1
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
2
|
Novak M, Marđetko N, Trontel A, Pavlečić M, Kelemen Z, Perković L, Petravić Tominac V, Šantek B. Development of an Integrated Bioprocess System for Bioethanol and Arabitol Production from Sugar Beet Cossettes. Food Technol Biotechnol 2024; 62:89-101. [PMID: 38601968 PMCID: PMC11002444 DOI: 10.17113/ftb.62.01.24.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/29/2024] [Indexed: 04/12/2024] Open
Abstract
Research background An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol. Experimental approach The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast Saccharomyces cerevisiae (30 g/L). The second stage was the pretreatment of ESBC with dilute sulfuric acid to release fermentable sugars. The resulting liquid hydrolysate of ESBC was used in the third stage as a nutrient medium for arabitol production by non-Saccharomyces yeasts (Spathaspora passalidarum CBS 10155 and Spathaspora arborariae CBS 11463). Results and conclusions The obtained results show that the efficiency of bioethanol production increased with increasing temperature and prolonged residence time in the integrated bioreactor system. The maximum bioethanol production efficiency (87.22 %) was observed at a time of 60 min and a temperature of 36 °C. Further increase in residence time (above 60 min) did not result in the significant increase of bioethanol production efficiency. Weak acid hydrolysis was used for ESBC pretreatment and the highest sugar yield was reached at 200 °C and residence time of 1 min. The inhibitors of the weak acid pretreatment were produced below bioprocess inhibition threshold. The use of the obtained liqiud phase of ESBC hydrolysate for the production of arabitol in the stirred tank bioreactor under constant aeration clearly showed that S. passalidarum CBS 10155 with 8.48 g/L of arabitol (YP/S=0.603 g/g and bioprocess productivity of 0.176 g/(L.h)) is a better arabitol producer than Spathaspora arborariae CBS 10155. Novelty and scientific contribution An innovative integrated bioprocess system for the production of bioethanol and arabitol was developed based on the biorefinery concept. This three-stage bioprocess system shows great potential for maximum use of SBC as a feedstock for bioethanol and arabitol production and it could be an example of a sustainable 'zero waste' production system.
Collapse
Affiliation(s)
- Mario Novak
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Nenad Marđetko
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Antonija Trontel
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Mladen Pavlečić
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Zora Kelemen
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Lucija Perković
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Vlatka Petravić Tominac
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| | - Božidar Šantek
- University of Zagreb Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory of Biochemical Engineering, Industrial Microbiology, Malting and Brewing Technology, Pierottijeva 6, 10000 Zagreb
| |
Collapse
|
3
|
Saxena A, Hussain A, Parveen F, Ashfaque M. Current status of metabolic engineering of microorganisms for bioethanol production by effective utilization of pentose sugars of lignocellulosic biomass. Microbiol Res 2023; 276:127478. [PMID: 37625339 DOI: 10.1016/j.micres.2023.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Lignocellulosic biomass, consisting of homo- and heteropolymeric sugars, acts as a substrate for the generation of valuable biochemicals and biomaterials. The readily available hexoses are easily utilized by microbes due to the presence of transporters and native metabolic pathways. But, utilization of pentose sugar viz., xylose and arabinose are still challenging due to several reasons including (i) the absence of the particular native pathways and transporters, (ii) the presence of inhibitors, and (iii) lower uptake of pentose sugars. These challenges can be overcome by manipulating metabolic pathways/glycosidic enzymes cascade by using genetic engineering tools involving inverse-metabolic engineering, ex-vivo isomerization, Adaptive Laboratory Evolution, Directed Metabolic Engineering, etc. Metabolic engineering of bacteria and fungi for the utilization of pentose sugars for bioethanol production is the focus area of research in the current decade. This review outlines current approaches to biofuel development and strategies involved in the metabolic engineering of different microbes that can uptake pentose for bioethanol production.
Collapse
Affiliation(s)
- Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
4
|
Kusumawati N, Sumarlan SH, Zubaidah E, Wardani AK. Isolation of xylose-utilizing yeasts from oil palm waste for xylitol and ethanol production. BIORESOUR BIOPROCESS 2023; 10:71. [PMID: 38647966 PMCID: PMC10992423 DOI: 10.1186/s40643-023-00691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 04/25/2024] Open
Abstract
The energy crisis triggers the use of energy sources that are renewable, such as biomass made from lignocellulosic materials, to produce various chemical compounds for food ingredients and biofuel. The efficient conversion of lignocellulosic biomass into products with added value involves the activity of microorganisms, such as yeasts. For the conversion, microorganisms must be able to use various sugars in lignocellulosic biomass, including pentose sugars, especially xylose. This study aims to isolate xylose-utilizing yeasts and analyze their fermentation activity to produce xylitol and ethanol, as well as their ability to grow in liquid hydrolysate produced from pretreated lignocellulosic biomass. Nineteen yeast isolates could grow on solid and liquid media using solely xylose as a carbon source. All isolates can grow in a xylose medium with incubation at 30 °C, 37 °C, 42 °C, and 45 °C. Six isolates, namely SLI (1), SL3, SL6, SL7, R5, and OPT4B, were chosen based on their considerable growth and high xylose consumption rate in a medium with 50 g/L xylose with incubation at 30 °C for 48 h. Four isolates tested, namely SLI (1), SL6, SL7, and R5, can produce xylitol in media containing xylose carbon sources. The concentration of xylitol produced was determined using high-pressure liquid chromatography (HPLC), and the results ranged from 5.0 to 6.0 g/L. Five isolates tested, namely SLI (1), SL6, SL3, R5, and OPT4B, can produce ethanol. The ethanol content produced was determined using gas chromatography (GC), with concentrations ranging from 0.85 to 1.34 g/L. Three isolates, namely SL1(1), R5, and SL6, were able to produce xylitol and ethanol from xylose as carbon sources and were also able to grow on liquid hydrolyzate from pretreated oil palm trunk waste with the subcritical water method. The three isolates were further analyzed using the 18S rDNA sequence to identify the species and confirm their phylogenetic position. Identification based on DNA sequence analysis revealed that isolates SL1(1) and R5 were Pichia kudriavzevii, while isolate SL6 was Candida xylopsoci. The yeast strains isolated from this study could potentially be used for the bioconversion process of lignocellulosic biomass waste to produce value-added derivative products.
Collapse
Affiliation(s)
- N Kusumawati
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia
- Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Jl. Dinoyo 42-44, Surabaya, 60625, Indonesia
| | - S H Sumarlan
- Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia
| | - E Zubaidah
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia
| | - A K Wardani
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia.
| |
Collapse
|
5
|
Jamaluddin, Riyanti EI, Mubarik NR, Listanto E. Construction of Novel Yeast Strains from Candida tropicalis KBKTI 10.5.1 and Saccharomyces cerevisiae DBY1 to Improve the Performance of Ethanol Production Using Lignocellulosic Hydrolysate. Trop Life Sci Res 2023; 34:81-107. [PMID: 38144374 PMCID: PMC10735269 DOI: 10.21315/tlsr2023.34.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/26/2023] Open
Abstract
Increased consumption of xylose-glucose and yeast tolerance to lignocellulosic hydrolysate are the keys to the success of second-generation bioethanol production. Candida tropicalis KBKTI 10.5.1 is a new isolated strain that has the ability to ferment xylose. In contrast to Saccharomyces cerevisiae DBY1 which only can produce ethanol from glucose fermentation. The research objective is the application of the genome shuffling method to increase the performance of ethanol production using lignocellulosic hydrolysate. Mutants were selected on xylose and glucose substrates separately and using random amplified polymorphic DNA (RAPD) analysis. The ethanol production using lignocellulosic hydrolysate by parents and mutants was evaluated using a batch fermentation system. Concentrations of ethanol, residual sugars, and by-products such as glycerol, lactate and acetate were measured using HPLC machine equipped with Hiplex H for carbohydrate column and a refraction index detector (RID). Ethanol produced by Fcs1 and Fcs4 mutants on acid hydrolysate increased by 26.58% and 24.17% from parent DBY1, by 14.94% and 21.84% from parent KBKTI 10.5.1. In contrast to the increase in ethanol production on alkaline hydrolysate, Fcs1 and Fcs4 mutants only experienced an increase in ethanol production by 1.35% from the parent KBKTI 10.5.1. Ethanol productivity by Fcs1 and Fcs4 mutants on acid hydrolysate reached 0.042 g/L/h and 0.044 g/L/h. The recombination of the genomes of different yeast species resulted in novel yeast strains that improved resistance performance and ethanol production on lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Jamaluddin
- Graduate School of IPB University, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
| | - Eny Ida Riyanti
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| | - Nisa Rachmania Mubarik
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680 West Java, Indonesia
| | - Edy Listanto
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| |
Collapse
|
6
|
Tadioto V, Milani LM, Barrilli ÉT, Baptista CW, Bohn L, Dresch A, Harakava R, Fogolari O, Mibielli GM, Bender JP, Treichel H, Stambuk BU, Müller C, Alves SL. Analysis of glucose and xylose metabolism in new indigenous Meyerozyma caribbica strains isolated from corn residues. World J Microbiol Biotechnol 2022; 38:35. [PMID: 34989919 DOI: 10.1007/s11274-021-03221-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2021] [Indexed: 11/26/2022]
Abstract
Aiming to broaden the base of knowledge about wild yeasts, four new indigenous strains were isolated from corn residues, and phylogenetic-tree assemblings on ITS and LSU regions indicated they belong to Meyerozyma caribbica. Yeasts were cultivated under full- and micro-aerobiosis, starting with low or high cell-density inoculum, in synthetic medium or corn hydrolysate containing glucose and/or xylose. Cells were able to assimilate both monosaccharides, albeit by different metabolic routes (fermentative or respiratory). They grew faster in glucose, with lag phases ~ 10 h shorter than in xylose. The hexose exhaustion occurred between 24 and 34 h, while xylose was entirely consumed in the last few hours of cultivation (44-48 h). In batch fermentation in synthetic medium with high cell density, under full-aerobiosis, 18-20 g glucose l-1 were exhausted in 4-6 h, with a production of 6.5-7.0 g ethanol l-1. In the xylose medium, cells needed > 12 h to consume the carbohydrate, and instead of ethanol, cells released 4.4-6.4 g l-1 xylitol. Under micro-aerobiosis, yeasts were unable to assimilate xylose, and glucose was more slowly consumed, although the ethanol yield was the theoretical maximum. When inoculated into the hydrolysate, cells needed 4-6 h to deplete glucose, and xylose had a maximum consumption of 57%. Considering that the hydrolysate contained ~ 3 g l-1 acetic acid, it probably has impaired sugar metabolism. Thus, this study increases the fund of knowledge regarding indigenous yeasts and reveals the biotechnological potential of these strains.
Collapse
Affiliation(s)
- Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Cristina W Baptista
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia Bohn
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Aline Dresch
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ricardo Harakava
- Laboratory of Phytopathological Biochemistry, Biological Institute, São Paulo, SP, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Guilherme M Mibielli
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - João P Bender
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Campus Erechim, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Boris U Stambuk
- Laboratory of Biochemistry and Molecular Biotechnology of Yeasts, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
7
|
Ethanol Production from Oil Palm Trunk: A Combined Strategy Using an Effective Pretreatment and Simultaneous Saccharification and Cofermentation. Int J Microbiol 2022; 2021:2509443. [PMID: 34976067 PMCID: PMC8718305 DOI: 10.1155/2021/2509443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Oil palm trunk (OPT) with highly cellulose content is a valuable bioresource for bioethanol production. To produce ethanol from biomass, pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugars such as glucose and xylose. Several pretreatment methods have been developed to overcome biomass recalcitrance. In this study, the effects of different pretreatment methods such as alkali pretreatment, microwave-alkali, and alkaline peroxide combined with autoclave on the lignocellulosic biomass structure were investigated. Moreover, ethanol production from the treated biomass was performed by simultaneous saccharification and cofermentation (SSCF) under different temperatures, fermentation times, and cell ratios of Saccharomyces cerevisiae NCYC 479 and pentose-utilizing yeast, Pichia stipitis NCYC 1541. Results Pretreatment resulted in a significant lignin removal up to 83.26% and cellulose released up to 80.74% in treated OPT by alkaline peroxide combined with autoclave method. Enzymatic hydrolysis of treated OPT resulted in an increase in fermentable sugar up to 93.22%. Optimization of SSCF by response surface method showed that the coculture could work together to produce maximum ethanol (1.89%) and fermentation efficiency (66.14%) under the optimized condition. Conclusion Pretreatment by alkaline peroxide combined with autoclave method and SSCF process could be expected as a promising system for ethanol production from oil palm trunk and various lignocellulosic biomass.
Collapse
|
8
|
Nwaefuna AE, Rumbold K, Boekhout T, Zhou N. Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:86. [PMID: 33827664 PMCID: PMC8028181 DOI: 10.1186/s13068-021-01940-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/27/2021] [Indexed: 05/10/2023]
Abstract
Bioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.
Collapse
Affiliation(s)
- Anita Ejiro Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Karl Rumbold
- Industrial Microbiology and Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584CT Utrecht, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 SM Amsterdam, the Netherlands
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|