1
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
2
|
Jastrzębska A, Kmieciak A, Gralak Z, Brzuzy K, Krzemiński M, Gorczyca D, Szłyk E. A new approach for analysing biogenic amines in meat samples: Microwave-assisted derivatisation using 2-chloro-3-nitropyridine. Food Chem 2024; 436:137686. [PMID: 37839119 DOI: 10.1016/j.foodchem.2023.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Biogenic amines are compounds whose occurrence in meat is linked to the presence of undesirable microorganisms. They can be utilised as a means to assess the quality and purity of the raw material. Therefore, the methods used to determine their levels are crucial in ensuring meat safety. We propose 2-chloro-3-nitropyridine as a new reagent for microwave-assisted synthesis of biogenic amine derivatives. The obtained products were synthesised with high purity and yield and characterised using 1H and 13C NMR as well as high-resolution mass spectrometry. The proposed derivatisation procedure, coupled with the HPLC method, was applied to determine the levels of biogenic amines in sirloin, ham, and chicken breast samples. Furthermore, differences in the content of the aforementioned compounds in the meat samples were analysed after storage for 24 and 72 h. The results suggest that cadaverine can be considered the primary indicator of meat changes, regardless of its type.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland.
| | - Anna Kmieciak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Zuzanna Gralak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Kamil Brzuzy
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Marek Krzemiński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Damian Gorczyca
- Lazarski University, 43 Świeradowska Str., 02-662 Warsaw, Poland; LymeLab Pharma, Kochanowskiego 49A Str., 01-864 Warsaw, Poland
| | - Edward Szłyk
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| |
Collapse
|
3
|
Akouris PP, Stuivenberg GA, Chmiel JA, Kiattiburut W, Poon A, Reid G, Burton JP. Ethanolamine enhances adhesion, promotes microcompartment formation, and modulates gene expression in Levilactobacillus brevis ATCC 14869. Gut Microbes 2024; 16:2350778. [PMID: 38717446 PMCID: PMC11086012 DOI: 10.1080/19490976.2024.2350778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.
Collapse
Affiliation(s)
- Polycronis P. Akouris
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
| | - Gerrit A. Stuivenberg
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - John A. Chmiel
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Wongsakorn Kiattiburut
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Annabel Poon
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Jeremy P. Burton
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Surgery, Division of Urology, Western University, London, ON, Canada
| |
Collapse
|
4
|
Rodríguez-Núñez K, Cortés-Monroy A, Serey M, Ensari Y, Davari MD, Bernal C, Martinez R. Modulating Substrate Specificity of Rhizobium sp. Histamine Dehydrogenase through Protein Engineering for Food Quality Applications. Molecules 2023; 28:molecules28093748. [PMID: 37175158 PMCID: PMC10180351 DOI: 10.3390/molecules28093748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Histamine is a biogenic amine found in fish-derived and fermented food products with physiological relevance since its concentration is proportional to food spoilage and health risk for sensitive consumers. There are various analytical methods for histamine quantification from food samples; however, a simple and quick enzymatic detection and quantification method is highly desirable. Histamine dehydrogenase (HDH) is a candidate for enzymatic histamine detection; however, other biogenic amines can change its activity or produce false positive results with an observed substrate inhibition at higher concentrations. In this work, we studied the effect of site saturation mutagenesis in Rhizobium sp. Histamine Dehydrogenase (Rsp HDH) in nine amino acid positions selected through structural alignment analysis, substrate docking, and proximity to the proposed histamine-binding site. The resulting libraries were screened for histamine and agmatine activity. Variants from two libraries (positions 72 and 110) showed improved histamine/agmatine activity ratio, decreased substrate inhibition, and maintained thermal resistance. In addition, activity characterization of the identified Phe72Thr and Asn110Val HDH variants showed a clear substrate inhibition curve for histamine and modified kinetic parameters. The observed maximum velocity (Vmax) increased for variant Phe72Thr at the cost of an increased value for the Michaelis-Menten constant (Km) for histamine. The increased Km value, decreased substrate inhibition, and biogenic amine interference observed for variant Phe72Thr support a tradeoff between substrate affinity and substrate inhibition in the catalytic mechanism of HDHs. Considering this tradeoff for future enzyme engineering of HDH could lead to breakthroughs in performance increases and understanding of this enzyme class.
Collapse
Affiliation(s)
- Karen Rodríguez-Núñez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Alejandra Cortés-Monroy
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Marcela Serey
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Yunus Ensari
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars 36000, Turkey
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | - Claudia Bernal
- Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Ronny Martinez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| |
Collapse
|
5
|
Koo PL, Lim GK. A review on analytical techniques for quantitative detection of histamine in fish products. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Simultaneous Determination of Amino Acids and Biogenic Amines by Liquid Chromatography Coupled to Mass Spectrometry for Assessing Wine Quality. BEVERAGES 2022. [DOI: 10.3390/beverages8040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biogenic amines (BAs) and free amino acids (AAs) are low-molecular nitrogenous compounds occurring in a wide range of foodstuffs, found in increased amount in different fermented foods, seafood, and wines. This study deals with the development of an analytical method based on liquid chromatography with tandem mass spectrometry with precolumn derivatization with dansyl chloride for the determination of BAs and AAs in musts, wines, and sparkling wines. The resulting compositional profiles have been exploited as potential descriptors of quality and other oenological issues using chemometric methods including principal component analysis (PCA) and partial analysis of least squares-discriminants (PLS-DA). Proline is the most abundant compound, and other remarkable species are lysine, ethanolamine, tyramine, histamine, and putrescine. Fermented samples (wines and sparkling wines) are much richer in both BAs and free AAs than the initial musts. Significant differences have also been noticed in the quality, as the best products display, in general, lower levels. The dissimilarities in the content of the analytes between the two grape varieties studied (pinot noir and xarel·lo) and those dealing with quality aspects have made it possible to establish a tree to classify the samples based on these two features with excellent classification rates.
Collapse
|
7
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Miniaturized, green salting-out liquid–liquid microextraction coupled with GC–MS used to evaluate biogenic amines in wine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhou TT, Yigaimu A, Muhammad T, Jian PL, Sha LN, Zhang SB. Novel carrier-mediated membrane-assisted three-phase liquid–liquid extraction coupled with liquid chromatography–mass spectrometry for the determination of eight biogenic amines in foods. Food Chem 2022; 387:132857. [DOI: 10.1016/j.foodchem.2022.132857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022]
|
10
|
Różańska A, Fabjanowicz M, Kalinowska K, Polkowska Ż, Płotka-Wasylka J. Green, simple analytical method for biogenic amines determination in fruit juice samples using salting-out assisted liquid-liquid microextraction and gas chromatography-mass spectrometry. Food Chem 2022; 384:132557. [DOI: 10.1016/j.foodchem.2022.132557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022]
|
11
|
Moniente M, Botello-Morte L, García-Gonzalo D, Pagán R, Ontañón I. Analytical strategies for the determination of biogenic amines in dairy products. Compr Rev Food Sci Food Saf 2022; 21:3612-3646. [PMID: 35726745 DOI: 10.1111/1541-4337.12980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/08/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Biogenic amines (BA) are mainly produced by the decarboxylation of amino acids by enzymes from microorganisms that emerge during food fermentation or due to incorrectly applied preservation processes. The presence of these compounds in food can lead to a series of negative effects on human health. To prevent the ingestion of high amounts of BA, their concentration in certain foods needs to be controlled. Although maximum legal levels have not yet been established for dairy products, potential adverse effects have given rise to a substantial number of analytical and microbiological studies: they report concentrations ranging from a few mg/kg to several g/kg. This article provides an overview of the analytical methods for the determination of biogenic amines in dairy products, with particular focus on the most recent and/or most promising advances in this field. We not only provide a summary of analytical techniques but also list the required sample pretreatments. Since high performance liquid chromatography with derivatization is the most widely used method, we describe it in greater detail, including a comparison of derivatizing agents. Further alternative techniques for the determination of BA are likewise described. The use of biosensors for BA in dairy products is emerging, and current results are promising; this paper thus also features a section on the subject. This review can serve as a helpful guideline for choosing the best option to determine BA in dairy products, especially for beginners in the field.
Collapse
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
12
|
Nurani LH, Riswanto FDO, Windarsih A, Edityaningrum CA, Guntarti A, Rohman A. Use of chromatographic-based techniques and chemometrics for halal authentication of food products: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laela Hayu Nurani
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | | | - Any Guntarti
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
14
|
Langner M, Mateska I, Bechmann N, Wielockx B, Chavakis T, Alexaki VI, Peitzsch M. Liquid chromatography-tandem mass spectrometry based quantification of arginine metabolites including polyamines in different sample matrices. J Chromatogr A 2022; 1671:463021. [DOI: 10.1016/j.chroma.2022.463021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
|
15
|
|
16
|
Onopiuk A, Kołodziejczak K, Marcinkowska-Lesiak M, Poltorak A. Determination of polycyclic aromatic hydrocarbons using different extraction methods and HPLC-FLD detection in smoked and grilled meat products. Food Chem 2022; 373:131506. [PMID: 34758433 DOI: 10.1016/j.foodchem.2021.131506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in meat products are formed, among others, as a by-product of thermal processing such as smoking or grilling. Due their highly toxic effects on the human organism, it is necessary to monitor PAH content in food products and develop appropriate analytical methods for their determination. The aim of this study was to compare PAH content in meat products subjected to smoking or grilling process. PAH content was determined using three different analytical methods, verified for efficiency using the external standard method. The results showed that smoking led to higher PAH contamination compared to grilling. Extraction by saponification and SPE method was the most effective for the detection and quantification of PAHs. The samples analyzed using this method showed the highest PAH content and recoveries. The results of the study showed a significant effect of the extraction method on the recovery levels and PAH content in meat.
Collapse
Affiliation(s)
- Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland.
| | - Klaudia Kołodziejczak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| | - Monika Marcinkowska-Lesiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| | - Andrzej Poltorak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| |
Collapse
|
17
|
Munir MA, Badri KH, Heng LY, Inayatullah A, Nurinda E, Estiningsih D, Fatmawati A, Aprilia V, Syafitri N. The Application of Polyurethane-LiClO 4 to Modify Screen-Printed Electrodes Analyzing Histamine in Mackerel Using a Voltammetric Approach. ACS OMEGA 2022; 7:5982-5991. [PMID: 35224359 PMCID: PMC8867486 DOI: 10.1021/acsomega.1c06295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 05/03/2023]
Abstract
Histamine is an important substance that can be applied as a parameter for allergic reactions and food freshness. This study develops a method to produce a histamine sensor based on electrodes modified using polyurethane-LiClO4. A sensor method was developed where this sensor was produced from polyurethane. The application of 4,4'-diphenylmethane diisocyanate (hard compound) and palm kernel oil-based monoester polyol (soft compound) to produce polyurethane (PU) based on bio-polyol. The addition of lithium perchlorate (LiClO4) was done in order to increase the conductivity of PU. The oxidation process was detected using cyclic voltammetry, whereas the electrochemical impedance spectroscopy was used to analyze the conductivity of the polymer. The polyurethane-LiClO4 was attached on a screen-printed electrode (SPE) within 45 min. Moreover, the 1% LiClO4-PU-SPE presented satisfactory selectivity for the detection of histamine in the pH 7.5 solution. The LiClO4-PU-SPE presented a good correlation coefficient (R = 0.9991) in the range 0.015-1 mmol·L-1. The detection limit was 0.17 mmol·L-1. Moreover, the histamine concentration of mackerel samples was detected by the PU-SEP-LiClO4. Several amine compounds were chosen to study the selectivity of histamine detection using SPE-PU-LiClO4. The interference was from several major interfering compounds such as aniline, cadaverine, hexamine, putrescine, and xanthine. The technique showed a satisfactory selective analysis compared to the other amines. A satisfactory recovery performance toward varying concentrations of histamine was obtained at 94 and 103% for histamine at 0.01 and 0.1 mmol·L-1, respectively. The application of PU-SEP-LiClO4 as an electrochemical sensor has a great prospect to analyze histamine content in fish mackerel as a consequence of PU-SEP-LiClO4 having good selectivity and simplicity.
Collapse
Affiliation(s)
- Muhammad Abdurrahman Munir
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Khairiah Haji Badri
- Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Polymer
Research Center, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Lee Yook Heng
- Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ahlam Inayatullah
- Faculty
of Science and Technology, Universiti Sains
Islam Malaysia, Nilai 71800, Malaysia
| | - Eva Nurinda
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Daru Estiningsih
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Annisa Fatmawati
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Veriani Aprilia
- Department
of Nutrition Science, Alma Ata School of Health Sciences, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Nur Syafitri
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| |
Collapse
|
18
|
Dogra R, Mandal UK. Recent Applications of Derivatization Techniques for Pharmaceutical and
Bioanalytical Analysis through High-performance Liquid Chromatography. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666211108092115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Derivatization of analytes is a quite convenient practice from an analytical perspective. Its vast prevalence is accounted by the availability of distinct reagents, primarily pragmatic for obtaining desired modifications in an analyte structure. Another reason for its handiness is typically to overcome limitations such as lack of sensitive methodology or instrumentation.The past decades have witnessed various new derivatization techniques including in-situ, enzymatic, ultrasound-assisted, microwave-assisted, and photochemical derivatization which have gain popularity recently.
Methods:
The online literature available on the utilization of derivatization as prominent analytical tools in recent years with typical advancements is reviewed. The illustrations of the analytical condition together with the structures of different derivatizing reagents (DRs) are provided to acknowledge the vast capability of derivatization to resolve analytical problems.
Results:
The derivatization techniques have enabled analytical chemists throughout the globe to develop an enhanced sensitivity method with the simplest of the instrument like High-Performance Liquid Chromatography (HPLC). The HPLC, compared to more sensitive Liquid chromatography coupled to tandem mass spectrometer, is readily available and can be readily utilized for routine analysis in fields of pharmaceuticals, bioanalysis, food safety, and environmental contamination. A troublesome aspect of these fields is the presence of a complex matrix with trace concentrations for analyses. Liquid chromatographic methods devoid of MS detectors do not have the desired sensitivity for this. A possible solution for overcoming this is to couple HPLC with derivatization to enable the possibility of detecting trace analytes with a less expensive instrument. Running cost, enhanced sensitivity, low time consumption, and overcoming the inherent problems of analyte are critical parameters for which HPLC is quite useful in high throughput analysis.
Conclusion:
The review critically highlights various kinds of derivatization applications in different fields of analytical chemistry. The information primarily focuses on pharmaceutical and bioanalytical applications in recent years. The various modes, types, and derivatizing reagents with brief mechanisms have been ascribed briefly Additionally, the importance of HPLC coupled to fluorescence and UV detection is presented as an overview through examples accompanied by their analytical conditions.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical
Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab, India
| |
Collapse
|
19
|
Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Vasconcelos H, de Almeida JMM, Matias A, Saraiva C, Jorge PA, Coelho LC. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Kim YC, Lee J, Park JH, Mah JH, Kim SY, Kim YW. Development of a colorimetric enzymatic assay method for aromatic biogenic monoamine-producing decarboxylases. Food Sci Biotechnol 2021; 30:971-977. [PMID: 34395028 PMCID: PMC8302707 DOI: 10.1007/s10068-021-00938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
Biogenic amines (BAs) produced by the action of bacterial amino acid decarboxylases in fermented foods cause various health problems in human. Despite the importance, detailed characterizations of the BA-producing decarboxylases are relatively less progressed than the studies on BA-producing bacteria, due to the time-consuming chromatography-based assay method. In this study, a simple and general colorimetric assay for aromatic amino acid decarboxylases coupled with an amine oxidase from Arthrobacter aurescens (AMAO) and horseradish peroxidase was developed using a tyrosine decarboxylase from Enterococcus faecium DSM20477 (EfmTDC) as a model enzyme. The activity profiles over pH and temperature and the kinetic analysis for EfmTDC revealed that the results by the colorimetric assay are compatible with those by the chromatographic assay. In addition, due to the broad substrate specificity of AMAO for histamine and 2-phenylethylamine, the colorimetric assay would be applicable to the characterization of other aromatic amino acid decarboxylases including histidine decarboxylases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00938-4.
Collapse
Affiliation(s)
- Young-Chang Kim
- Department of Food and Biotechnology, Korea University, Sejong, 30019 South Korea
| | - Jaeick Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019 South Korea
| | - Jin-Hong Park
- Department of Food and Biotechnology, Korea University, Sejong, 30019 South Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong, 30019 South Korea
| | - So-Young Kim
- Fermented Processing Food Science Division, Rural Development Administration, Wanju, 55365 South Korea
| | - Young-Wan Kim
- Department of Food and Biotechnology, Korea University, Sejong, 30019 South Korea
| |
Collapse
|
22
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
23
|
Sahudin MA, Su'ait MS, Tan LL, Abd Karim NH. Schiff base complex/TiO 2 chemosensor for visual detection of food freshness level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119129. [PMID: 33281086 DOI: 10.1016/j.saa.2020.119129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Histamine is one of the important biomarkers for food spoilage in the food sectors. In the present study, a rapid and simple analytical tool has been developed to detect histamine as an indirect strategy to monitor food freshness level. Optical histamine sensor with carboxyl-substituted Schiff base zinc(II) complex with hydroxypropoxy side chain deposited onto titanium dioxide nanoparticles was fabricated and was found to respond successfully to histamine. The Schiff base zinc(II) complex-histamine binding generated an enhancement of the fluorescent signal. Under the optimal reaction condition, the developed sensor can detect down to 2.53 × 10-10 M in the range of between 1.0 × 10-9 and 1.0 × 10-5 M (R2 = 0.9868). Selectivity performance of the sensor towards histamine over other amines was confirmed. The sensor also displayed good reproducibility performances with low relative standard deviation values (1.45%-4.95%). Shelf-life studies suggested that the developed sensor remains stable after 60 days in histamine detection. More importantly, the proposed sensor has been successfully applied to determine histamine in salmon fillet with good recoveries. This strategy has a promising potential in the food quality assurance sectors, especially in controlling the food safety for healthy consumption among consumers.
Collapse
Affiliation(s)
- Muhammad Ameerullah Sahudin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Mohd Sukor Su'ait
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
24
|
Li YF, Lin ZZ, Hong CY, Huang ZY. Histamine detection in fish samples based on indirect competitive ELISA method using iron-cobalt co-doped carbon dots labeled histamine antibody. Food Chem 2020; 345:128812. [PMID: 33601655 DOI: 10.1016/j.foodchem.2020.128812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Due to complex matrixes and specific reagent deficiency, the rapid detection of histamine is still a challenge to date. Based on the high peroxidase-like activity of iron-cobalt co-doped carbon dots, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for histamine detection using the mimic enzyme labeled with histamine antibody (His-Ab). Through the competitive binding of the labeled His-Ab to solid-phase and sample antigens, histamine content was detected with a linear range of 2.5-150 μg mL-1. The detection limit based on 3σ/K was 0.50 mg kg-1, which was much lower than those of commercial His-kit and HPLC methods. The ic-ELISA method was applied to histamine detection in fish samples with the recovery of (103.4 ± 0.5)%, which was in accord with those of commercial His-kit and HPLC methods. The results indicated that the established ic-ELISA method was suitable for rapid detection of histamine in fish samples with high accuracy, sensitivity and stability.
Collapse
Affiliation(s)
- Yi-Fang Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zheng-Zhong Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Cheng-Yi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhi-Yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
25
|
Cicero A, Galluzzo FG, Cammilleri G, Pulvirenti A, Giangrosso G, Macaluso A, Vella A, Ferrantelli V. Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207453. [PMID: 33066328 PMCID: PMC7602054 DOI: 10.3390/ijerph17207453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/02/2022]
Abstract
We developed, validated, and confirmed with proficiency tests a fast ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD) method to determine histamine in fish and fishery products. The proposed method consists of two successive solid–liquid extractions: one with a dilute solution of perchloric acid (6%) and the second only with water. The instrumental analysis with UHPLC provides a very fast run time (only 6 min) with a retention time of approximately 4 min, a limit of quantification (LOQ) of 7.2 mg kg−1, a limit of detection (LOD) of 2.2 mg kg−1, a recovery around 100%, a relative standard deviation (RSD%) between 0.5 and 1.4, and an r2 of calibration curve equal to 0.9995. The method detected optimal values of the validation parameters and required a limited number of reagents in comparison to other methods reported in the literature. Furthermore, the method could detect histamine in a very short time compared with other methods. This method, in addition to being validated, precise, specific, and accurate, avoids wasting time, money, and resources, and limits the use of organic solvents.
Collapse
Affiliation(s)
- Antonello Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
| | - Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
- Correspondence: ; Tel.: +39-0916-565-258
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Giuseppe Giangrosso
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
| | - Antonio Vella
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’, via Gino Marinuzzi, 3, 90129 Palermo, Italy; (A.C.); (G.C.); (G.G.); (A.M.); (A.V.); (V.F.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| |
Collapse
|
26
|
Grecco CF, Miranda LFC, Costa Queiroz ME. Aminopropyl hybrid silica monolithic capillary containing mesoporous SBA-15 particles for in-tube SPME-HILIC-MS/MS to determine levodopa, carbidopa, benserazide, dopamine, and 3-O-methyldopa in plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|