1
|
Binsi P, Parvathy U, Jeyakumari A, George Thomas N, Zynudheen A. Marine biopolymers in cosmetics. MARINE BIOPOLYMERS 2025:677-752. [DOI: 10.1016/b978-0-443-15606-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Yang TN, Huang NN, Wang YX, Jian PA, Ma XY, Li XN, Li JL. Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106209. [PMID: 39672631 DOI: 10.1016/j.pestbp.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly. However, the mechanism through which melatonin affects atrazine-induced damage to male sperm cells remains unclear. This study aimed to investigate the effects of ATZ on spermatocyte development and to elucidate MLT's role in preventing ATZ-induced spermatogenesis failure. Pubertal mice were randomly divided into four groups: blank control group (Con), 5 mg/kg melatonin group (MLT), 170 mg/kg atrazine group (ATZ), and ATZ + MLT group. GC-1 cell culture was employed to access the in vitro effects of MLT and ATZ on spermatogonia. The results indicate that atrazine affected protein and metabolite composition, and reduced sperm viability, sperm motility (VAP, VSL and VCL) and levels of proteins related to spermatogenesis function in the mice testis. Melatonin alleviated the development of cellular DNA damage and necroptosis caused by atrazine both in vivo and in vitro. Moreover, we proposed that it was GC-1 cells developing necroptosis, but not other cell types in the testis. In conclusion, this study suggests that atrazine disrupts the development process, causing DNA damage in spermatozoa during spermatogenesis. Additionally, ATZ-induced necroptosis specifically targets spermatogenic cells. Notably, melatonin alleviates atrazine-induced necroptosis and DNA damage in spermatogenic cells. This study provides new insights into potential therapeutic strategies for atrazine-induced male infertility.
Collapse
Affiliation(s)
- Tian-Ning Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning-Ning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Jiao X, Li X, Zhang N, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Solubilization of fish myofibrillar proteins in NaCl and KCl solutions: A DIA-based proteomics analysis. Food Chem 2024; 445:138662. [PMID: 38354641 DOI: 10.1016/j.foodchem.2024.138662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Understanding the basic solubilization of fish myofibrillar proteins (MPs) in common monovalent chloride solutions is crucial for muscle food processing. In this study, the differential proteomic profiles of MPs during extraction and solubilization in NaCl and KCl solutions were investigated by using advanced four-dimensional data-independent acquisition (4D DIA) quantitative proteomics for the first time. Compared to routine biochemical analysis, this could provide insights into the solubilization of muscle proteins. We ensure the consistency of the effective ionic strength of NaCl and KCl buffers by adjusting the conductivity. The results showed that NaCl extractor mainly facilitated the solubilization of cytoskeletal proteins, biochemical enzymes, and stromal proteins compared to KCl, such as tubulin, myosin-9, collagen, plectin, protein phosphatase, and cathepsin D. However, no significant difference was observed in the extraction of major sarcomeric proteins, including myosin, actin, troponin C, myosin-binding protein C, M-Protein, α-actinin-3, and tropomyosin.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China.
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Jianlian Huang
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Engineering Technology Research Center of Refrigeration and Conditioning Aquatic Food (Liaoning Anjoy Food Co., LTD), China National Light Industry Council, Anshan 114100, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Engineering Technology Research Center of Refrigeration and Conditioning Aquatic Food (Liaoning Anjoy Food Co., LTD), China National Light Industry Council, Anshan 114100, China.
| |
Collapse
|
4
|
Chang JJ, Wang YC, Yang SH, Wu JY, Chang MW, Wang HMD. Pioneering Astaxanthin-Tumor Cell Membrane Nanoparticles for Innovative Targeted Drug Delivery on Melanoma. Int J Nanomedicine 2024; 19:2395-2407. [PMID: 38469059 PMCID: PMC10926870 DOI: 10.2147/ijn.s439476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Background Recently, the use of the tumor or its secretions as drug carriers has gradually become popular, with the advantages of high biocompatibility and enhanced drug delivery to specific cells. Melanoma is the most malignant tumor of all skin cancers; it is the most metastatic and, therefore, the most difficult to treat. The main purpose of this study is to develop nanovesicles with tumor cell membrane secretion properties to encapsulate target substances to enhance the therapeutic effect of cancer. Methods Astaxanthin was selected as an anticancer drug due to our previous research finding that astaxanthin has extremely high antioxidant, anti-ultraviolet damage, and anti-tumor properties. The manufacturing method of the astaxanthin nanovesicle carrier is to mix melanoma cells and astaxanthin in an appropriate ratio and then remove the genetic material and inflammatory factors of cancer cells by extrusion. Results In terms of results, after the co-culture of astaxanthin nanovesicles and melanoma cancer cells, it was confirmed that the ability of astaxanthin nanovesicles to inhibit the growth and metastasis of melanoma cancer cells was significantly better than the same amount of astaxanthin alone, and it had no effect on normal Human cells are also effective. There was no apparent harm on normal cells, indicating the ability of the vesicles to be selectively transported. Conclusion Our findings illustrated the potential of astaxanthin nanovesicles as an anticancer drug.
Collapse
Affiliation(s)
- Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40447, Taiwan
| | - Yi-Chen Wang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 807, Taiwan
| | - Shu-Hui Yang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ju-Yu Wu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT15 1AB, Northern Ireland, UK
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
5
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Holistic Assessment Based On Hepatocyte Mitochondria: Lycopene Repairs Oxidized mtDNA to Alleviate Mitochondrial Stress Induced by Atrazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20325-20335. [PMID: 38052101 DOI: 10.1021/acs.jafc.3c05369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
6
|
Wang F, Sun M, Li D, Qin X, Liao Y, Liu X, Jia S, Xie Y, Zhong C. Multifunctional Asymmetric Bacterial Cellulose Membrane with Enhanced Anti-Bacterial and Anti-Inflammatory Activities for Promoting Infected Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303591. [PMID: 37568253 DOI: 10.1002/smll.202303591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Indexed: 08/13/2023]
Abstract
An asymmetric wound dressing acts as a skin-like structure serves as a protective barrier between a wound and its surroundings. It allows for the absorption of tissue fluids and the release of active substances at the wound site, thus speeding up the healing process. However, the production of such wound dressings requires the acquisition of specialized tools, expensive polymers, and solvents that contain harmful byproducts. In this study, an asymmetric bacterial cellulose (ABC) wound dressing using starch as a porogen has been developed. By incorporating silver-metal organic frameworks (Ag-MOF) and curcumin into the ABC membrane, the wound dressing gains antioxidant, reactive oxygen species (ROS) scavenging, and anti-bacterial activities. Compared to BC-based wound dressings, this dressing promotes efficient dissolution and controlled release of curcumin and silver ions. In a full-thickness skin defect model, wound dressing not only inhibits the growth of bacteria on infected wounds but also regulates the release of curcumin to reduce inflammation and promote the production of epithelium, blood vessels, and collagen. Consequently, this dressing provides superior wound treatment compared to BC-based dressing.
Collapse
Affiliation(s)
- Fengping Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Meiyan Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Dongmei Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaotong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yuting Liao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, P. R. China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
7
|
Liu N, Lyu X, Zhang X, Zhang F, Chen Y, Li G. Astaxanthin attenuates cognitive deficits in Alzheimer's disease models by reducing oxidative stress via the SIRT1/PGC-1α signaling pathway. Cell Biosci 2023; 13:173. [PMID: 37710272 PMCID: PMC10503143 DOI: 10.1186/s13578-023-01129-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE Oxidative stress plays a pivotal role in neurodegenerative diseases. Astaxanthin (AST) can play a neuroprotective role owing to its long-chain conjugated unsaturated double bond, which imparts potent antioxidant, anti-neuroinflammatory, and anti-apoptotic properties. However, the biological mechanisms underlying these effects remain unknown. Therefore, this study aimed to investigate and validate the protective effect of AST on neuronal senescence and apoptosis caused by oxidative stress induced by Aβ25-35 peptide, with the goal of preventing the onset of cognitive dysfunction. METHODS Alzheimer's disease models comprising ICR mice and PC12 cells were established using Aβ25-35. The Morris water maze test was used to assess mouse behavior. Nissl staining revealed morphological changes in the mouse hippocampal neurons. To elucidate the mechanism of action of AST, ICR mice and PC12 cells were treated with the silent information regulator 1 (SIRT1) inhibitor nicotinamide (NAM). Additionally, immunofluorescence, western blotting, and reverse transcription polymerase chain reaction were used to evaluate changes in the expression of Bcl-2 and Bax in the mouse hippocampus, and SIRT1/PGC-1α signaling pathway proteins were detected. Moreover, the oxidative stress markers in ICR mice and PC12 cells were evaluated. Further, CCK-8 assays, Annexin V/PI double staining, and β-galactosidase activity assays were performed in PC12 cells to evaluate the anti-senescence and apoptotic effects of AST. RESULTS In vivo experiments showed that Aβ25-35 impaired cognitive function, promoted morphological changes in hippocampal neurons, decreased Bcl-2 expression, increased Bax expression, decreased superoxide dismutase and GSH-px levels, and increased reactive oxygen species and malondialdehyde levels. Conversely, AST alleviated the impact of Aβ25-35 in mice, with reversed outcomes. NAM administration reduced SIRT1 and PGC-1α expression in the hippocampus. This decrease was accompanied by cognitive dysfunction and hippocampal neuron atrophy, which were also evident in the mice. Additionally, in vitro experiments showed that Aβ25-35 could promote oxidative stress and induce the senescence and apoptosis of PC12 cells. Nonetheless, AST treatment counteracted this effect by inhibiting oxidative stress and altering the state of PC12 cells. Notably, the Aβ + NAM group exhibited the most significant rates of senescence and apoptosis in PC12 cells following NAM treatment. CONCLUSION AST can improve cellular senescence and apoptosis mediated by oxidative stress via the SIRT1/PGC-1α signaling pathway and plays a vital role in inhibiting neuronal senescence and apoptosis and enhancing cognitive ability.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Xianglin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yiming Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
8
|
Honda M, Nishida Y. In Vitro Evaluation of Skin-Related Physicochemical Properties and Biological Activities of Astaxanthin Isomers. ACS OMEGA 2023; 8:19311-19319. [PMID: 37305308 PMCID: PMC10249140 DOI: 10.1021/acsomega.2c08173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Dietary astaxanthin exists predominantly as the all-E-isomer; however, certain amounts of the Z-isomers are universally present in the skin, whose roles remain largely unknown. The aim of this study was to investigate the effects of the astaxanthin E/Z-isomer ratio on skin-related physicochemical properties and biological activities using human dermal fibroblasts and B16 mouse melanoma cells. We revealed that astaxanthin enriched in Z-isomers (total Z-isomer ratio = 86.6%) exhibited greater UV-light-shielding ability and skin antiaging and skin-whitening activities, such as anti-elastase and anti-melanin formation activities, than the all-E-isomer-rich astaxanthin (total Z-isomer ratio = 3.3%). On the other hand, the all-E-isomer was superior to the Z-isomers in singlet oxygen scavenging/quenching activity, and the Z-isomers inhibited type I collagen release into the culture medium in a dose-dependent manner. Our findings help clarify the roles of astaxanthin Z-isomers in the skin and would help in the development of novel skin health-promoting food ingredients.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty
of Science & Technology, Meijo University, Shiogamaguchi,
Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji
Chemical Industries, Co., Ltd., Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| |
Collapse
|
9
|
Lin ET, Lee YC, Wang HMD, Chiu CY, Chang YK, Huang CY, Chang CC, Tsai PC, Chang JS. Efficient fucoidan extraction and purification from Sargassum cristaefolium and preclinical dermal biological activity assessments of the purified fucoidans. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Adipose-Derived Stem Cell-Incubated HA-Rich Sponge Matrix Implant Modulates Oxidative Stress to Enhance VEGF and TGF-β Secretions for Extracellular Matrix Reconstruction In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9355692. [PMID: 35082971 PMCID: PMC8786469 DOI: 10.1155/2022/9355692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
This study demonstrated both adipose-derived stem cells (ASCs) in vitro and in vivo combined with three-dimensional (3D) porous sponge matrices on implant wound healing. Sponge matrices were created from hyaluronic acid (HA), collagen (Col), and gelatin (Gel), constructing two types: HA-L (low content) and HA-H (high content), to be cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Fourier transform infrared spectroscopy method verified carboxyl groups of HA and amino groups of Col and Gel reacting between the raw materials and scaffolds to identify the successive cross-linking. The swelling ratios of two types of sponge matrices were analyzed by water absorption capabilities, and the results displayed both over 30-fold dry scaffold weight enhancements. In biodegradation tests, matrices were hydrolyzed over time by three cutaneous enzymes, hyaluronidase, lysozyme, and collagenase I. ASCs from rats were cultured within the HA-H scaffold, demonstrating higher antioxidative abilities and secretions on related genes and proteins compared to the other two groups. The ASC HA-H matrix promoted cell proliferation to stimulate capillary angiogenesis inducer secretions, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β). In vivo histological examinations showed ASCs from implanted HA-H implant transported into the subcutis, and rat skin cells also infiltrated into the original matrix zone to increase the extracellular matrix (ECM) reconstructions. Our experimental data revealed that the ASC HA-H sponge implant was effective in improving wound repair.
Collapse
|
11
|
Mamun-Or-Rashid ANM, Lucy TT, Yagi M, Yonei Y. Inhibitory Effects of Astaxanthin on CML-HSA-Induced Inflammatory and RANKL-Induced Osteoclastogenic Gene Expression in RAW 264.7 Cells. Biomedicines 2021; 10:biomedicines10010054. [PMID: 35052734 PMCID: PMC8772757 DOI: 10.3390/biomedicines10010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Objective: Elevated levels of serum Nε-carboxymethyllysine (CML), a well-known advanced glycation end-product (AGE), were observed in patients with inflammation or osteoporosis. Astaxanthin was reported to possess anti-inflammatory and antioxidant effects. In the present study, we investigated the effects of commercially available dietary supplement AstaReal ACTR (ASR) capsule content as astaxanthin on CML-HSA-induced inflammatory and receptor activator of nuclear factor-kappa-Β ligand (RANKL)-induced osteoclastogenic gene expression. Methods: RAW 264.7 murine macrophage cells were stimulated with CML-HSA to trigger inflammatory gene expression and treated with either a vehicle control or varied concentrations of astaxanthin. Inflammatory gene expression was measured using an enzyme-linked immunosorbent assay (ELISA) or qPCR. We triggered osteoclastogenesis using RANKL, and osteoclastogenic gene expression was measured through tartrate-resistant acid phosphatase (TRAP) activity, staining, immunofluorescence, and qPCR analyses. Results: CML-HSA showed a stimulatory effect on inflammatory gene expression, and astaxanthin reduced the expression by at least two-fold. The levels of autoinflammatory gene expression were reduced by astaxanthin. The RANKL-induced osteoclastogenesis was significantly inhibited by astaxanthin, with reductions in the activation of nuclear factor-κB (NF-κB), the expression of NFATc1 (nuclear factor of activated T cells 1), multinucleated cell formation, and the expression of mature osteoclast marker genes. Conclusion: Astaxanthin has potential as a remedy for CML-HSA-induced inflammation and RANKL-induced excessive bone loss.
Collapse
|
12
|
A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5598291. [PMID: 34765083 PMCID: PMC8577930 DOI: 10.1155/2021/5598291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
A novel herbal extract-loaded gel containing several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus emblica, and salicylic acid, was developed for acne vulgaris. These natural raw materials were blended with suitable dosages of gelatin and carboxymethyl cellulose (CMC) to produce a biocompatible herbal gel. The physical chemistry properties of the hydrogel were determined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), rheometry, and scanning electron microscopy (SEM), and the hydrogel showed good mechanical and morphological characteristics. The herbal extract-loaded hydrogel mimicked extracellular matrix properties and showed good antioxidant and anti-inflammatory properties and various advantages, serving as a potential wound dressing material because of its high moisture retention ability, wound exudate absorption behavior, and biocompatibility. It exhibited moderate-high antioxidative and anti-inflammatory qualities that were important for dermis wound closure. The clinical trial results showed that most patients experienced moderate to high healing rates, and four of twenty-four individuals (16.67%) had recovery area ratios greater than 80%. This herbal extract-loaded hydrogel has effective ingredients and excellent mechanical properties as a bioactive dressing agent for acne treatment.
Collapse
|
13
|
Radice RP, Limongi AR, Viviano E, Padula MC, Martelli G, Bermano G. Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis. Free Radic Biol Med 2021; 171:156-168. [PMID: 33974978 DOI: 10.1016/j.freeradbiomed.2021.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Obesity is a major risk factor for several diseases, including metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). The use of natural products, such as astaxanthin (ASX), a potent antioxidant compound produced by the freshwater green microalga Haematococcus pluvialis, has gained particular interest to reduce oxidative stress and inflammation, and to improve redox status, often associated with obesity. A systematic review and meta-analysis was performed to comprehensively examine the effects of ASX in animal models of diet induced obesity-associated diseases in order to inform the design of future human clinical studies for ASX use as supplement or nutraceutical. METHODS Cinahl, Cochraine, MEDLINE, Scopus and Web of Science were searched for English-language manuscripts published between January 2000 and April 2020 using the following key words: astaxanthin, obesity, non-alcoholic fatty liver disease, diabetes mellitus type 2, NAFLD and metabolic. RESULTS Seventeen eligible articles, corresponding to 21 animal studies, were included in the final quantitative analysis. ASX, at different concentrations and administered for different length of time, induced a significant reduction in adipose tissue weight (P = 0.05) and systolic blood pressure (P < 0.0001) in control animals. In animal models of T2D, ASX significantly reduced serum glucose levels (P = 0.04); whereas it improved several disease biomarkers in the blood (e.g. cholesterol, triglycerides, ALT and AST, P < 0.10), and reduced liver (P = 0.0002) and body weight (P = 0.11), in animal models of NAFLD. CONCLUSIONS Supplementation of ASX in the diet has positive effects on symptoms associated with obesity related diseases in animals, by having lipid-lowering, hypo-insulin and hypoglycaemic capacity, protecting organs from oxidative stress and mitigating the immune system, as suggested in this review.
Collapse
Affiliation(s)
- Rosa Paola Radice
- Department of Sciences, University of Basilicata, Potenza, Italy; Bioinnova s.r.l.s., Via Ponte Nove Luci, Potenza, Italy
| | - Antonina Rita Limongi
- Department of Sciences, University of Basilicata, Potenza, Italy; Bioinnova s.r.l.s., Via Ponte Nove Luci, Potenza, Italy
| | - Emanuele Viviano
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Maria Carmela Padula
- Department of Sciences, University of Basilicata, Potenza, Italy; Rheumatology Department of Lucania, Rheumatology Institute of Lucania (IReL), San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | | | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
14
|
Xu Y, Li Y, Lu Y, Feng X, Tian G, Liu Q. Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Radice RP, Fiorentino R, De Luca M, Limongi AR, Viviano E, Bermano G, Martelli G. An innovative protocol to select the best growth phase for astaxanthin biosynthesis in H. pluvialis. ACTA ACUST UNITED AC 2021; 31:e00655. [PMID: 34258244 PMCID: PMC8253952 DOI: 10.1016/j.btre.2021.e00655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
H. pluvialis non-motile cells produce more astaxanthin. H. pluvialis cells could be separated, based on their size, by an electric field. H. pluvialis non-motile cells are bigger than motile cells, and it's possible to recovery non-motile cells using this innovative protocol.
H. pluvialis is a green unicellular microalgae and it is the first producer of natural astaxanthin in the world if subjected to stress conditions such as high light, high salinity and nutrient starvation. Astaxanthin is a powerful antioxidant used in many fields, such as aquaculture, pharmaceutical, food supplements and cosmetic. To obtain a large amount of astaxanthin, researcher focused on the optimisation of H. pluvialis growth. H. pluvialis has four different size growth stage (macrozooids, microzooids, palmelloid and “red non-motile astaxanthin accumulated encysted”), and astaxanthin production occur in the last phase. Recent studies shown that non-motile cells can produce more astaxanthin than motile cells if subjected to light stress. For these reasons, the aim of this study is to find a new and innovative methodology to select and recovery H. pluvialis in his last growth phase thanks to an electrophoretic run, and optimize, in this way, astaxanthin production.
Collapse
Affiliation(s)
- Rosa Paola Radice
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Bioinnova s.r.l.s, via Ponte Nove Luci 9, 85100 Potenza (Pz), Italy.,Department of science, University of Basilicata, via dell'ateneo lucano 10
| | - Rocco Fiorentino
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy
| | - Maria De Luca
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,ALMACABIO Srl, C/so Italia 27, 39100 Bolzano, Italy
| | - Antonina Rita Limongi
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Bioinnova s.r.l.s, via Ponte Nove Luci 9, 85100 Potenza (Pz), Italy
| | - Emanuele Viviano
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Thema Informatik s.r.l., Via Ressel 2/F, 39100 Bolzano, Italy
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen United Kingdom
| | - Giuseppe Martelli
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy
| |
Collapse
|