1
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Andrade AC, Borsoi FT, Saliba ASMC, de Alencar SM, Pastore GM, Arruda HS. Optimization of Ultrasonic-Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Araticum Peel Using Response Surface Methodology. PLANTS (BASEL, SWITZERLAND) 2024; 13:2560. [PMID: 39339535 PMCID: PMC11434794 DOI: 10.3390/plants13182560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering these compounds. Therefore, response surface methodology, using a central composite rotatable design, was employed to optimize the extraction process to maximize the total phenolic compounds (TPCs) and enhance the Trolox equivalent antioxidant capacity (TEAC) from araticum peel. The variables optimized were ethanol concentration (EC; 20-80%, v/v), extraction time (ET; 5-45 min), and solid-solvent ratio (SSR; 10-100 mg/mL). Additionally, condensed tannins, antioxidant capacity against synthetic free radicals (TEAC and FRAP) and reactive oxygen species (ROS), and the phenolic compounds profile, were evaluated. Optimum extraction conditions were 50% (v/v) ethanol concentration, 5 min of extraction time, and 10 mg/mL solid-solvent ratio. Under these conditions, experimental TPCs and TEAC values were 70.16 mg GAE/g dw and 667.22 µmol TE/g dw, respectively, comparable with predicted models (68.47 mg GAE/g dw for TPCs and 677.04 µmol TE/g dw for TEAC). A high condensed tannins content (76.49 mg CE/g dw) was also observed and 12 phenolic compounds were identified, predominantly flavonoids (97.77%), including procyanidin B2, epicatechin, and catechin as the major compounds. Moreover, a potent antioxidant activity was observed against synthetic free radicals and ROS, especially in scavenging peroxyl and hydroxyl radicals. From this study, we obtained the ideal conditions for recovering phenolic compounds from araticum peel using a simple, fast, sustainable, and effective method, offering a promising opportunity for the management of this plant byproduct.
Collapse
Affiliation(s)
- Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Ana Sofia Martelli Chaib Saliba
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| |
Collapse
|
3
|
Patil DM, Hunasagi BS, Raghu AV, Kulkarni RV, Akamanchi KG. Optimisation of enzyme-assisted extraction of camptothecin from Nothapodytes nimmoniana and its characterisation. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:825-839. [PMID: 38351290 DOI: 10.1002/pca.3331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Efficient extraction of camptothecin (CPT), an anticancer agent from the commercial source Nothapodytes nimmoniana (J. Graham) Mabb in India, is of paramount importance. CPT is present in the highest concentration in the stem portion, and the stem can be readily harvested without uprooting the plant. The fluorescence microscopy mapping of the bark matrix for CPT revealed its presence in a free form within both the outer (epidermal and cortical tissues) and inner (xylem and phloem tissues) sections. The bark matrix primarily consists of cellulose, hemicellulose, and lignin, rendering it woody, rigid, and resistant to efficient solvent penetration for CPT extraction. We proposed a hypothesis that subjecting it to disruption through treatment with hydrolytic enzymes like cellulase and xylanase could enhance solvent diffusion, thereby enabling a swift and effective extraction of CPT. OBJECTIVE The present study was aimed at enzyme-assisted extraction, using cellulase and xylanase for hydrolytic disruption of the cells to readily access CPT from the stem of the plant N. nimmoniana (J. Graham) Mabb. METHODOLOGY The hydrolytic cell disruption of ground powder from the stem bark was studied using cellulase and xylanase enzymes. The enzymatically pretreated stem bark powder was subsequently recovered by filtration, dried, and subjected to extraction with methanol to isolate CPT. This process was optimised through a Box-Behnken design, employing a one-factor-at-a-time approach to assess parameters such as enzyme concentration (2-10% w/w), pH (3-7), incubation time (6-24 h), and solid-to-solvent ratio (1:30-1:70 g/mL). CPT was characterised using proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectra, and a high-performance liquid chromatography (HPLC) method was developed for quantification. RESULTS The cellulase and xylanase treatment resulted in the highest yields of 0.285% w/w and 0.343% w/w, with efficiencies of 67% and 81%, respectively, achieved in a significantly shorter time compared to the untreated material, which yielded 0.18% with an efficiency of only 42%. Extraction by utilising the predicted optimised process parameters, a nearly two-fold increase in the yield, was observed for xylanase, with incubation and solvent extraction times set at 16 and 2 h, respectively. Scanning electron microscopy (SEM) images of the spent material indicated perforations attributed to enzymatic action, suggesting that this could be a primary factor contributing to the enhanced extraction. CONCLUSION Enzyme-mediated hydrolytic cell disruption could be a potential approach for efficient and rapid isolation of CPT from the bark of N. nimmoniana.
Collapse
Affiliation(s)
- Dhiraj M Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Basavaraj S Hunasagi
- Department of Pharmacognosy, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapura, Karnataka, India
| | - Anjanapura V Raghu
- Science and Technology, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapura, Karnataka, India
| | - Krishnacharya G Akamanchi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- Department of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| |
Collapse
|
4
|
Thiruvalluvan M, Kaur BP, Singh A, Kumari S. Enhancement of the bioavailability of phenolic compounds from fruit and vegetable waste by liposomal nanocarriers. Food Sci Biotechnol 2024; 33:307-325. [PMID: 38222914 PMCID: PMC10786787 DOI: 10.1007/s10068-023-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024] Open
Abstract
Fruits and vegetables are one of the most consumed and processed commodities globally and comprise abundant phenolic compounds, one of the main nutraceuticals in the food industry. Comparably elevated rates of these compounds are found in waste (peel, seeds, leaf, stem, etc.) in the food processing industry. They are being investigated for their potential use in functional foods. However, phenolic compounds' low bioavailability limits their application, which can be approached by loading the phenolic compounds into an encapsulation system such as liposomal carriers. This review aims to elucidate the recent trend in extracting phenolic compounds from the waste stream and the means to load them in stable liposomes. Furthermore, the application of these liposomes with only natural extracts in food matrices is also presented. Many studies have indicated that liposomes can be a proper candidate for encapsulating and delivering phenolic compounds and as a means to increase their bioavailability.
Collapse
Affiliation(s)
- Manonmani Thiruvalluvan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Sanjana Kumari
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| |
Collapse
|
5
|
Boateng ID. Recent advances incombined Avant-garde technologies (thermal-thermal, non-thermal-non-thermal, and thermal-non-thermal matrix) to extract polyphenols from agro byproducts. J Food Drug Anal 2023; 31:552-582. [PMID: 38526817 PMCID: PMC10962677 DOI: 10.38212/2224-6614.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 03/27/2024] Open
Abstract
Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, 65211,
USA
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX, 78216,
USA
- Kumasi Cheshire Home, Off Edwenase Road, Kumasi,
Ghana
- Organization of African Academic Doctors, PO Box 25305-00100, Nairobi,
Kenya
| |
Collapse
|
6
|
Wong JCJ, Nillian E. Microwave-assisted extraction of bioactive compounds from Sarawak Liberica sp. coffee pulp: Statistical optimization and comparison with conventional methods. Food Sci Nutr 2023; 11:5364-5378. [PMID: 37701201 PMCID: PMC10494612 DOI: 10.1002/fsn3.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
Coffea liberica, commonly known as Liberica coffee, is a kind of coffee that originated in Liberia, a West African country. It is considered a less-known coffee bean variety, which accounts for less than 2% of commercially produced coffee worldwide. In this study, the influences of optimization of microwave-assisted extraction (MAE) on the total phenolic content (TPC), total flavonoid content (TFC), and total carbohydrate content (TCC) of bioactive compounds extracted from Sarawak Liberica sp. coffee pulp were studied. Response surface methodology was adopted with a face-centered central composite design to generate 34 responses by taking three microwave parameters into consideration, microwave power (watt), time of irradiation (second), and solvent-to-feed ratio as independent variables. As a result, the findings revealed that optimum extraction conditions were conducted as follows: microwave power of 700 W, time of irradiation of 180 s, and solvent-to-feed ratio of 86.644:1. While under optimal extraction conditions, MAE outperformed conventional maceration extraction in terms of extraction efficiency and had no significant difference (p < .05) with Soxhlet extraction on the extraction of TPC (12.94 ± 2.25 mg GAE/g), TFC (9.84 ± 0.38 mg QE/g), and TCC (876.50 ± 64.15 mg GE/g). Present work advances the usage of Sarawak Liberica sp. coffee for the development of functional products and aids in reducing environmental pollution by utilization of coffee pulp waste.
Collapse
Affiliation(s)
- Joel Ching Jue Wong
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Elexson Nillian
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| |
Collapse
|
7
|
Gumustepe L, Kurt N, Aydın E, Ozkan G. Comparison of ohmic heating- and microwave-assisted extraction techniques for avocado leaves valorization: Optimization and impact on the phenolic compounds and bioactivities. Food Sci Nutr 2023; 11:5609-5620. [PMID: 37701208 PMCID: PMC10494651 DOI: 10.1002/fsn3.3556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 09/14/2023] Open
Abstract
Avocado tree pruning activities generate a substantial amount of residual biomass, which includes different parts of the plant, such as leaves, twigs, branches, and small fruits. This study aimed to investigate the impact of different green extraction methods of microwave-assisted extraction (MAE) and ohmic heating-assisted extraction (OHAE) for the phenolic extraction of avocado leaves based on a statistical approach, central composite design (CCD), and response surface methodology (RSM). Water was preferred using as an environmentally and health-friendly solvent for both methods. The phenolic composition, antioxidant activity, and antidiabetic potential of the extracts were identified and comparatively assessed. The developed models exhibited a high degree of reliability with optimal conditions for OHAE and MAE, which were determined as 9.38 V/cm voltage gradient, 6 min extraction time, at 60°C, 5 min, and 1 g dried leaf/100 mL water. Epicatechin was identified as the primary phenolic compound in OHAE extracts, while chlorogenic acid was the dominant compound in MAE extracts. The extracts obtained from OHAE and MAE were tested for their ability to inhibit α-glucosidase activity, with IC50 (mg/mL) values of 0.85 and 1.14, respectively. The DPPH radicals scavenging activity (IC50 mg/L) of OHAE and MAE were detected as 2.96 and 3.41, respectively. In conclusion, both methods yielded extracts rich in polyphenols that displayed high antioxidant activity, but OHAE was found to be superior to MAE in terms of TPC, DPPH, and antidiabetic activities. The results of this study have the potential to make significant contributions toward promoting the principles of a circular economy by facilitating the valorization of the avocado pruning waste.
Collapse
Affiliation(s)
- Lale Gumustepe
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Nevriye Kurt
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Ebru Aydın
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Gulcan Ozkan
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
8
|
Liga S, Paul C, Péter F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. PLANTS (BASEL, SWITZERLAND) 2023; 12:2732. [PMID: 37514347 PMCID: PMC10384615 DOI: 10.3390/plants12142732] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
- Research Institute for Renewable Energies, Politehnica University Timisoara, Gavril Muzicescu 138, 300501 Timisoara, Romania
| |
Collapse
|
9
|
Razola-Díaz MDC, Verardo V, Guerra-Hernández EJ, García-Villanova Ruiz B, Gómez-Caravaca AM. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants (Basel) 2023; 12:1409. [PMID: 37507948 PMCID: PMC10376872 DOI: 10.3390/antiox12071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Avocado peel and seed are the main by-products of avocado processing and are considered as promising sources of phenolic compounds with biological activities. Thus, this research focuses on the establishment, for the first time, of ultrasound-assisted extraction of flavan-3-ols with high antioxidant activity from avocado peel and seed using a sonotrode. Indeed, 2 Box-Behnken designs were performed for 15 experiments, with each design having three independent factors (ratio ethanol/water (v/v), time (min) and amplitude (%)). In both models, the responses included total procyanidins (flavan-3-ols) measured via HPLC-FLD and antioxidant activity measured via DPPH, ABTS and FRAP. The results showed that applying the sonotrode extraction method could increase flavan-3-ols recovery by 54% and antioxidant activity by 62-76% compared to ultrasound bath technology. Therefore, this technology was demonstrated to be a non-thermal, low time-consuming and scalable method that allowed the recovery of flavan-3-ols from avocado by-products that could be used as functional ingredients.
Collapse
Affiliation(s)
- María Del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
10
|
Del Castillo-Llamosas A, Eibes G, Ferreira-Santos P, Pérez-Pérez A, Del-Río PG, Gullón B. Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose. BIORESOURCE TECHNOLOGY 2023:129432. [PMID: 37394043 DOI: 10.1016/j.biortech.2023.129432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
This study describes the valorization of avocado seed (AS) within a green biorefinery concept using microwave-assisted autohydrolysis. After the treatment at temperatures of 150-230 °C for 5 min, the resulting solid and liquor were characterized. The temperature of 220 °C led to the simultaneous optimal values of antioxidant phenolics/flavonoids (42.15 mg GAE/g AS, 31, 89 RE/g AS, respectively) and glucose + glucooligosaccharides (38.82 g/L) in the liquor. Extraction with ethyl acetate allowed the recovery of the bioactive compounds while maintaining the polysaccharides in the liquor. The extract was rich in vanillin (99.02 mg/g AS) and contained several phenolic acids and flavonoids. The solid phase and the phenolic-free liquor were subjected to enzymatic hydrolysis to produce glucose, reaching values of 9.93 and 105 g glucose/L, respectively. This work demonstrates that microwave-assisted autohydrolysis is a promising technology to obtain fermentable sugars and antioxidant phenolic compounds from avocado seeds following a biorefinery scheme.
Collapse
Affiliation(s)
- Alexandra Del Castillo-Llamosas
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, España
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15706 A Coruña, Spain
| | - Pedro Ferreira-Santos
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Alba Pérez-Pérez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, España
| | - Pablo G Del-Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, España; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, España
| |
Collapse
|
11
|
Del-Castillo-Llamosas A, Rodríguez-Rebelo F, Rodríguez-Martínez B, Mallo-Fraga A, Del-Río PG, Gullón B. Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES). Antioxidants (Basel) 2023; 12:1156. [PMID: 37371886 DOI: 10.3390/antiox12061156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Avocado seeds represent the chief waste produced in avocado processing, leading not only to environmental problems regarding its elimination but to a loss of economic profitability. In fact, avocado seeds are known as interesting sources of bioactive compounds and carbohydrates, so their utilization may reduce the negative effect produced during the industrial manufacture of avocado-related products. In this sense, deep eutectic solvents (DES) are a novel greener alternative than organic solvents to extract bioactive polyphenols and carbohydrates. The study was based on a Box-Behnken experimental design to study the effect of three factors, temperature (40, 50, 60 °C), time (60, 120, 180 min) and water content (10, 30, 50% v/v) on the responses of total phenolic (TPC) and flavonoid content (TFC), antioxidant capacity (measured as ABTS and FRAP) and xylose content in the extract. The DES Choline chloride:glycerol (1:1) was used as solvent on avocado seed. Under optimal conditions, TPC: 19.71 mg GAE/g, TFC: 33.41 mg RE/g, ABTS: 20.91 mg TE/g, FRAP: 15.59 mg TE/g and xylose: 5.47 g/L were obtained. The tentative identification of eight phenolic compounds was assayed via HPLC-ESI. The carbohydrate content of the solid residue was also evaluated, and that solid was subjected to two different processing (delignification with DES and microwave-assisted autohydrolysis) to increase the glucan susceptibility to enzymes, and was also assayed reaching almost quantitative glucose yields. These results, added to the non-toxic, eco-friendly, and economic nature of DES, demonstrate that these solvents are an efficient alternative to organic solvents to recover phenolics and carbohydrates from food wastes.
Collapse
Affiliation(s)
| | - Fernando Rodríguez-Rebelo
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Adrián Mallo-Fraga
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Pablo G Del-Río
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Beatriz Gullón
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
12
|
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, Agliata J, Li Q, Wan C, Somavat P. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. ULTRASONICS SONOCHEMISTRY 2023; 95:106418. [PMID: 37094478 PMCID: PMC10149314 DOI: 10.1016/j.ultsonch.2023.106418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Lucas Kuehnel
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Qianwei Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
13
|
Concurrent Optimization of Ultrasonic-Assisted Extraction of Total Phenolic Compounds and In Vitro Anticancer and Antioxidant Potential of Pulicaria schimperi (Aerial Parts) Using Response Surface Methodology. SEPARATIONS 2023. [DOI: 10.3390/separations10030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
This study aimed to maximize the dependent variables [total phenolic content (TPC), antioxidant (DPPH and ABTS), and anticancer activities (against HepG2 and MCF-7 cells)] from P. schimperi aerial parts by optimizing three independent variables (extraction temperature, extraction time, and liquid-to-solid ratio) of ultrasound-assisted extraction (UAE) using the Box–Behnken design (BBD) of response surface methodology (RSM). For each of the dependent variables, the projected quadratic models were found to be very significant (p < 0.001). The extraction temperature and extraction time had a significant impact on the TPC extraction, antioxidant, and anticancer properties (p < 0.05). The best conditions were identified as an extraction temperature of 54.4 °C, extraction time of 48 min, and liquid-to-solid ratios of 20.72 mL/g for the simultaneous extraction of the TPC, antioxidant, and anticancer properties of P. schimperi. The experimental results and the expected values agreed under these circumstances. Regarding the high extraction effectiveness and antioxidant and anticancer effects at comparably low extraction temperature and duration, UAE demonstrated considerable benefits over conventional solvent extraction (CSE). This improved UAE approach has shown a potential use for effective polyphenolic antioxidant extraction from P. schimperi aerial parts in the nutraceutical sectors.
Collapse
|
14
|
Kupnik K, Primožič M, Kokol V, Knez Ž, Leitgeb M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado ( Persea americana L.) Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051201. [PMID: 36904061 PMCID: PMC10007261 DOI: 10.3390/plants12051201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine, pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency (η) was carried out, which revealed yields in the range of 2.96-12.11 wt%. The sample obtained using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC). Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of 14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase, peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quantified for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical, cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 μg/mL), indicating an outstanding result and the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far.
Collapse
Affiliation(s)
- Kaja Kupnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| |
Collapse
|
15
|
Weremfo A, Abassah-Oppong S, Adulley F, Dabie K, Seidu-Larry S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:26-36. [PMID: 35833361 DOI: 10.1002/jsfa.12121] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/23/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Response surface methodology (RSM) is a widely used mathematical and statistical technique for modeling and optimizing the process for the extraction of bioactive compounds. This review explains the optimization approach through the use of experimental design and empirical models for response prediction and the utilization of the desirability function for multiple response optimization. This paper also reviews recent studies on the application of RSM to optimize bioactive compound extraction processes such as conventional solvent extraction, microwave-assisted extraction, supercritical fluid extraction, and ultrasound-assisted extraction. Finally, the challenges associated with the use of RSM and the efforts made to improve RSM in the extraction process are also highlighted. Overall, this review informs many aspects of RSM that are occasionally ignored or insufficiently discussed with regard to the optimization of bioactive compound extraction processes, and it summarizes significant applications where RSM proved suitable. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander Weremfo
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Abassah-Oppong
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Felix Adulley
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwabena Dabie
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Salifu Seidu-Larry
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Airouyuwa JO, Mostafa H, Riaz A, Stathopoulos C, Maqsood S. Natural Deep Eutectic Solvents and Microwave-Assisted Green Extraction for Efficient Recovery of Bioactive Compounds from By-Products of Date Fruit (Phoenix dactylifera L.) Processing: Modeling, Optimization, and Phenolic Characterization. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules 2022; 27:molecules27206813. [PMID: 36296406 PMCID: PMC9612334 DOI: 10.3390/molecules27206813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Plants represent a significant part of the human diet. Humans have utilized every part of plants for survival, and seeds are no exception. Seeds offer high protein, unsaturated fats, fibre, essential vitamins, and minerals for various food applications. They are also a promising reservoir of bioactive compounds, where various phytochemicals, such as polyphenolic compounds, capable of maintaining and improving well-being, are present in abundant quantities. Plants from Malvaceae and Cannabaceae families are known for their fibre-rich stems that benefit humankind by serving numerous purposes. For many centuries they have been exploited extensively for various commercial and industrial uses. Their seeds, which are often regarded as a by-product of fibre processing, have been scientifically discovered to have an essential role in combating hypercholesterolemia, diabetes, cancer, and oxidative stress. Maximizing the use of these agricultural wastes can be a promising approach to creating a more sustainable world, in accordance with the concept of Sustainable Development Goals (SDGs).
Collapse
|
18
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
19
|
Valorization of avocado seeds with antioxidant capacity using pressurized hot water extraction. Sci Rep 2022; 12:13036. [PMID: 35906278 PMCID: PMC9338084 DOI: 10.1038/s41598-022-17326-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
The pulp of avocado (Persea Americana) is widely consumed as the primary food source, while the seed is often discarded as food waste. Increased consumption of avocado would inevitably results in production of waste by-products such as avocado seeds, hence the ability to extract phytochemicals from such waste, and upcycling to potential nutraceutical products is of great interest. The overall aim of this study is to explore avocado seeds as potential functional food through the combined use of a green extraction method, chemical standardization and pattern recognition tools, and biological characterization assays. Specifically, this study utilized an organic solvent-free extraction method, pressurized hot water extraction (PHWE) to extract phytochemicals from avocado seeds and liquid chromatography mass spectrometry (LCMS) was used to identify the phytochemicals present in the avocado seeds. Our results demonstrated that avocado seed extracts have antioxidant activity and inhibited oxidative stress-induced metabolomics changes in endothelial cells, suggesting that avocado seed extracts have vasoprotective actions.
Collapse
|
20
|
Babaoğlu AS, Dilek NM, Karakaya M, Unal K. Valorization of sugar beet molasses powder by microwave and ultrasound‐assisted extractions of bioactive compounds: An optimization study. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ali Samet Babaoğlu
- Department of Food Engineering, Agriculture Faculty Selçuk University Konya Turkey
| | - Nazik Meziyet Dilek
- Nutrition and Dietetics, Akşehir Kadir Yallagöz School of Health Selçuk University Konya Turkey
| | - Mustafa Karakaya
- Department of Food Engineering, Agriculture Faculty Selçuk University Konya Turkey
| | - Kubra Unal
- Department of Food Engineering, Agriculture Faculty Selçuk University Konya Turkey
| |
Collapse
|
21
|
Mostafa H, Airouyuwa JO, Maqsood S. A novel strategy for producing nano-particles from date seeds and enhancing their phenolic content and antioxidant properties using ultrasound-assisted extraction: A multivariate based optimization study. ULTRASONICS SONOCHEMISTRY 2022; 87:106017. [PMID: 35636154 PMCID: PMC9157257 DOI: 10.1016/j.ultsonch.2022.106017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 05/09/2023]
Abstract
Date seeds from the date palm fruit are considered as a waste and they are known to contain several bioactive compounds. Producing nanoparticles from the date seeds can enhances their effectiveness and their utilization as novel functional food ingredients. In this study, date seed nanoparticles (DSNPs) synthesized using acid (HCl) hydrolysis method (HCl concentration of 38% and hydrolysis time of 4 days) was found to have particle size between 50 and 150 nm. The obtained DSNPs were characterized by measuring particle size and particle charge (Zetasizer), morphology using scanning electron microscope (SEM), and determination of the functional groups using fourier-transform infrared spectroscopy (FTIR). DSNPs were further treated with green extraction technology [ultrasound-assisted extraction (UAE)] using water-based and methanol-based solvent for optimizing the extraction of the bioactive compounds by implementing response surface methodology (RSM). The UAE of DSNPs were analysed for set of responses including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrlthydrazyl (DPPH) radical scavenging activity, ferric ion reducing antioxidant power (FRAP), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Three-factor and four-factor Box-Behnken design (BBD) of three models (Synthesis of DSNPs, UAE with water, and UAE with methanol) was performed. The results showed that in UAE of DSNPs using water-based solvent, the key independent factors effecting the TPC and TFC and antioxidant activities were S:L ratio (40:1 mg/ml) and treatment time (9 min). Whereas the methanol-based UAE of DSNPs was mostly affected by US amplitude/power (90%) and methanol concentration (80%). All models were further optimized using response optimizer in Minitab and the generated predicted values were very comparable to the actual obtained results which confirm the significance and validity of all RSM models used. The phenolic compounds identified from DSNPs consisted mainly of 3,4-Dihydroxy benzoic acid, ferulic acid, and p-coumaric acid. The present study demonstrated a successful method for synthesising DSNPs as well as documented the optimum UAE conditions to maximize the extraction of polyphenolic compounds from DSNPs and enhancing their antioxidant activities to be used in food application.
Collapse
Affiliation(s)
- Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Jennifer Osamede Airouyuwa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
22
|
Nguyen TCV, Trinh LTT, Nguyen KL, Nguyen HC, Tran TD. Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and Their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules 2022; 27:molecules27061892. [PMID: 35335256 PMCID: PMC8953789 DOI: 10.3390/molecules27061892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Avocado (Persea americana) is a widely consumed fruit and a rich source of nutrients and phytochemicals. Its industrial processing generates peels and seeds which represent 30% of the fruit. Environmental issues related to these wastes are rapidly increasing and likely to double, according to expected avocado production. Therefore, this work aimed to evaluate the potential of hexane and ethanolic peel (PEL-H, PEL-ET) and seed (SED-H, SED-ET) extracts from avocado as sources of neuroprotective compounds. Minerals, total phenol (TPC), total flavonoid (TF), and lipid contents were determined by absorption spectroscopy and gas chromatography. In addition, phytochemicals were putatively identified by paper spray mass spectrometry (PSMS). The extracts were good sources of Ca, Mg, Fe, Zn, ω-6 linoleic acid, and flavonoids. Moreover, fifty-five metabolites were detected in the extracts, consisting mainly of phenolic acids, flavonoids, and alkaloids. The in vitro antioxidant capacity (FRAP and DPPH), acetylcholinesterase inhibition, and in vivo neuroprotective capacity were evaluated. PEL-ET was the best acetylcholinesterase inhibitor, with no significant difference (p > 0.05) compared to the control eserine, and it showed neither preventive nor regenerative effect in the neuroprotection assay. SED-ET demonstrated a significant protective effect compared to the control, suggesting neuroprotection against rotenone-induced neurological damage.
Collapse
|
25
|
Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even though food by-products have many negative financial and environmental impacts, they contain a considerable quantity of precious bioactive compounds such as polyphenols. The recovery of these compounds from food wastes could diminish their adverse effects in different aspects. For doing this, various nonthermal and conventional methods are used. Since conventional extraction methods may cause plenty of problems, due to their heat production and extreme need for energy and solvent, many novel technologies such as microwave, ultrasound, cold plasma, pulsed electric field, pressurized liquid, and ohmic heating technology have been regarded as alternatives assisting the extraction process. This paper highlights the competence of mild technologies in the recovery of polyphenols from food by-products, the effect of these technologies on polyphenol oxidase, and the application of the recovered polyphenols in the food industry.
Collapse
|
26
|
Jobil AJ, Parameshwari S, Husain FM, Alomar SY, Ahmad N, Albalawi F, Alam P. Scientifically Formulated Avocado Fruit Juice: Phytochemical Analysis, Assessment of Its Antioxidant Potential and Consumer Perception. Molecules 2021; 26:7424. [PMID: 34946505 PMCID: PMC8706416 DOI: 10.3390/molecules26247424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 12/05/2022] Open
Abstract
The study's purpose was to find and create a nourishing fruit juice made from avocado to suit nutritional and health demands. In this regard, the avocado juice was formulated using a statistical technique, and its biochemical and phytochemical characteristics were evaluated. Statistically formulated fruit juice was evaluated for its sensory characteristics, proximate composition, nutrients and vitamins, total phenols and flavonoids, and for its antioxidant ability, in addition to a shelf-life test. The optimal amount of all ingredients included in the mathematical model for the preparation of the juice was 150 g of Persea americana (Avocado) fruit pulp, 12.5 g of honey and 100 mL of water. In fact, the composition of avocado juice was found to have higher phenolic (910.36 ± 0.215 mg EAG g-1/mL) and flavonoid (56.32 ± 1.26 mg QE g-1/ mL) amounts. DPPH, ABTS and FRAP antioxidant assays tended to be high compared with a standard. The shelf-life analysis indicated that the processed avocado juice (V7) had a long shelf life. In view of all these merits, a statistically formulated recipe for avocado fruit juice was recommended for the formulation of the most preferred health drink.
Collapse
Affiliation(s)
- Arackal Jose Jobil
- Department of Food Technology, Saintgits College of Engineering, Pathamuttom, Kottayam 686532, Kerala, India;
- Department of Nutrition and Dietetics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Naushad Ahmad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fadwa Albalawi
- Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
27
|
Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation. COATINGS 2021. [DOI: 10.3390/coatings11111370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many plants and fruits are rich in antioxidant and antimicrobial compounds, such as phenolic compounds. Watermelon is one example, as various parts of the fruit present interesting phytochemical profiles. This study demonstrates that a natural C. colocynthis (watermelon) (W) skin sap (SS) extract can effectively improve the oxidative stability of microencapsulated soybean (SB) oil. By employing a combination of alginate–xanthan gums (AXG) in a matrix hydrogel bead model with WSS extract, high encapsulation efficiency can be obtained (86%). The effects of process variables on the ultrasound-assisted extraction (UAE) of phenolic compounds from watermelon (W) skin sap (SS) using the response surface methodology (RSM), as an optimized and efficient extraction process, are compared with the effects of a conventional extraction method, namely the percolation method. The WSS extracts are obtained via UAE and RSM or the conventional percolation extraction method. The two obtained extracts and synthetic antioxidant butylated hydroxytolune (BHT) are added to SB oil separately and their antioxidant effects are tested and compared. The results show the improved oxidative stability of SB oil containing the extract obtained via the optimized method (20–30%) compared to the SB oil samples containing extract obtained via the percolation extraction method, synthetic antioxidant (BHT), and SB oil only as the control (no antioxidant added). According to existing studies, we assume that the use of WSS as an effective antioxidant will ensure the prolonged stability of encapsulated SB oil in hydrogel beads, as it is well known that extended storage under different conditions may lead to severe lipid oxidation.
Collapse
|
28
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
29
|
Baharuddin NS, Roslan MAM, Bawzer MAM, Mohamad Azzeme A, Rahman ZA, Khayat ME, Rahman NAA, Sobri ZM. Response Surface Optimization of Extraction Conditions and In Vitro Antioxidant and Antidiabetic Evaluation of an Under-Valued Medicinal Weed, Mimosa pudica. PLANTS 2021; 10:plants10081692. [PMID: 34451737 PMCID: PMC8399142 DOI: 10.3390/plants10081692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Mimosa pudica Linn is a well-known perennial herb and is traditionally used in ayurvedic medicine for the treatment of various illnesses. Despite its abundance in nature, the therapeutic potential of this invasive weed is deemed to be underappreciated in Malaysia. Previous studies have found an abundance of bioactive compounds associated with potent antioxidant properties in all parts of the plant. However, the optimum parameters required for the extraction of antioxidant compounds are still unknown. Therefore, the present study aimed to optimize the solvent extraction parameters of M. pudica using response surface methodology to enrich the accumulation of antioxidant compounds in the extracts. The effects of the optimized M. pudica extracts were then evaluated on the cell viability and glucose uptake ability in a 3T3-L1 adipocyte cell line. The highest total phenolic (91.98 mg of gallic acid equivalent per g of the dry extract) and total flavonoid content (606.31 mg of quercetin equivalent per g of the dry extract) were recorded when using 100% ethanol that was five-fold and three-fold higher, respectively, as compared to using 50% ethanol. The extract concentration required to achieve 50% of antioxidant activity (IC50 value) was 42.0 µg/mL using 100% ethanol as compared to 975.03 µg/mL using 50% ethanol. The results indicated that the use of 100% ethanol solvent had the greatest impact on the accumulation of antioxidant compounds in the extract (p < 0.05). Cell viability assay revealed that all extract concentration treatments recorded a viability level of above 50%. Glucose uptake assay using 2-NBDG analog showed that the cells treated with 50 µg/mL extract combined with insulin were five-fold higher than the control group. Given the high antioxidant and antidiabetic properties of this plant, M. pudica can be easily highlighted as a plant subject of interest, which warrants further investigation for nutraceutical prospects.
Collapse
Affiliation(s)
- Nor Saffana Baharuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Mohsen Ahmed Mohammed Bawzer
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.M.A.); (M.E.K.)
| | - Zuraida Ab Rahman
- Biotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.M.A.); (M.E.K.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
30
|
Vacuum Microwave-Assisted Aqueous Extraction of Polyphenolic Compounds from Avocado (Persea Americana) Solid Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13042166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extraction efficacy of avocado fruit peels (AP) and seeds (AS) with the use of vacuum microwave-assisted aqueous extraction (VMAAE) was optimized in this study, with regard to extract’s total phenolic content (TPC), maximum antioxidant activity and minimal operational cost. Temperature (79.64 and 78.11 °C for AP and 43.90 and 45.26 °C for AS), time (11.89 and 11.75 min for AP, 10.18 and 10.28 min for AS), ratio of water to raw material (16.45% and 10.02% for AP, 38.73% and 37.65% for AS) and microwave power (5708.04 and 5699.10 W for AP, 5549.08 and 4797.29 W for AS) were estimated statistically as the optimal conditions in order to achieve high rates of extracts with high TPC and antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) scavenging radical methods, respectively. VMAAE performed under these conditions resulted in received extracts with TPC (0.352 gallic acid equivalent-GAE/g fresh AP/min and 0.124 GAE/g fresh AS/min). Furthermore, it was calculated the DPPH● radical scavenging activity was equal to 100 mg/L expressed in L of 0.104 L/min for AP and 0.045 L/min for AS. The results of our study may give a promising solution to avocado processing companies for further utilization of their waste.
Collapse
|
31
|
Petrotos K, Giavasis I, Gerasopoulos K, Mitsagga C, Papaioannou C, Gkoutsidis P. Optimization of the Vacuum Microwave Assisted Extraction of the Natural Polyphenols and Flavonoids from the Raw Solid Waste of the Pomegranate Juice Producing Industry at Industrial Scale. Molecules 2021; 26:1033. [PMID: 33669172 PMCID: PMC7919679 DOI: 10.3390/molecules26041033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Pomegranate pomace (PP) is the solid waste produced in bulk by the pomegranate juice industry which is rich in polyphenols and flavonoids that can replace the hazardous chemical antioxidants/antimicrobials currently used in the agro-food and cosmetics sectors. In the present work, the vacuum microwave assisted extraction (VMAE) of natural antioxidants from raw pomegranate pomace was investigated and successfully optimized at an industrial scale. For the optimization of PP VMAE a novel, highly accurate response surface methodology (RSM) based on a comprehensive multi-point historical design was employed. The optimization showed that the maximum recovery of PP total polyphenols as well as total PP flavonoids were obtained at microwave power = 4961.07 W, water to pomace ratio = 29.9, extraction time = 119.53 min and microwave power = 4147.76 W, water to pomace ratio = 19.32, extraction time = 63.32 min respectively. Moreover, the optimal VMAE conditions on economic grounds were determined to be: microwave power = 2048.62 W, water to pomace ratio = 23.11, extraction time = 15.04 min and microwave power = 4008.62 W, water to pomace ratio = 18.08, extraction time = 15.29 min for PP total polyphenols and PP total flavonoids respectively. The main conclusion of this study is that the VMAE extraction can be successfully used at industrial scale to produce, in economic manner, high added value natural extracts from PP pomace.
Collapse
Affiliation(s)
- Konstantinos Petrotos
- Department of Agrotechnology, School of Agricultural Sciences, Geopolis Campus, University of Thessaly, Periferiaki Odos Larisas Trikalon, 41500 Larisa, Greece; (K.G.); (C.P.); (P.G.)
| | - Ioannis Giavasis
- Department of Food Science and Human Nutrition, School of Agricultural Sciences, Karditsa Campus, University of Thessaly, Terma Odou N. Temponera, 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Konstantinos Gerasopoulos
- Department of Agrotechnology, School of Agricultural Sciences, Geopolis Campus, University of Thessaly, Periferiaki Odos Larisas Trikalon, 41500 Larisa, Greece; (K.G.); (C.P.); (P.G.)
| | - Chrysanthi Mitsagga
- Department of Food Science and Human Nutrition, School of Agricultural Sciences, Karditsa Campus, University of Thessaly, Terma Odou N. Temponera, 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Chryssoula Papaioannou
- Department of Agrotechnology, School of Agricultural Sciences, Geopolis Campus, University of Thessaly, Periferiaki Odos Larisas Trikalon, 41500 Larisa, Greece; (K.G.); (C.P.); (P.G.)
| | - Paschalis Gkoutsidis
- Department of Agrotechnology, School of Agricultural Sciences, Geopolis Campus, University of Thessaly, Periferiaki Odos Larisas Trikalon, 41500 Larisa, Greece; (K.G.); (C.P.); (P.G.)
| |
Collapse
|
32
|
Characterization and Optimization of the Tyrosinase Inhibitory Activity of Vitis amurensis Root Using LC-Q-TOF-MS Coupled with a Bioassay and Response Surface Methodology. Molecules 2021; 26:molecules26020446. [PMID: 33467011 PMCID: PMC7830106 DOI: 10.3390/molecules26020446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vitis amurensis roots have been reported to have the potential for skin whitening through the evaluation of melanogenesis and tyrosinase inhibitory activities. In this study, V. amurensis roots were utilized to quickly select whitening ingredients using LC-Q-TOF-MS coupled with tyrosinase inhibitory assay, and to optimize the extraction process for use as a skin whitening functional material by response surface methodology. Results showed that V. amurensis roots exhibited tyrosinase inhibitory effects by two stilbene oligomers, ε-viniferin (1) and vitisin B (2), as predicted by LC-Q-TOF-MS coupled with bioassay. The optimal extraction conditions (methanol concentration 66%, solvent volume 140 mL, and extraction time 100 min) for skin whitening ingredients were established with the yields 6.20%, and tyrosinase inhibitory activity was 87.27%. The relationship between each factor and its corresponding response was confirmed by Pearson’s correlation analysis. The solvent volume showed clear linear relationship with yields, and methanol concentration had a strong linear relationship with tyrosinase inhibitory activity for compounds 1 and 2, as well as their combination. Overall, LC-Q-TOF-MS coupled with bioassay was proved to have the potential to effectively find new active constituents, as well as known active constituents; vitisin B can be proposed as a new natural potential whitening agent.
Collapse
|
33
|
Optimization of Vacuum-Microwave-Assisted Extraction of Natural Polyphenols and Flavonoids from Raw Solid Waste of the Orange Juice Producing Industry at Industrial Scale. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26010246. [PMID: 33466479 PMCID: PMC7796447 DOI: 10.3390/molecules26010246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Orange pomace (OP) is a solid waste produced in bulk as a byproduct of the orange juice industry and accounts for approximately 50% of the quantity of the fruits processed into juice. In numerous literature references there is information about diverse uses of orange pomace for the production of high-added-value products including production of natural antioxidant and antimicrobial extracts rich in polyphenols and flavonoids which can substitute the hazardous chemical antioxidants/antimicrobials used in agro-food and cosmetics sectors. In this work and for the first time, according to our knowledge, the eco-friendly aqueous vacuum microwave assisted extraction of orange pomace was investigated and optimized at real industrial scale in order to produce aqueous antioxidant/antimicrobial extracts. A Response Surface Optimization methodology with a multipoint historical data experimental design was employed to obtain the optimal values of the process parameters in order to achieve the maximum rates of extraction of OP total polyphenols and/or total flavonoids for economically optimum production at industrial scale. The three factors used for the optimization were: (a) microwave power (b) water to raw pomace ratio and (c) extraction time. Moreover, the effectiveness and statistical soundness of the derived cubic polynomial predictive models were verified by ANOVA.
Collapse
|
34
|
Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The avocado (Persea americana Mill.) is a tree native to Mexico and Guatemala. Avocado consumption, fresh or in the form of processed products, is growing everywhere and it has caused a large number of countries to invest heavily in avocado production. The industrialization of avocado gives as a result a huge amount of waste, not only the peel and stone but also that waste generated by the pruning practices and oil extraction. These biomasses could be converted into raw materials to obtain different types of co-products, but this implies changes in the use of these resources, the design of efficient production systems, and integration to take full advantage of them, e.g., by developing biorefinery models. Therefore, this review firstly gives a snapshot of those residues generated in the avocado industry and provides their chemical composition. Secondly, this review presents updated information about the valorization ways of avocado-derived biomass to obtain bioenergy, biofuels, and other marketable products (starch, protein, phenolic compounds, and biosorbents, among others) using a single process or integrated processes within a biorefinery context. Green technologies to obtain these products are also covered, e.g., based on the application of microwaves, ultrasound, supercritical fluids, etc. As a conclusion, there is a variety of ways to valorize avocado waste in single processes, but it would be promising to develop biorefinery schemes. This would enable the avocado sector to move towards the zero-waste principle.
Collapse
|