1
|
Georgantopoulos A, Vougioukas A, Kalousi FD, Tsialtas I, Psarra AMG. Comparative Studies on the Anti-Inflammatory and Apoptotic Activities of Four Greek Essential Oils: Involvement in the Regulation of NF-κΒ and Steroid Receptor Signaling. Life (Basel) 2023; 13:1534. [PMID: 37511910 PMCID: PMC10381560 DOI: 10.3390/life13071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus-pituitary-adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most widely prescribed anti-inflammatory drugs, despite their adverse side effects. In this study, comparative studies of the anti-inflammatory activities and interference with glucocorticoids receptor (GR) and estrogen receptor (ER) signaling of EOs from Greek Oregano, Melissa officinalis, Lavender and from the Chios Mastic, produced from the Greek endemic mastic tree, were performed in Human Embryonic Kidney 293 (HEK-293) cells. Chios Mastic (Mastiha) and oregano EOs exhibited the highest anti-inflammatory activities. The former showed a reduction in both NF-κB activity and protein levels. Mastic essential oil also caused a reduction in GR protein levels that may compensate for its boosting effect on dexamethasone (DEX)-induced GR transcriptional activation, ending up in no induction of the gluconeogenic phoshoenolpyruvate carboxykinase (PEPCK) protein levels that constitute the GR target. Oregano, Melissa officinalis and lavender EOs caused the suppression of the transcriptional activation of GR. Furthermore, the most active EO, that taken from Melissa officinalis, showed a reduction in both GR and PEPCK protein levels. Thus, the anti-inflammatory and anti-gluconeogenic activities of the EOs were uncovered, possibly via the regulation of GR signaling. Moreover, cytotoxic actions of Melissa officinalis and lavender EOs via the induction of mitochondrial-dependent apoptosis were revealed. Our results highlight these essentials oils' anti-inflammatory and apoptotic actions in relation to their implication on the regulation of steroid hormones' actions, uncovering their potential use in steroid therapy, with many applications in pharmaceutical and health industries as anti-cancer, anti-hyperglycemic and anti-inflammatory supplements.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Athanasios Vougioukas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
2
|
Bialkowski S, Toschi A, Yu LE, Schlitzkus L, Mann P, Grilli E, Li Y. Effects of microencapsulated blend of organic acids and botanicals on growth performance, intestinal barrier function, inflammatory cytokines, and endocannabinoid system gene expression in broiler chickens. Poult Sci 2023; 102:102460. [PMID: 36680863 PMCID: PMC10014334 DOI: 10.1016/j.psj.2022.102460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
With restricted usage of growth-promoting antibiotics, identifying alternative feed additives that both improve intestinal barrier function and reduce inflammation is the center to improve chickens' health. This study examined the effects of a microencapsulated feed additive containing citric acid, sorbic acids, thymol, and vanillin on intestinal barrier function and inflammation status. A total of 240 birds were assigned to either a commercial control diet or control diet supplemented with 500 g/MT of the microencapsulated additive product. Birds were raised by feeding a 2-phase diet (starter, d 1 to d 21; and grower, d 15 to d 42). Growth performance was recorded weekly. At d 21 and d 42, total gastrointestinal tract permeability was evaluated by FITC-dextran (FD4) oral gavage. Jejunum-specific barrier functions were evaluated by Ussing chamber. Intestinal gene expression of selected epithelial cell markers, tight junction (TJ) proteins, inflammatory cytokines, and endocannabinoid system (ECS) markers were determined by RT-PCR. Statistical analysis was performed using Student t test. Results showed significant improvement of feed efficiency in the birds supplemented with the blend of organic acids and botanicals. At d 21, both oral and jejunal FD4 permeability were lower in the supplemented group. Jejunal transepithelial resistance was higher in the supplemented birds. At d 21, expression of TJs mRNA (CLDN1 and ZO2) was both upregulated in the jejunum and ileum of supplemented birds, while CLDN2 was downregulated in cecum. Proliferating cell marker SOX9 was higher expressed in jejunum and ceca. Goblet cell marker (MUC2) was upregulated, while Paneth cell marker (LYZ) was downregulated in the ileum. Proinflammatory cytokine expressions of IL1B, TNFA, and IFNG were downregulated in jejunum, while anti-inflammatory IL10 expression was higher in jejunum, ileum, cecum, and cecal tonsil. The ECS markers expressions were upregulated in most intestinal regions. Together, these results demonstrated that the blend of organic acids and botanical supplementation reduced inflammation, improved the TJs expression and intestinal barrier function, and thus improved chicken feed efficiency. The activated ECS may play a role in reducing intestinal tissue inflammation.
Collapse
Affiliation(s)
- Sofia Bialkowski
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | | | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Lydia Schlitzkus
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Peter Mann
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Ester Grilli
- DIMEVET, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy; Vetagro Inc., 60604 Chicago, IL, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci Rep 2022; 12:19199. [PMID: 36357780 PMCID: PMC9649594 DOI: 10.1038/s41598-022-23842-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Inflammation is a complex biological response involving the immune, autonomic, vascular, and somatosensory systems that occurs through the synthesis of inflammatory mediators and pain induction by the activation of nociceptors. Staphylococcus aureus, the main cause of bacteremia, is one of the most common and potent causes of inflammation in public health, with worse clinical outcomes in hospitals. Antioxidant substances have been evaluated as alternative therapeutic analgesics, antioxidants, anti-inflammatory agents, antitumor agents, and bactericides. Among these, we highlight the essential oils of aromatic plants, such as β-caryophyllene (BCP), and polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). The objective of this study was to evaluate the biological activities of BCP-DHA association in in vitro and in vivo experimental models of antinociception and inflammation. To determine the anti-inflammatory effects, monocytes isolated from the peripheral blood of adult male volunteers were infected with methicillin-resistant S. aureus and incubated with treatment for cytokine dosage and gene expression analysis. Antinociceptive effects were observed in the three models when comparing the control (saline) and the BCP-DHA treatment groups. For this purpose, the antinociceptive effects were evaluated in animal models using the following tests: acetic acid-induced abdominal writhing, paw edema induced by formalin intraplantar injection, and von Frey hypernociception. There was a significant reduction in the GM-CSF, TNFα, IL-1, IL-6, and IL-12 levels and an increase in IL-10 levels in the BCP-DHA treatment groups, in addition to negative regulation of the expression of the genes involved in the intracellular inflammatory signaling cascade (IL-2, IL-6, IRF7, NLRP3, and TYK2) in all groups receiving treatment, regardless of the presence of infection. Statistically significant results (p < 0.05) were obtained in the acetic acid-induced abdominal writhing test, evaluation of paw edema, evaluation of paw flinching and licking in the formalin intraplantar injection model, and the von Frey hypernociception test. Therefore, BCP and DHA, either administered individually or combined, demonstrate potent anti-inflammatory and antinociceptive effects.
Collapse
|
4
|
Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, Karabekian Z, Voskanyan A. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J Pain 2022; 35:140-151. [PMID: 35354677 PMCID: PMC8977206 DOI: 10.3344/kjp.2022.35.2.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Background Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation. Methods For OVA essential oil contents determination the gas chromatography-mass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used. Results The maximal content of β-caryophyllene and β-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 μL/mL OVA essential oil in media. Conclusions The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.
Collapse
Affiliation(s)
- Armenuhi Moghrovyan
- Department of Pharmacognosy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Lilya Parseghyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| | - Gohar Sevoyan
- Orbeli Institute of Physiology, Laboratory of Tissue Engineering, Yerevan, Armenia
| | - Anna Darbinyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| | - Naira Sahakyan
- Yerevan State University, Research Institute of Biology, Faculty of Biology, Yerevan, Armenia
| | - Monica Gaboyan
- Yerevan State Medical University after M. Heratsi, Faculty of Pharmacy, Yerevan, Armenia
| | - Zaruhi Karabekian
- Orbeli Institute of Physiology, Laboratory of Tissue Engineering, Yerevan, Armenia
| | - Armen Voskanyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| |
Collapse
|
5
|
Tan MA, Sharma N, An SSA. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals (Basel) 2022; 15:188. [PMID: 35215300 PMCID: PMC8880493 DOI: 10.3390/ph15020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) mainly affect neurons and gradually lead to a loss of normal motor and cognitive functions. Atypical protein homeostasis-misfolding, aggregations and accumulations, oxidative stress, inflammation, and apoptosis-are common features in most NDs. To date, due to the complex etiology and pathogenesis of NDs, no defined treatment is available. There has been increasing interest in plant extracts as potential alternative medicines as the presence of various active components may exert synergistic and multi-pharmacological effects. Murraya koenigii (Rutaceae) is utilized in Ayurvedic medicine for various ailments. Pharmacological studies evidenced its potential antioxidant, anti-inflammatory, anticancer, hepatoprotective, immunomodulatory, antimicrobial, and neuroprotective activities, among others. In line with our interest in exploring natural agents for the treatment of neurodegenerative diseases, this review presents an overview of literature concerning the mechanisms of action and the safety profile of significant bioactive components present in M. koenigii leaves to support further investigations into their neuroprotective therapeutic potential.
Collapse
Affiliation(s)
- Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| |
Collapse
|
6
|
Soares GABE, Bhattacharya T, Chakrabarti T, Tagde P, Cavalu S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. PLANTS (BASEL, SWITZERLAND) 2021; 11:21. [PMID: 35009027 PMCID: PMC8747111 DOI: 10.3390/plants11010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/01/2023]
Abstract
Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs' biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy.
Collapse
Affiliation(s)
- Giselle A. Borges e Soares
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, Rajasthan, India
- Department of Science & Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Tulika Chakrabarti
- Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India;
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, Bhopal 462026, Madhya Pradesh, India;
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopal 462042, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Ardahan Akgül E, Karakul A, Altın A, Doğan P, Hoşgör M, Oral A. Effectiveness of lavender inhalation aromatherapy on pain level and vital signs in children with burns: a randomized controlled trial. Complement Ther Med 2021; 60:102758. [PMID: 34229085 DOI: 10.1016/j.ctim.2021.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/07/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Burns are a source of pain, which cannot be fully treated with medications. OBJECTIVES This study aims is to test the effectiveness of lavender oil inhalation aromatherapy applied before dressing change on vital signs and pain levels of children with burns. DESIGN This randomized controlled study was held between May 2018 and May 2019. A total of 108 children who met the inclusion criteria were studied in three groups: Lavender-15 Group inhaled lavender oil for 15 min before dressing (n:36), Lavender-60 Group inhaled lavender oil for 60 min before dressing (n:36), and Control Group inhaled jojoba (placebo) oil for 15 min before dressing (n:36). Baseline pain levels and vital signs of the children were measured before inhalation. Pain levels and vital signs of the children were re-measured at the 1st and 30th minutes after dressing. RESULTS There was no significant difference between the groups in terms of pain levels (p = 0.750) and vital signs before dressing. In post-dressing measurements, the number of respiration (after 1 min p = 0.000, after 30 min p = 0.000), heart rate (after 1 min p = 0.000, after 30 min p = 0.000), mean arterial blood pressure (after 1 min p = 0.010, after 30 min p = 0.000) and pain levels (after 1 min p = 0.000, after 30 min p = 0.000) were lower in the Lavender groups compared to the placebo group. DISCUSSION The result of this research reveals that inhalation aromatherapy which applied before dressing in children with burns affects the reduction of pain levels and stabilization of vital signs.
Collapse
Affiliation(s)
- Esra Ardahan Akgül
- İzmir Kâtip Çelebi University, Faculty of Health Sciences, Department of Pediatric Nursing, İzmir, Turkey.
| | - Atiye Karakul
- Tarsus University, Faculty of Health Sciences, Department of Nursing, Mersin, Turkey.
| | - Asiye Altın
- Dr. Behçet Uz Children's Education and Research Hospital, Pediatric Burn Unit, İzmir, Turkey.
| | - Pınar Doğan
- İzmir Kâtip Çelebi University, Faculty of Health Sciences, Department of Pediatric Nursing, İzmir, Turkey.
| | - Münevver Hoşgör
- Dr. Behçet Uz Children's Education and Research Hospital, Department of Pediatric Surgery, İzmir, Turkey.
| | - Akgün Oral
- Dr. Behçet Uz Children's Education and Research Hospital, Department of Pediatric Surgery, İzmir, Turkey.
| |
Collapse
|
8
|
Stairs J, Maguire F, Lehmann C, Cox A. Cannabinoid Therapy in Female Pelvic Medicine and Reconstructive Surgery: Current Evidence and Future Directions. CURRENT BLADDER DYSFUNCTION REPORTS 2021. [DOI: 10.1007/s11884-021-00632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chiruta V. Medical food development by dietetic management of the endocannabinoid system through dietary sources of β-caryophyllene. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: To research the biological impact on the endocannabinoid system (ECS) from dietary sources of [Formula: see text]-caryophyllene (BCP). This will encompass pre-clinical and clinical research for BCP. The bioavailability of BCP will be explored, focusing on bioavailability improvement. This research will establish if there is justification to warrant the development of a medical food for supporting the ECS through dietetic supplementation of BCP. Methods: Research and review papers were identified through the search engines Google Scholar, PubMed, and ScienceDirect. Main keywords included [Formula: see text]-caryophyllene, endocannabinoid system, dietary cannabinoids, cannabinoid type-2 receptor, and bioavailability. Results: The human body is limited in the digestion of BCP from food. This is because BCP is poorly absorbed in the gut. Everyone has different underlying endocannabinoid efficiency and most people do not have the full potential of supporting their ECS through diet. Conclusion: A medical food can be developed to use BCP with a delivery system, so that the bioactive food cannabinoid is readily absorbed. This will deliver dietary support to the ECS, that otherwise would be available from food. This review provides insight into the efficacy of using BCP in medical foods as dietary support for the ECS. Supporting the ECS can assist in maintaining homeostasis, regulating immune function, pain intensity, inflammatory markers, sleep patterns, mood, appetite, and stress susceptibility.
Collapse
Affiliation(s)
- Victor Chiruta
- School of Health Sciences, University of South Australia, 101 Currie Street, Adelaide, South Australia 5001, Australia
| |
Collapse
|
10
|
Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, Maffei ME, Bovolin P. Protective Effects of ( E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020; 12:nu12113273. [PMID: 33114564 PMCID: PMC7692661 DOI: 10.3390/nu12113273] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants. Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool. Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases. Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders. This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.
Collapse
Affiliation(s)
- Rosaria Scandiffio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Correspondence:
| |
Collapse
|