1
|
Zhang Y, Qu J, Luo R, Jia K, Fan G, Li F, Wu R, Li J, Li X. Radix rehmanniae praeparata extracts ameliorate hepatic ischemia-reperfusion injury by reversing LRP1-NOTCH1-C/EBPβ axis-mediated senescence fate of LSECs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155923. [PMID: 39094438 DOI: 10.1016/j.phymed.2024.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is commonly observed in cases of extensive hepatic resection and involves complex mechanisms. Cell senescence has been recognized as a factor in liver injury including HIRI, where it presents as a pro-inflammatory phenotype called senescence-associated secretory phenotype (SASP). Radix Rehmanniae Praeparata (RRP) is a commonly utilized traditional Chinese medicine known for its hepatoprotective, anti-aging and antioxidant qualities. Despite its recognized benefits, the specific mechanisms by which RRP may impede the progression of HIRI through the regulation of cell senescence and the identification of the most potent anti-aging extracts from RRP remain unclear. MATERIALS AND METHODS Here, we first applied different chemical analysis methods to identify the RRP aqueous extract (RRPAE) and active fractions of RRP. Next, we constructed a surgically established mouse model and a hypoxia-reoxygenation (HR)-stimulated liver sinusoidal endothelial cells (LSECs) model to explore the underlying mechanism of RRP against HIRI through transcriptomics and multiple molecular biology experiments. RESULTS After identifying active ingredients in RRP, we observed that RRP and its factions effectively restored LSECs fenestration and improved inflammation, cellular swelling and vascular continuity in the hepatic sinusoidal region during HIRI. Transcriptomic results revealed that RRP might reverse HIRI-induced senescence through the NOTCH signaling pathway and cell categorization further showed that the senescent cell population in HIRI liver was primarily LSECs rather than other cell types. Different RRPAE, especially RRP glucoside (RRPGLY), improved LSECs senescence and suppressed the expression of pro-inflammatory SASP genes either induced by HR insult or NOTCH1 activator, which was accompanied with the inhibition of LRP1-NOTCH1-C/EBPβ pathways. Additionally, the specific inhibition of NOTCH1 by siRNA synergistically enhanced the hepatoprotective effect of RRPGLY. The ChIP-qPCR results further showed that C/EBPβ was enriched at the promoter of a representative SASP, Il-1β, in hypoxic LSECs but was significantly inhibited by RRPGLY. CONCLUSION Our study not only clarified the potential mechanism of RRP active extractions in alleviating HIRI, but also highlighted RRPGLY was the main component of RRP that exerted anti-aging and anti-HIRI effects, providing a fresh perspective on the use of RRP to improve HIRI.
Collapse
Affiliation(s)
- Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Li B, Xiao Q, Zhao H, Zhang J, Yang C, Zou Y, Zhang B, Liu J, Sun H, Liu H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm Sin B 2024; 14:3949-3963. [PMID: 39309511 PMCID: PMC11413670 DOI: 10.1016/j.apsb.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse Prkab1 or human PRKAA1. Additionally, genetic silencing of PRKAA1 blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qi Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hongmei Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Jianuo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chunyan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yucen Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Bengang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiushi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
4
|
Liao J, Xie X, Wang N, Wang Y, Zhao J, Chen F, Qu F, Wen W, Miao J, Cui H. Formononetin promotes fatty acid β-oxidation to treat non-alcoholic steatohepatitis through SIRT1/PGC-1α/PPARα pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155285. [PMID: 38185065 DOI: 10.1016/j.phymed.2023.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. MATERIALS AND METHODS We firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid β oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid β oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. RESULTS Our study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of β oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of β oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid β oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. CONCLUSION In summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid β oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.
Collapse
Affiliation(s)
- Jiabao Liao
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China; Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xuehua Xie
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Ning Wang
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Yuming Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Jie Zhao
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Feng Chen
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Fei Qu
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Weibo Wen
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China.
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China.
| | - Huantian Cui
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China.
| |
Collapse
|
5
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
6
|
Dai Y, Qiu C, Zhang D, Li M, Liu W. Yam Gruel alone and in combination with metformin regulates hepatic lipid metabolism disorders in a diabetic rat model by activating the AMPK/ACC/CPT-1 pathway. Lipids Health Dis 2024; 23:28. [PMID: 38273354 PMCID: PMC10809441 DOI: 10.1186/s12944-024-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND As independent and correctable risk factors, disturbances in lipid metabolism are significantly associated with type 2 diabetes mellitus (T2DM). This research investigated the mechanism underlying the lipid-regulating effects of Yam Gruel in diabetic rats. METHODS First, rats in the control group were given a normal diet, and a diabetic rat model was established via the consumption of a diet that was rich in both fat and sugar for six weeks followed by the intraperitoneal injection of streptozotocin (STZ). After the model was established, the rats were divided into five distinct groups: the control group, model group, Yam Gruel (SYZ) group, metformin (MET) group, and combined group; each treatment was administered for six weeks. The fasting blood glucose (FBG), body and liver weights as well as liver index of the rats were determined. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartic acid transaminase (AST), alanine aminotransferase (ALT), and nonesterified fatty acid (NEFA) levels were measured. Oil Red O staining was used to assess hepatic steatosis. In addition, the levels of Phospho-acetyl-CoA carboxylase (p-ACC), acetyl coenzyme A carboxylase (ACC), AMP-activated protein kinase (AMPK), Phospho-AMPK (p-AMPK), carnitine palmitoyl transferase I (CPT-1), and Malonyl-CoA decarboxylase (MLYCD) in liver tissues were measured by real-time PCR (q-PCR) and western blotting. RESULTS After 6 weeks of treatment, Yam Gruel alone or in combination with metformin significantly reduced FBG level, liver weight and index. The concentrations of lipid indices (TG, TC, NEFA, and LDL-C), the levels of liver function indices (ALT and AST) and the degree of hepatic steatosis was improved in diabetic rats that were treated with Yam Gruel with or without metformin. Furthermore, Yam Gruel increased the protein levels of p-ACC/ACC, p-AMPK/AMPK, MLYCD, and CPT-1, which was consistent with the observed changes in gene expression. Additionally, the combination of these two agents was significantly more effective in upregulating the expression of AMPK pathway-related genes and proteins. CONCLUSIONS These results demonstrated that Yam Gruel may be a potential diet therapy for improving lipid metabolism in T2DM patients and that it may exert its effects via AMPK/ACC/CPT-1 pathway activation. In some respects, the combination of Yam Gruel and metformin exerted more benefits effects than Yam Gruel alone.
Collapse
Affiliation(s)
- Yanling Dai
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Chen Qiu
- Department of Endocrine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Diandian Zhang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mianli Li
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Weinan Liu
- Department of Orthopedics, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China.
| |
Collapse
|
7
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Jianfei Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| |
Collapse
|
8
|
Askar ME, Ali SI, Younis NN, Shaheen MA, Zaher ME. Raspberry ketone ameliorates nonalcoholic fatty liver disease in rats by activating the AMPK pathway. Eur J Pharmacol 2023; 957:176001. [PMID: 37598925 DOI: 10.1016/j.ejphar.2023.176001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The current study aimed to investigate the effect of orally administered raspberry ketone (RK) on ameliorating nonalcoholic fatty liver disease (NAFLD) induced in rats by high-fat high-fructose diet (HFFD) in comparison to calorie restriction (CR) regimen. Thirty male Wistar rats were divided into two experimental groups; one was fed normal chow diet (NCD, n = 6) for 15 weeks to serve as normal control group and the other group was fed HFFD (n = 24) for 7 weeks to induce NAFLD. After induction, rats in the HFFD group were randomly allocated into four groups (n = 6 rats each). One group continued on HFFD feeding for 8 weeks (NAFLD control group). The remaining 3 groups received NCD, calorie-restricted diet, or NCD along with RK (55 mg/kg/day, orally) for 8 weeks. Like CR, RK effectively attenuated NAFLD and ameliorated the changes attained by HFFD. RK upregulated the expression of the phosphorylated AMP-activated protein kinase (P-AMPK) and fatty acid oxidation factors; peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) and downregulated lipogenic factors; sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the hepatic tissue. Also, RK improved lipid profile parameters, liver enzymes and both body and liver tissue weights. Altogether, these findings suggest that oral administration of RK, along with normal diet, ameliorated NAFLD in a way similar to CR. This approach could be an alternative to CR in the management of NAFLD, overcoming the poor compliance to long term CR regimen.
Collapse
Affiliation(s)
- Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Egypt
| | - Mahmoud E Zaher
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| |
Collapse
|
9
|
Xie ZY, Cao HW, Wang Q, Lu H, Du W. Catalpol inhibits hepatic stellate cell activation by reducing the formation and changing the contents of hepatocyte-derived extracellular vesicles. J Cell Commun Signal 2023; 17:723-736. [PMID: 36508052 PMCID: PMC10409968 DOI: 10.1007/s12079-022-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is the central event in hepatic fibrosis. The cross-talk between HSCs and hepatocytes, which is mediated by extracellular vesicles (EVs), affects HSC activation. This study aimed to investigate whether Catalpol (CTP) attenuated hepatic fibrosis via modulating EVs. Mice were injected intraperitoneally with CCl4 for 4 weeks to induce hepatic fibrosis. They were gavaged with CTP daily. Mouse serum EVs were isolated and identified using nanoparticle tracking analysis and transmission electron microscopy. Mouse hepatocytes (AML12) and primary HSCs were used to investigate the cell-to-cell crosstalk. The autophagosome-autolysosome fusion was determined using the autophagic flux assay. Hepatic fibrosis was attenuated by CTP, with a decrease of the myofibroblast marker, alpha-smooth muscle actin. The CTP treatment lowered the serum EVs. The co-culture of HSCs and the EVs derived from the CTP-treated mice or hepatocytes reduced HSC proliferation and the expressions of ACTA2 and Col1a1. After the CCl4 treatment, the autophagosomes in AML12 cells were increased, while the autolysosomes were reduced. The decrease of autophagic cargo receptor SQSTM1 in the CTP group suggested that autophagic degradation was sustained. After inhibiting the endogenous Rac1-GTP of hepatocytes, the co-culture of EVs and HSCs reduced Rac1-GTP. The Rac1-GTP level in serum EVs from the CTP-treated mice was reduced in vivo. CTP inhibited autophagy in hepatocytes by reducing Rac1-GTP and thus affect the amount of Rac1-GTP in hepatocyte-derived EVs and the formation of EVs, which attenuated hepatic fibrosis via inhibiting HSC activation.
Collapse
Affiliation(s)
- Zheng-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No.1 Mingde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| | - Heng-Wei Cao
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Wang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lu
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Du
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Yang F, Wu Y, Chen Y, Xi J, Chu Y, Jin J, Yan Y. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis. JHEP Rep 2023; 5:100746. [PMID: 37274776 PMCID: PMC10232730 DOI: 10.1016/j.jhepr.2023.100746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/07/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) affects nearly a quarter of the population with no approved pharmacological therapy. Liver steatosis is a primary characteristic of NAFLD. Recent studies suggest that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) may provide a promising strategy for treating liver injury; however, the role and underlying mechanisms of MSC-ex in steatosis are not fully understood. Methods Oleic-palmitic acid-treated hepatic cells and high-fat diet (HFD)-induced NAFLD mice were established to observe the effect of MSC-ex. Using non-targeted lipidomics and transcriptome analyses, we analysed the gene pathways positively correlated with MSC-ex. Mass spectrometry and gene knockdown/overexpression analyses were performed to evaluate the effect of calcium/calmodulin-dependent protein kinase 1 (CAMKK1) transferred by MSC-ex on lipid homoeostasis regulation. Results Here, we demonstrate that MSC-ex promote fatty acid oxidation and reduce lipogenesis in oleic-palmitic acid-treated hepatic cells and HFD-induced NAFLD mice. Non-targeted lipidomics and transcriptome analyses suggested that the effect of MSC-ex on lipid accumulation positively correlated with the phosphorylation of AMP-activated protein kinase. Furthermore, mass spectrometry and gene knockdown/overexpression analyses revealed that MSC-ex-transferred CAMKK1 is responsible for ameliorating lipid accumulation in an AMP-activated protein kinase-dependent manner, which subsequently inhibits SREBP-1C-mediated fatty acid synthesis and enhances peroxisome proliferator-activated receptor alpha (PPARα)-mediated fatty acid oxidation. Conclusions MSC-ex may prevent HFD-induced NAFLD via CAMKK1-mediated lipid homoeostasis regulation. Impact and Implications NAFLD includes many conditions, from simple steatosis to non-alcoholic steatohepatitis, which can lead to fibrosis, cirrhosis, and even hepatocellular carcinoma. So far, there is no approved drug for treating liver steatosis of NAFLD. Thus, better therapies are needed to regulate lipid metabolism and prevent the progression from liver steatosis to chronic liver disease. By using a combination of non-targeted lipidomic and transcriptome analyses, we revealed that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) effectively reduced lipid deposition and improved liver function from HFD-induced liver steatosis. Our study highlights the importance of exosomal CAMKK1 from MSC-ex in mediating lipid metabolism regulation via AMPK-mediated PPARα/CPT-1A and SREBP-1C/fatty acid synthase signalling in hepatocytes. These findings are significant in elucidating novel mechanisms related to MSC-ex-based therapies for preventing NAFLD.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanshuang Wu
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianbo Xi
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Jianhua Jin
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| |
Collapse
|
11
|
Qin H, Song Z, Zhao C, Li S, Ali A, Zheng W. miR-363-3p/PTEN is involved in the regulation of lipid metabolism by genistein in HepG2 cells via ERβ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154839. [PMID: 37121060 DOI: 10.1016/j.phymed.2023.154839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Genistein (GEN) is one of the most well-known phytoestrogens identified in various legumes. Although increasing evidence shows GEN has a potential use in phytotherapy to regulate lipid metabolism, its therapeutic mechanisms have not yet been completely elucidated, especially epigenetic alterations of miRNAs to alleviate lipid accumulation in the liver remains unknown. PURPOSE To clarify how GEN modulates the miRNA profile in HepG2 cells and investigate molecular mechanisms of the modulated miRNA on regulating hepatic lipid metabolism. METHODS The miRNA microarray was performed to compare the miRNAs expression patterns, followed by determining principal miRNA and its target gene associated with hepatic lipid metabolism modulated by GEN. miR-363-3p mimics (mi) and phosphatase and tensin homolog (PTEN)-siRNA were transfected into HepG2 cells and GEN was further treated with the cells for 24 h RESULTS: GEN induced downregulation of miR-363-3p and upregulation of PTEN, which was a target mRNA of miR-363-3p. The miR-363-3p mi led to an upregulation of sterol-regulatory element-binding protein-1c (SREBP-1c) and its downstream lipid synthesis-related factors in HepG2 cells. In addition, the inhibition of PTEN led to an increase of lipogenesis, which was associated with the AKT/mTOR signal regulation. However, GEN treatment could abrogate the lipogenic effects of miR-363-3p mi or PTEN siRNA. The modulation was associated with estrogen receptor β (ERβ). CONCLUSION We discerned a new mechanism that GEN regulated hepatic lipid metabolism by inhibiting miR-363-3p, which could be mediated via ERβ and by targeting PTEN in HepG2 cells. Additionally, GEN reduced hepatic lipid accumulation by regulating PTEN-AKT/mTOR signal. It implicated a protective role of GEN by elucidating its epigenetic modification of the miRNA modulated by ERβ on improving hepatic lipid metabolism and provided novel evidence of the mechanism on targeting miR-363-3p/PTEN in treating hepatic lipid disorders.
Collapse
Affiliation(s)
- Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Ziyu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Chunyu Zhao
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Sha Li
- Changsha Center for Disease Control and Prevention, 509 Wanjiali North Road, Changsha, Hunan, 410005, China
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Wenya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
| |
Collapse
|
12
|
Naringin reduces fat deposition by promoting the expression of lipolysis and β-oxidation related genes. Obes Res Clin Pract 2023; 17:74-81. [PMID: 36494293 DOI: 10.1016/j.orcp.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
AIMS Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid β-oxidation to change fat deposition. METHODS In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1β (IL-1β), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid β-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and β-oxidation genes CPT1, AOX1, and UCP2.
Collapse
|
13
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
14
|
ALTamimi JZ, Alshammari GM, AlFaris NA, Alagal RI, Aljabryn DH, Albekairi NA, Alkhateeb MA, Yahya MA. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. PHARMACEUTICAL BIOLOGY 2022; 60:25-37. [PMID: 34870551 PMCID: PMC8654409 DOI: 10.1080/13880209.2021.1990969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 05/26/2023]
Abstract
CONTEXT Ellagic acid (EA) is used in traditional medicine to treated hyperlipidaemia. OBJECTIVE This study examined if AMPK mediates the anti-steatotic effect of ellagic acid (EA) in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. MATERIALS AND METHODS Adult male Wistar rats (130 ± 10 g) were divided into 6 groups (n = 8 rats/group) as control, control + EA, control + EA + CC an AMPK inhibitor), T1DM, T1DM + EA, and T1DM + EA + CC. The treatments with EA (50 mg/kg/orally) and CC (200 ng/rat/i.p.) were given the desired groups for 12 weeks, daily. RESULTS In T1DM-rats, EA reduced fasting glucose levels (44.8%), increased fasting insulin levels (92.8%), prevented hepatic lipid accumulation, and decreased hepatic and serum levels of total triglycerides (54% & 61%), cholesterol (57% & 48%), and free fatty acids (40% & 37%). It also reduced hepatic levels of ROS (62%), MDA (52%), TNF-α (62%), and IL-6 (57.2%) and the nuclear activity of NF-κB p65 (54%) but increased the nuclear activity of Nrf-2 (4-fold) and levels of GSH (107%) and SOD (87%). Besides, EA reduced downregulated SREBP1 (35%), SREBP2 (34%), ACC-1 (36%), FAS (38%), and HMG-CoAR (49%) but stimulated mRNA levels of PPARα (1.7-fold) and CPT1a (1.8-fold), CPT1b (2.9-fold), and p-AMPK (4-fold). All these events were prevented by the co-administration of CC. DISCUSSION AND CONCLUSIONS These findings encourage the use of EA to treat hepatic disorders, and non-alcoholic fatty liver disease (NAFLD). Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A. AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I. Alagal
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal H. Aljabryn
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Ahmad Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Arulkumar R, Jung HJ, Noh SG, Chung HY. Soyasapogenol C from Fermented Soybean ( Glycine Max) Acting as a Novel AMPK/PPARα Dual Activator Ameliorates Hepatic Steatosis: A Novel SANDA Methodology. Int J Mol Sci 2022; 23:5468. [PMID: 35628280 PMCID: PMC9141180 DOI: 10.3390/ijms23105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Soyasapogenol C (SSC), a derivative of soyasapogenol B (SSB), is specifically found high in many fermented soybean (Glycine max) products, including Cheonggukjang (in Korean). However, the biological activities for preventing and treating hepatic steatosis, and the precise underlying mechanisms of SSC, remain to be explored. (2) Methods: A novel SANDA (structural screening, ADMET prediction, network pharmacology, docking validation, and activity evaluation) methodology was used to examine whether SSC exerts hepatoprotective effects in silico and in vitro. (3) Results: SSC had better ADMET characteristics and a higher binding affinity with predicted targets chosen from network pathway analysis than SSB. SSC induced the phosphorylation of AMP-activated protein kinase (AMPK) and stimulated the nuclear translocation of peroxisome proliferator-activated receptor alpha (PPARα), further enhancing PPAR response element (PPRE) binding activity in HepG2 cells. Concurrently, SSC significantly inhibited triglyceride accumulation, which was associated with the suppression of lipogenesis genes and the enhancement of fatty acid oxidation gene expression in HepG2 cells. (4) Conclusions: Soyasapogenol C, discovered using a novel SANDA methodology from fermented soybean, is a novel AMPK/PPARα dual activator that is effective against hepatic steatosis. Dietary supplementation with soyasapogenol C may prevent the development of hepatic steatosis and other diseases associated with fat accumulation in the liver.
Collapse
Affiliation(s)
- Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
16
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
17
|
Yu Z, Feng Z, Fu L, Wang J, Li C, Zhu H, Xie T, Zhou J, Zhou L, Zhou X. Qingluotongbi formula regulates the LXRα-ERS-SREBP-1c pathway in hepatocytes to alleviate the liver injury caused by Tripterygium wilfordii Hook. f. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114952. [PMID: 34968661 DOI: 10.1016/j.jep.2021.114952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook. f. (TW) is widely used to treat autoimmune and inflammatory diseases; however, its development and application is limited by its significant association with liver injury. The compound formula Qingluotongbi (QLT) employs TW as its main component and is used to treat rheumatoid arthritis with no adverse reactions, suggesting that QLT may reduce the liver toxicity of TW. AIM OF THE STUDY We examined whether TW interferes with lipid metabolism to induce liver injury, and evaluated the protective effect of QLT in in vivo and in vitro experiments. MATERIALS AND METHODS After administration of QLT and its ingredients, HepaRG cells and SD rats were tested for biochemical indicators, hepatocytes lipid changes, and rat liver pathological changes, and then we analyzed for the gene expression of liver X receptor α (LXRα), endoplasmic reticulum stress (ERS) key proteins, sterol regulatory element binding protein-1c (SREBP-1c), and lipid-synthesizing enzymes. In HepaRG cells, the protein expression of glucose-regulated protein 78 kDa (GRP78) and LXRα was detected after addition of an LXRα inhibitor, LXRα agonist, and ERS inhibitor. RESULTS TW caused significant elevation of biochemical indicators and lipid droplet deposition in hepatocytes, as well as upregulated the gene expression of LXRα, ERS key proteins, SREBP-1c, and lipid-synthesizing enzymes in both in vitro and in vivo settings, and caused liver injury in rats. QLT can alleviate the lipotoxic liver injury caused by TW. LXRα agonist further activated ERS induced by TW, whereas LXRα inhibitor significantly reduced ERS and lipotoxic injury induced by TW in HepaRG cells. CONCLUSIONS TW upregulated LXRα to activate ERS and increased the gene expression of SREBP-1c and lipid-synthesizing enzymes, leading to increased lipid synthesis in hepatocytes to result in liver injury. QLT inhibited the LXRα-ERS-SREBP-1c pathway and reduced abnormal lipid synthesis in hepatocytes and the hepatotoxicity of TW.
Collapse
Affiliation(s)
- Zhichao Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Zhe Feng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Ling Fu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jing Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Changqing Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jie Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
18
|
Li M, Jiang H, Hao Y, Du K, Du H, Ma C, Tu H, He Y. A systematic review on botany, processing, application, phytochemistry and pharmacological action of Radix Rehmnniae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114820. [PMID: 34767834 DOI: 10.1016/j.jep.2021.114820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Rehmanniae (RR) is the tuber root of Rehmannia glutionsa Libosch, which was firstly recorded in Shennong's Classic of Materia Medica (⟪⟫). RR is a non-toxic and wide used traditional Chinese medicine. RR has the effect of clearing heat, generating essence, cooling blood, stopping bleeding, nourishing yin and blood, and filling marrow. It is used in clinic in the form of processed decoction pieces, including Dry Radix Rehmnniae (DRR) and Rehmanniae Radix Praeparata (RRP). The application of RR in traditional Chinese medicine (TCM) prescriptions can treat various diseases, such as anemia, irregular menstruation, deficiency of liver yin, renal failure and so on. AIM OF REVIEW This paper aims to provide a comprehensive and productive review of RR, which mainly contains botanical characteristics, processing methods, traditional application, chemical composition, quality control and pharmacological action. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Radix Rehmnniae", "Rehmanniae Radix Praeparata", "processing", "clinical application", "chemical composition", "quality control", and "pharmacological action". In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS RR is a traditional Chinese herbal medicine with clinical value and rich resources. More than 100 components have been isolated and identified from RR. It has multiple pharmacological actions, such as hemostasis, antioxidation, anti-osteoporosis, lowering blood sugar, improving renal function, anti-inflammation, protecting neuronal function, antidepression and anti-anxiety. DRR and RRP are two different processed products of RR. After processing, there are great changes in property, taste, efficacy, clinical application, chemical composition and pharmacological action. At present, identifying chemical constituents of RR and its medicinal value has been deeply studied. However, there is a lack of research on the reasons for the differences in pharmacological effects between DRR and RRP. The reasons for these differences need to be further verified. Catalpol, the active component of RR, has been studied extensively in the literature, but the pharmacological effects of catalpol cannot represent the pharmacological effects of the whole RR. In the future, effective components such as rehmannioside D, polysaccharide, total glycosides, and effective parts in RR need to be further studied and developed. The pharmacodynamic material basis and mechanism of RR need to be further discussed. The scientific connotation and processing methods of RRP need to be studied and standardized.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yule Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hongling Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - He Tu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, 610041, China.
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Guizhou Yibai Pharmaceutical Co. Ltd. Guiyang, 550008, China.
| |
Collapse
|
19
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
20
|
Nguyen TH, Yousefi H, Okpechi SC, Lauterboeck L, Dong S, Yang Q, Alahari SK. Nischarin Deletion Reduces Oxidative Metabolism and Overall ATP: A Study Using a Novel NISCHΔ5-6 Knockout Mouse Model. Int J Mol Sci 2022; 23:ijms23031374. [PMID: 35163298 PMCID: PMC8835720 DOI: 10.3390/ijms23031374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt–PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch’s effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.
Collapse
Affiliation(s)
- Tina H. Nguyen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Samuel C. Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Qinglin Yang
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
- Correspondence: ; Tel.: +1-504-568-4734
| |
Collapse
|
21
|
Ma C, Wang C, Zhang Y, Zhou H, Li Y. Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms. Curr Mol Pharmacol 2021; 15:846-861. [PMID: 34923950 DOI: 10.2174/1874467215666211217120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research. PURPOSE This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD. METHODS By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval. RESULTS The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed. CONCLUSION Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
22
|
Cornelian Cherry ( Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-α, PPAR-γ Expression and Reduces I/M Ratio in Aorta, Increases LXR-α Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021; 13:nu13103621. [PMID: 34684622 PMCID: PMC8537201 DOI: 10.3390/nu13103621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits possess potential cardiovascular, lipid-lowering and hypoglycemic bioactivities. The aim of this study is to evaluate the influence of resin-purified cornelian cherry extract rich in iridoids and anthocyanins on several transcription factors, intima/media ratio in aorta and serum parameters, which determine or are valuable indicators of the adverse changes observed in the course of atherosclerosis, cardiovascular disease, and metabolic syndrome. For this purpose, male New Zealand rabbits were fed a diet enriched in 1% cholesterol for 60 days. Additionally, one group received 10 mg/kg b.w. of cornelian cherry extract and the second group 50 mg/kg b.w. of cornelian cherry extract. PPAR-α and PPAR-γ expression in the aorta, LXR-α expression in the liver; cholesterol, triglycerides, adipokines, apolipoproteins, glucose and insulin levels in serum; the intima and media diameter in the thoracic and abdominal aorta were determined. Administration of cornelian cherry extract resulted in an enhancement in the expression of all tested transcription factors, a decrease in triglycerides, leptin and resistin, and an increase in adiponectin levels. In addition, a significant reduction in the I/M ratio was observed for both the thoracic and abdominal aorta. The results we have obtained confirm the potential contribution of cornelian cherry extract to mitigation of the risk of developing and the intensity of symptoms of obesity-related cardiovascular diseases and metabolic disorders such as atherosclerosis or metabolic syndrome.
Collapse
|
23
|
Chen M, Xie Y, Gong S, Wang Y, Yu H, Zhou T, Huang F, Guo X, Zhang H, Huang R, Han Z, Xing Y, Liu Q, Tong G, Zhou H. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis. Pharmacol Res 2021; 172:105849. [PMID: 34450307 DOI: 10.1016/j.phrs.2021.105849] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease in clinical practice. It has been considered that NASH is one of the main causes of chronic liver disease, cirrhosis and carcinoma. The mechanism of the NASH progression is complex, including lipid metabolism dysfunction, insulin resistance, oxidative stress, inflammation, apoptosis, fibrosis and gut microbiota dysbiosis. Except for lifestyle modification and bariatric surgery, there has been no pharmacological therapy that is being officially approved in NASH treatment. Traditional Chinese medicine (TCM), as a conventional and effective therapeutic strategy, has been proved to be beneficial in treating NASH in numbers of studies. In the light of this, TCM may provide a potential therapy for treating NASH. In this review, we summarized the associated mechanisms of action TCM treating NASH in preclinical studies and systematically analysis the effectiveness of TCM treating NASH in current clinical trials.
Collapse
Affiliation(s)
- Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Ying Xie
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, PR China
| | - Shenglan Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yunqiao Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hao Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Tianran Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Furong Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Huanhuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, PR China
| | - Zhiyi Han
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Yufeng Xing
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
24
|
Yang H, Xie J, Wang N, Zhou Q, Lu Y, Qu Z, Wang H. Effects of Miao sour soup on hyperlipidemia in high-fat diet-induced obese rats via the AMPK signaling pathway. Food Sci Nutr 2021; 9:4266-4277. [PMID: 34401077 PMCID: PMC8358355 DOI: 10.1002/fsn3.2394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperlipidemia is a common characteristic of obese animals. Identifying the factors involved in the regulation of dietary lipid metabolism is the most beneficial way to improve health. Miao sour soup (MSS) is a fermented food made from tomato and red pepper that contains lycopene, capsaicin, and organic acids. We conducted this study to investigate the regulatory functions and mechanisms of MSS on the blood lipid levels of high-fat diet-induced obese rats. In our preventive study, rats were fed normal diet (ND1), high-fat diet (HFD1), HFD + 4 g/kg BW MSS (HFD + LS1), and HFD + 8 g/kg BW MSS (HFD + HS1). We found that MSS significantly reduced the body weight and fat accumulation and improved the blood lipid levels of rats. MSS significantly increased the expression of AMP-activated protein kinase-alpha (AMPKα), attenuated the expression of the adipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), and suppressed the expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase alpha (ACCα), the critical regulators of hepatic lipid metabolism. Additionally, we also conducted a treatment study, and we grouped rats to receive ND2, HFD2, PC2, HFD + LS2, and HFD + HS2 for another 10 weeks. MSS treatment reduced the body weight, fat deposition, and percentage of lipid droplets and regulated the plasma lipid content. MSS significantly increased the expression of AMPK and alleviated the expression of SREBP-1c, ACC, and FAS. Taken together, these findings suggest that MSS prevents and treats hyperlipidemia in obese rats by regulating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jiao Xie
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Nanlan Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Qianqian Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Yang Lu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Guiyang Maternal and Child Healthcare HospitalGuiyangChina
| | - Zihan Qu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Laishan District Center for Disease Control and PreventionYantaiChina
| | - Huiqun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
25
|
Naowaboot J, Nanna U, Chularojmontri L, Songtavisin T, Tingpej P, Sattaponpan C, Jansom C, Wattanapitayakul S. Mentha cordifolia Leaf Extract Improves Hepatic Glucose and Lipid Metabolism in Obese Mice Fed with High-Fat Diet. Prev Nutr Food Sci 2021; 26:157-165. [PMID: 34316480 PMCID: PMC8276705 DOI: 10.3746/pnf.2021.26.2.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
Mentha cordifolia (MC) is a popular herb used to flavor food in Thailand that exhibits several biological effects. The present study aimed to determine the role of MC in regulating glucose and lipid metabolism in mice fed a high-fat diet (HFD). ICR obese mice were fed an HFD (45 kcal% lard fat) for 12 weeks, with MC (100 and 200 mg/kg/d) treatment from Week 7. After treatment with MC for 6 weeks, mice showed significantly lower rates of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia, and increased amounts of serum adiponectin. Furthermore, in mice treated with MC, serum interleukin-6 and tumor necrosis factor alpha were significantly inhibited and liver histology results showed decreased lipid accumulation and liver triglyceride content vs. untreated mice. In addition, MC treatment was associated with smaller fat cells and lower gene expression of liver sterol regulatory element binding protein 1c, acetyl-CoA carboxylase, and fatty acid synthase. However, MC treatment was associated with higher carnitine palmitoyltransferase 1a gene expression and significantly higher rates of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in liver, but lower levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. These results indicate MC regulates glucose and lipid metabolism in a HFD-induced obese mouse model, possibly via activation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Urarat Nanna
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Linda Chularojmontri
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Thanitsara Songtavisin
- Division of Anatomy, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chisanucha Sattaponpan
- Research Administrative Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chalerm Jansom
- Research Administrative Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Suvara Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
26
|
Li H, Huang W, Wang M, Chen P, Chen L, Zhang X. Tandem Mass Tag-based quantitative proteomics analysis of metabolic associated fatty liver disease induced by high fat diet in mice. Nutr Metab (Lond) 2020; 17:97. [PMID: 33292312 PMCID: PMC7672977 DOI: 10.1186/s12986-020-00522-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, the exact molecular mechanism of MAFLD progression remains unknown. In the present study, Tandem Mass Tag-labeled quantitative proteomic technology was used to elucidate the protein expression patterns of liver tissues in the progression of MAFLD, providing new potential therapeutic targets of it. METHODS Five 6-week-old male C57BL/6 mice were fed with high fat diet (HFD) for 22 weeks to establish the MAFLD mouse models. Five C57BL/6 mice of the same age were fed with normal diet (ND) and taken as controls. Mice serum were sampled for biochemical tests, and livers were isolated for histopathological examinations. Six mouse liver samples (three from each group) were performed for proteomic analysis. Differentially expressed proteins were defined using fold change of > 1.5 or < 0.67 and p value < 0.05 as thresholds. Bioinformatic analysis was used to identify the hub proteins. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Gene Expression Omnibus dataset, western blotting and immunohistochemistry were used to validate the expression of identified hub proteins. RESULTS After 22 weeks on HFD diet, all mice developed MAFLD demonstrated by histopathological examination. Mouse body weights, liver weights, serum alanine transaminase and aspartate transaminase levels were significantly higher in the HFD group than ND group. Proteomics technology identified 4915 proteins in the mouse livers, among which 71 proteins were differentially expressed. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that majority of the differentially expressed proteins were involved in the peroxisome and peroxisome proliferator-activated receptor signaling pathway, as well as biosynthesis of unsaturated fatty acids. Protein-protein interaction analysis showed that these differentially expressed proteins interacted with each other and formed a complex network. Ten hub proteins were identified and validated using RT-qPCR. Five of these proteins were validated in the Gene Expression Omnibus dataset. Finally, Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase protein was validated in mouse liver tissue samples using western blotting and immunohistochemistry. CONCLUSION Our data showed that lipid metabolism-related pathways are closely associated with the development of MAFLD. The identified hub proteins might be novel targets for treating MAFLD.
Collapse
Affiliation(s)
- Hu Li
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, China
| | - Wei Huang
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, China
| | - Mingjie Wang
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201821, China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201821, China.
| | - Xinxin Zhang
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, China. .,Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201821, China.
| |
Collapse
|
27
|
Balkrishna A, Gohel V, Singh R, Joshi M, Varshney Y, Srivastava J, Bhattacharya K, Varshney A. Tri-Herbal Medicine Divya Sarva-Kalp-Kwath (Livogrit) Regulates Fatty Acid-Induced Steatosis in Human HepG2 Cells through Inhibition of Intracellular Triglycerides and Extracellular Glycerol Levels. Molecules 2020; 25:molecules25204849. [PMID: 33096687 PMCID: PMC7587968 DOI: 10.3390/molecules25204849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Steatosis is characterized by excessive triglycerides accumulation in liver cells. Recently, application of herbal formulations has gained importance in treating complex diseases. Therefore, this study explores the efficacy of tri-herbal medicine Divya Sarva-Kalp-Kwath (SKK; brand name, Livogrit) in treating free fatty acid (FFA)-induced steatosis in human liver (HepG2) cells and rat primary hepatocytes. Previously, we demonstrated that cytosafe SKK ameliorated CCl4-induced hepatotoxicity. In this study, we evaluated the role of SKK in reducing FFA-induced cell-death, and steatosis in HepG2 through analysis of cell viability, intracellular lipid and triglyceride accumulation, extracellular free glycerol levels, and mRNA expression changes. Plant metabolic components fingerprinting in SKK was performed via High Performance Thin Layer Chromatography (HPTLC). Treatment with SKK significantly reduced the loss of cell viability induced by 2 mM-FFA in a dose-dependent manner. SKK also reduced intracellular lipid, triglyceride accumulation, secreted AST levels, and increased extracellular free glycerol presence in the FFA-exposed cells. SKK normalized the FFA-stimulated overexpression of SREBP1c, FAS, C/EBPα, and CPT1A genes associated with the induction of steatosis. In addition, treatment of rat primary hepatocytes with FFA and SKK concurrently, reduced intracellular lipid accumulation. Thus, SKK showed efficacy in reducing intracellular triglyceride accumulation and increasing extracellular glycerol release, along with downregulation of related key genetic factors for FFA-associated steatosis.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G41 1AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Yash Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (V.G.); (R.S.); (M.J.); (Y.V.); (J.S.); (K.B.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Correspondence: ; Tel.: +91-1334-244-107 (ext. x7458); Fax: +91-1334-244-805
| |
Collapse
|