ICH patients. These results demonstrate that P7C3-A20 is a promising therapeutic agent for neuroinflammatory injury after ICH and exerts protective actions, at least partly, in a Sirt3-dependent manner.
Collapse
|
39
|
Yang J, Han F, Wu G, Dong Y, Su H, Xu J, Li J. Dysregulated B7H4/JAK2/STAT3 Pathway Involves in Hypertriglyceridemia Acute Pancreatitis and Is Attenuated by Baicalin. Dig Dis Sci 2023; 68:478-486. [PMID: 35781653 DOI: 10.1007/s10620-022-07606-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients with hypertriglyceridemia (HTG) are prone to develop more severe acute pancreatitis (AP). However, the specific molecular mechanism still has not been elaborated clearly, and effective drugs for treating HTG-AP are not yet readily available. Baicalin is an ingredient isolated from a natural product that with potential to attenuate inflammation and pain in AP. AIMS The aim of the present study was to explore the effect of baicalin on HTG-AP and the possible mechanism involved. METHODS A mouse model of HTG-AP was successfully established by administering Poloxamer 407 and L-arginine intraperitoneally. We analyzed pathological changes, and performed TUNEL staining, DHE staining, and western blot to detect apoptosis, inflammation, oxidative stress, and B7H4/JAK2/STAT3 signaling in the pancreas. RESULTS Treatment with baicalin decreased serum triglyceride, cholesterol, lipase, amylase levels, and attenuated pancreatic edema. After intervention with baicalin, apoptosis and inflammation in HTG-AP mice were alleviated, as indicated by the decrease of Bax, cleaved-caspase-3, IL-6, TNF-α, and IL-1β. Baicalin also alleviated oxidative stress by decreasing NOX2, increasing SOD2 protein expression, and regulating Nrf2/Keap1 signaling in HTG-AP mice. Furthermore, baicalin decreased the upregulated B7H4/JAK2/STAT3 pathway in HTG-AP. CONCLUSIONS In conclusion, our data suggested that baicalin could attenuate HTG-AP, possibly through regulating B7H4/JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Guanghai Wu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Ya Dong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hang Su
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jun Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
40
|
Melatonin alleviates BDE-209-induced cognitive impairment and hippocampal neuroinflammation by modulating microglia polarization via SIRT1-mediated HMGB1/TLR4/NF-κB pathway. Food Chem Toxicol 2023; 172:113561. [PMID: 36566971 DOI: 10.1016/j.fct.2022.113561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants with developmental neurotoxicity, the mechanism of which remains obscure. The present study aimed to evaluate cognitive deficits and microglia-originated neuroinflammation in the hippocampus of offspring rats exposed to BDE-209 (30 and 100 mg/kg) during perinatal period. Compared to the control, BDE-209-treated rats showed significant longer escape latency and less platform crossings in tests of Morris water maze. Besides obvious hippocampal neuron damage, increased microglial activation and pro-inflammatory markers (CD86, TNFα, and IL-1β), meanwhile, decreased anti-inflammatory molecules (CD206, IL-10, and Arg1) were induced by BDE-209. Furthermore, we investigated the neuroprotection of melatonin against BDE-209 and whether through sirtuin 1 (SIRT1). Consistent with restored SIRT1 activity, enhanced deacetylation of HMGB1 and inhibited cytoplasmic translocation of HMGB1, reduced expression of proteins involved in TLR4-NF-κB pathway and nuclear transfer of phosphorylated-NF-κB p65, and ultimately suppressed microglial activation and improved spatial memory were observed in 10 mg/kg melatonin-pretreated rats, compared with BDE-209-exposed alone. These results demonstrated that melatonin ameliorated BDE-209-caused cognitive impairment partially through shifting microglia polarization towards anti-inflammatory phenotype in a SIRT1-dependent manner, suggesting a potential mechanism for prevention.
Collapse
|
41
|
Li Z, Zhao T, Shi M, Wei Y, Huang X, Shen J, Zhang X, Xie Z, Huang P, Yuan K, Li Z, Li N, Qin D. Polyphenols: Natural food grade biomolecules for treating neurodegenerative diseases from a multi-target perspective. Front Nutr 2023; 10:1139558. [PMID: 36925964 PMCID: PMC10011110 DOI: 10.3389/fnut.2023.1139558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
As natural functional bioactive ingredients found in foods and plants, polyphenols play various antioxidant and anti-inflammatory roles to prevent the development of disease and restore human health. The multi-target modulation of polyphenols provides a novel practical therapeutic strategy for neurodegenerative diseases that are difficult to treat with traditional drugs like glutathione and cholinesterase inhibitors. This review mainly focuses on the efficacy of polyphenols on ischemic stroke, Parkinson's disease and Alzheimer's disease, including in vivo and in vitro experimental studies. It is further emphasized that polyphenols exert neuroprotective effects primarily through inhibiting production of oxidative stress and inflammatory cytokines, which may be the underlying mechanism. However, polyphenols are still rarely used as medicines to treat neurodegenerative diseases. Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage of insufficient exploration. Future large-scale multi-center randomized controlled trials and in-depth mechanism studies are still needed to fully assess the safety, efficacy and side effects of polyphenols.
Collapse
Affiliation(s)
- Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Peidong Huang
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
42
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|
43
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
44
|
Zhang J, Liu Y, Li H, Hu Y, Yu S, Liu Q, Chen Y. Stellate Ganglion Block Improves Postoperative Cognitive Dysfunction in aged rats by SIRT1-mediated White Matter Lesion Repair. Neurochem Res 2022; 47:3838-3853. [DOI: 10.1007/s11064-022-03800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 12/04/2022]
|
45
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
46
|
Li B, Wang M, Chen S, Li M, Zeng J, Wu S, Tu Y, Li Y, Zhang R, Huang F, Tong X. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF- κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3263446. [PMID: 36408278 PMCID: PMC9668451 DOI: 10.1155/2022/3263446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/22/2022] [Indexed: 09/25/2023]
Abstract
Baicalin (BA) is a major flavone from Scutellaria baicalensis Georgi and has showed significant curative effects in Parkinson's and Alzheimer's diseases. In the present study, we investigated the effects of BA on antineuroinflammation and related signaling cascade in lipopolysaccharide- (LPS-) induced BV-2 microglial model. The results showed that BA significantly attenuated inflammatory mediators (NO, iNOS, IL-1β, COX-2, and PGE2) and suppressed the expression of miR-155. More crucially, BA could regulate the expression of related proteins in Toll-like receptor 4 (TLR4)/myeloid differentiation protein 88 (MyD88)/nuclear factor κB (NF-κB) pathway and suppress the phosphorylation of mitogen-activated protein kinase (MAPK) family. In addition, molecular docking analysis indicated that BA binds to the amino acids Lie 63 and Tyr 65 of TLR4 by π-σ and π-π T-shaped interaction. Thus, BA suppressed the LPS-stimulated neuroinflammation in BV-2 microglia by blocking the TLR4-mediated signal transduction through TLR4/MyD88/NF-κB and MAPK pathways and inhibiting the miR-155 expression. Our findings demonstrated that BA could be a valuable therapeutic for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Baojing Li
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingming Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Shuai Chen
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Manping Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Saichun Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuanqing Tu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanping Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongping Zhang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
47
|
Kim J, Jeon SG, Jeong HR, Park H, Kim JI, Hoe HS. L-Type Ca 2+ Channel Inhibition Rescues the LPS-Induced Neuroinflammatory Response and Impairments in Spatial Memory and Dendritic Spine Formation. Int J Mol Sci 2022; 23:13606. [PMID: 36362394 PMCID: PMC9655622 DOI: 10.3390/ijms232113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 08/11/2023] Open
Abstract
Ca2+ signaling is implicated in the transition between microglial surveillance and activation. Several L-type Ca2+ channel blockers (CCBs) have been shown to ameliorate neuroinflammation by modulating microglial activity. In this study, we examined the effects of the L-type CCB felodipine on LPS-mediated proinflammatory responses. We found that felodipine treatment significantly diminished LPS-evoked proinflammatory cytokine levels in BV2 microglial cells in an L-type Ca2+ channel-dependent manner. In addition, felodipine leads to the inhibition of TLR4/AKT/STAT3 signaling in BV2 microglial cells. We further examined the effects of felodipine on LPS-stimulated neuroinflammation in vivo and found that daily administration (3 or 7 days, i.p.) significantly reduced LPS-mediated gliosis and COX-2 and IL-1β levels in C57BL/6 (wild-type) mice. Moreover, felodipine administration significantly reduced chronic neuroinflammation-induced spatial memory impairment, dendritic spine number, and microgliosis in C57BL/6 mice. Taken together, our results suggest that the L-type CCB felodipine could be repurposed for the treatment of neuroinflammation/cognitive function-associated diseases.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-Daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
48
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
49
|
Xu W, Ren B, Zhang Z, Chen C, Xu T, Liu S, Ma C, Wang X, Wang Q, Cheng F. Network pharmacology analysis reveals neuroprotective effects of the Qin-Zhi-Zhu-Dan Formula in Alzheimer's disease. Front Neurosci 2022; 16:943400. [PMID: 36340795 PMCID: PMC9632440 DOI: 10.3389/fnins.2022.943400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 10/23/2024] Open
Abstract
There is yet no effective drug for Alzheimer's disease (AD) which is one of the world's most common neurodegenerative diseases. The Qin-Zhi-Zhu-Dan Formula (QZZD) is derived from a widely used Chinese patent drug-Qing-Kai-Ling Injection. It consists of Radix Scutellariae, Fructus Gardeniae, and Pulvis Fellis Suis. Recent study showed that QZZD and its effective components played important roles in anti-inflammation, antioxidative stress and preventing brain injury. It was noted that QZZD had protective effects on the brain, but the mechanism remained unclear. This study aims to investigate the mechanism of QZZD in the treatment of AD combining network pharmacology approach with experimental validation. In the network pharmacology analysis, a total of 15 active compounds of QZZD and 135 putative targets against AD were first obtained. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were then applied to clarify the biological mechanism. The anti-inflammatory mechanism of QZZD was proved, and a synthetic pathway-TNFR1-ERK1/2-NF-κBp65 signaling pathway was obtained. On the basis of the above discoveries, we further validated the protective effects QZZD on neurons with an APP/PS1 double transgenic mouse model. Weight change of the mice was monitored to assess QZZD's influence on the digestive system; water maze experiment was used for evaluating the effects on spatial learning and memory; Western blotting and immunohistochemistry analysis were used to detect the predicted key proteins in network pharmacology analysis, including Aβ, IL-6, NF-κBp65, TNFR1, p-ERK1/2, and ERK1/2. We proved that QZZD could improve neuroinflammation and attenuate neuronal death without influencing the digestive system in APP/PS1 double transgenic mice with dementia. Combining animal pharmacodynamic experiments with network pharmacology analysis, we confirmed the importance of inflammation in pathogenesis of AD, clarified the pharmacodynamic characteristics of QZZD in treating AD, and proved its neuroprotective effects through the regulation of TNFR1-ERK1/2-NF-κBp65 signaling pathway, which might provide reference for studies on treatment of AD in the future.
Collapse
Affiliation(s)
- Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zehan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Mesenchymal Stem Cell-Derived Exosomes Ameliorate Delayed Neurocognitive Recovery in Aged Mice by Inhibiting Hippocampus Ferroptosis via Activating SIRT1/Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3593294. [PMID: 36238648 PMCID: PMC9553403 DOI: 10.1155/2022/3593294] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Delayed neurocognitive recovery (dNCR) is a prevalent perioperative neurological complication in older patients and has common characteristics such as acute cognitive dysfunction, impaired memory, and inattention. Mesenchymal stem cell-derived exosomes (MSCs-Exo) are enclosed by a lipid bilayer contain proteins, DNA, miRNA, and other components, which are important mediators of intercellular communication. It has been reported that exosomes could play an important role in the treatment of neurodegenerative diseases, nerve injury, and other neurological diseases. In this study, we examined the effects of MSCs-Exo on dNCR aged mice after exploratory laparotomy and evaluated their potential regulatory mechanisms. We found that MSCs-Exo treatment ameliorated cognitive impairment in dNCR aged mice. MSCs-Exo inhibit hippocampus ferroptosis and increase the expression of silent information regulator 1 (SIRT1), factor nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in dNCR aged mice. Interestingly, the above effects of MSCs-Exo on dNCR aged mice were abolished by SIRT1 selective inhibitor EX-527. In conclusion, these findings indicated that MSCs-Exo can ameliorate cognitive impairment by inhibiting hippocampus ferroptosis in dNCR aged mice via activating SIRT1/Nrf2/HO-1 signaling pathway, providing a potential avenue for the treatment of dNCR.
Collapse
|