1
|
Dewar MB, Ehsan F, Izumi A, Zhang H, Zhou YQ, Shah H, Langburt D, Suresh H, Wang T, Hacker A, Hinz B, Gillis J, Husain M, Heximer SP. Defining Transcriptomic Heterogeneity between Left and Right Ventricle-Derived Cardiac Fibroblasts. Cells 2024; 13:327. [PMID: 38391940 PMCID: PMC10887120 DOI: 10.3390/cells13040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments.
Collapse
Affiliation(s)
- Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Fahad Ehsan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Aliya Izumi
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomaterial & Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Haisam Shah
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dylan Langburt
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hamsini Suresh
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Shi M, Fang Y, Liang Y, Hu Y, Huang J, Xia W, Bian H, Zhuo Q, Wu L, Zhao C. Identification and characterization of differentially expressed circular RNAs in extraocular muscle of oculomotor nerve palsy. BMC Genomics 2023; 24:617. [PMID: 37848864 PMCID: PMC10583365 DOI: 10.1186/s12864-023-09733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Oculomotor nerve palsy (ONP) is a neuroparalytic disorder resulting in dysfunction of innervating extraocular muscles (EOMs), of which the pathological characteristics remain underexplored. METHODS In this study, medial rectus muscle tissue samples from four ONP patients and four constant exotropia (CXT) patients were collected for RNA sequencing. Differentially expressed circular RNAs (circRNAs) were identified and included in functional enrichment analysis, followed by interaction analysis with microRNAs and mRNAs as well as RNA binding proteins. Furthermore, RT-qPCR was used to validate the expression level of the differentially expressed circRNAs. RESULTS A total of 84 differentially expressed circRNAs were identified from 10,504 predicted circRNAs. Functional enrichment analysis indicated that the differentially expressed circRNAs significantly correlated with skeletal muscle contraction. In addition, interaction analyses showed that up-regulated circRNA_03628 was significantly interacted with RNA binding protein AGO2 and EIF4A3 as well as microRNA hsa-miR-188-5p and hsa-miR-4529-5p. The up-regulation of circRNA_03628 was validated by RT-qPCR, followed by further elaboration of the expression, location and clinical significance of circRNA_03628 in EOMs of ONP. CONCLUSIONS Our study may shed light on the role of differentially expressed circRNAs, especially circRNA_03628, in the pathological changes of EOMs in ONP.
Collapse
Affiliation(s)
- Mingsu Shi
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yanxi Fang
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yu Liang
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yuxiang Hu
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Jiaqiu Huang
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Weiyi Xia
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Hewei Bian
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Qiao Zhuo
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Lianqun Wu
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China.
| | - Chen Zhao
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
3
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Liu X, Wu M, He Y, Gui C, Wen W, Jiang Z, Zhong G. Construction and integrated analysis of the ceRNA network hsa_circ_0000672/miR-516a-5p/TRAF6 and its potential function in atrial fibrillation. Sci Rep 2023; 13:7701. [PMID: 37169841 PMCID: PMC10175563 DOI: 10.1038/s41598-023-34851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Atrial fibrosis is a crucial contributor to initiation and perpetuation of atrial fibrillation (AF). This study aimed to identify a circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory network related to atrial fibrosis in AF, especially to validate hsa_circ_0000672/hsa_miR-516a-5p/TRAF6 ceRNA axis in AF preliminarily. The circRNA-miRNA-mRNA ceRNA network associated with AF fibrosis was constructed using bioinformatic tools and literature reviews. Left atrium (LA) low voltage was used to represent LA fibrosis by using LA voltage matrix mapping. Ten controls with sinus rhythm (SR), and 20 patients with persistent AF including 12 patients with LA low voltage and 8 patients with LA normal voltage were enrolled in this study. The ceRNA regulatory network associated with atrial fibrosis was successfully constructed, which included up-regulated hsa_circ_0000672 and hsa_circ_0003916, down-regulated miR-516a-5p and five up-regulated hub genes (KRAS, SMAD2, TRAF6, MAPK11 and SMURF1). In addition, according to the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these hub genes were clustered in TGF-beta and MAPK signaling pathway. In the patients with persistent AF, hsa_circ_0000672 expression in peripheral blood monocytes was significantly higher than those in controls with SR by quantitative real-time polymerase chain reaction (p-value < 0.001). Furthermore, hsa_circ_0000672 expression was higher in peripheral blood monocytes of persistent AF patients with LA low voltage than those with LA normal voltage (p-value = 0.002). The dual-luciferase activity assay confirmed that hsa_circ_0000672 exerted biological functions as a sponge of miR-516a-5p to regulate expression of its target gene TRAF6. Hsa_circ_0000672 expression in peripheral blood monocytes may be associated with atrial fibrosis. The hsa_circ_0000672 may be involved in atrial fibrosis by indirectly regulating TRAF6 as a ceRNA by sponging miR-516a-5p.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, China
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, China
| | - Yan He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiming Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
6
|
Identification of CeRNA Regulatory Networks in Atrial Fibrillation Using Nanodelivery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1046905. [PMID: 36212960 PMCID: PMC9536897 DOI: 10.1155/2022/1046905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
The initiation and maintenance of AF is a complex biological process that is the ultimate manifestation of many cardiovascular diseases. And the pathogenesis of atrial fibrillation (AF) is unclear. Therefore, this study aimed to find the potential competing endogenous RNAs (ceRNAs) network and molecular dysregulation mechanism associated with AF. GSE135445, GSE2240, and GSE68475 were obtained from the Gene Expression Omnibus (GEO). Differential analysis was utilized to identify the differentially expressed mRNAs, miRNAs, and lncRNAs between AF and sinus rhythms (SR). AF-associated mRNAs and nanomaterials were screened and their biological functions and KEGG signaling pathways were identified. Nanomaterials for targeted delivery are uniquely capable of localizing the delivery of therapeutics and diagnostics to diseased tissues. The target mRNAs and target lncRNAs of differentially expressed miRNAs were identified using TargetScan and LncBase databases. Finally, we constructed the ceRNAs network and its potential molecular regulatory mechanism. We obtained 643 AF-associated mRNAs. They were significantly involved in focal adhesion and the PI3K-Akt signaling pathway. Among the 16 differentially expressed miRNAs identified, 31 differentially expressed target mRNAs, as well as 5 differentially expressed target lncRNAs were identified. Among them, we obtained 2 ceRNAs networks (hsa-miR-125a-5p and hsa-let-7a-3p). The aberrant expression of network target genes in AF mainly activated the HIF-1 signaling pathway. We speculated that the interaction pairs of miR-125a-5p and let-7a-3p with target mRNAs and target lncRNAs may be involved in AF. Our findings have a positive influence on investigating the pathogenesis of AF and identifying potential therapeutic targets.
Collapse
|
7
|
An Overview of the Advances in Research on the Molecular Function and Specific Role of Circular RNA in Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5154122. [PMID: 36033554 PMCID: PMC9410782 DOI: 10.1155/2022/5154122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
In recent years, the rate of residents suffering from cardiovascular disease (CVD), disability, and death has risen significantly. The latest report on CVD in China shows that it still has the highest mortality rate of all diseases in that country. Different from linear RNA, circular RNA (circRNA) is a covalently closed transcript, mainly through reverse splicing so that the 3′end and the 5′end are covalently connected to form a closed loop structure. It is structurally stable and abundant and has distinct tissue or cell specificity, and it is widely distributed in eukaryotes. Although circRNAs were discovered many years ago, researchers have only recently begun to slowly discover their extensive expression and regulatory functions in various biological processes. Studies have found that some circRNAs perform multiple functions in cells more used as RNA binding protein or microRNA sponge. In addition, accumulating evidence shows that the first change that occurs in patients with various metabolic diseases such as hypertension and cardiovascular disease is dysregulated circRNA expression. For cardiovascular and other related blood vessels, circRNA is one of the important causes of various complications. These findings contribute to a more comprehensive understanding and grasp of CVD, and the related molecular mechanisms of CVD should be further analyzed. Here, we review the new understanding of circRNAs in CVD and explain the role of these innovative biomarkers in the analysis and determination of other related cardiovascular events such as coronary heart disease. Thus, this study is aimed at providing new ideas and proposing more feasible medical research strategies based on circRNA.
Collapse
|
8
|
Relationship between Serum miR-106 and MYL4 Levels and the Prevalence, Risk Stratification, and Prognosis of Atrial Fibrillation. J Immunol Res 2022; 2022:1069866. [PMID: 35874900 PMCID: PMC9303158 DOI: 10.1155/2022/1069866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To analyze the predictive value of serum microRNA-106 (miRNA-106), miR-106, and myosin light chain 4 (MYL4) levels on the prevalence of atrial fibrillation and to explore the relationship between serum miR-106 and MYL4 and the risk stratification and prognosis of atrial fibrillation, thereby providing basis for them to become clinical targets for the treatment of atrial fibrillation in the future. Methods 300 patients with atrial fibrillation treated in our hospital from May 2017 to March 2019 were selected as the atrial fibrillation group, and 300 healthy people who came to our hospital for physical examination in the same period were selected as the control group. The general data of the subjects in the two groups were collected. The serum miR-106 level of the subjects in the two groups was detected by fluorescence quantitative polymerase chain reaction (PCR), and the level of MYL4 was detected by enzyme-linked immunosorbent assay (ELISA). The expression of miR-106 and MYL4 in the myocardium was observed by immunohistochemistry. The relationship between the levels of serum miR-106 and MYL4 and the prevalence of atrial fibrillation and the score of atrial fibrillation thromboembolism risk stratification scoring system (cha2ds2) was compared between the two groups. The relationship between serum level of miR-106 and prognosis of patients with atrial fibrillation was analyzed. Results The systolic blood pressure, diastolic blood pressure, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and left anterior descending artery (LAD) in the atrial fibrillation group were significantly higher than those in the control group, while HDL-C and left ventricular ejection fraction (LVEF) were significantly lower than those in the control group (P < 0.01). The level of serum miR-106 in patients with atrial fibrillation was significantly higher than that in the control group, whereas the level of MYL4 was significantly lower than that in the control group (P < 0.01). miR-106 was mainly localized in the cytoplasm, and the positive expression rate of miR-106 was 71.43% (81/115) in patients with atrial fibrillation and 21.74% (25/115) in patients with sinus rhythm. MYL4 was mainly located in the cell membrane and the positive expression rate of MYL4 was 24.35% (28/115) in patients with atrial fibrillation and 64.35% (74/115) in patients with sinus rhythm. With the increase of the severity of atrial fibrillation, the level of serum miR-106 gradually increased and the level of MYL4 gradually decreased, which were statistically significant compared with the control group (P < 0.05). With the increase of miR-106 level and the decrease of MYL4 level, the prevalence of atrial fibrillation gradually increased. With the increase of cha2ds2 score, the level of serum miR-106 increased and the level of MYL4 decreased. The survival rate of patients with miR − 106 ≤ 1.96 was significantly higher than that of patients with miR − 106 > 1.96. The survival rate of patients with MYL4 ≥ 0.24 was significantly higher than that of patients with MYL4 < 0.24. At the same time, TC and LDL-C were included in the analysis. The results showed that the survival rate of patients with TC ≤ 4.5 mmol/L was significantly higher than that of patients with TC > 4.5 mmol/L, and that of patients with LDL-C ≤ 2.6 mmol/L was significantly higher than that of patients with LDL-C > 2.6 mmol/L. Conclusion Serum miR-106 and MYL4 levels are closely related to the prevalence of atrial fibrillation, which can reflect the risk of thromboembolism in patients with atrial fibrillation and can be used as a biological indicator to predict the prognosis of patients with atrial fibrillation.
Collapse
|
9
|
Li D, Nie J, Han Y, Ni L. Epigenetic Mechanism and Therapeutic Implications of Atrial Fibrillation. Front Cardiovasc Med 2022; 8:763824. [PMID: 35127848 PMCID: PMC8815458 DOI: 10.3389/fcvm.2021.763824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia attacking 1. 5–2.0% of general population worldwide. It has a significant impact on morbidity and mortality globally and its prevalence increases exponentially with age. Therapies like catheter ablation or conventional antiarrhythmic drugs have not provided effective solution to the recurrence for AF over the past decades. Over 100 genetic loci have been discovered to be associated with AF by Genome-wide association studies (GWAS) but none has led to a therapy. Recently potential involvement of epigenetics (DNA methylation, histone modification, and non-coding RNAs) in the initiation and maintenance of AF has partly emerged as proof-of-concept in the mechanism and management of AF. Here we reviewed the epigenetic features involved in AF pathophysiology and provided an update of their implications in AF therapy.
Collapse
|
10
|
Chen C, Chen Q, Cheng K, Zou T, Pang Y, Ling Y, Xu Y, Zhu W. Exosomes and Exosomal Non-coding RNAs Are Novel Promises for the Mechanism-Based Diagnosis and Treatments of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:782451. [PMID: 34926627 PMCID: PMC8671698 DOI: 10.3389/fcvm.2021.782451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging Role of Mitophagy in the Heart: Therapeutic Potentials to Modulate Mitophagy in Cardiac Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3259963. [PMID: 34603595 PMCID: PMC8483925 DOI: 10.1155/2021/3259963] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Huang S, Deng Y, Xu J, Liu J, Liu L, Fan C. The Role of Exosomes and Their Cargos in the Mechanism, Diagnosis, and Treatment of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:712828. [PMID: 34395566 PMCID: PMC8355361 DOI: 10.3389/fcvm.2021.712828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, but the mechanism of AF has not been fully elucidated, and existing approaches to diagnosis and treatment face limitations. Recently, exosomes have attracted considerable interest in AF research due to their high stability, specificity and cell-targeting ability. The aim of this review is to summarize recent literature, analyze the advantages and limitations of exosomes, and to provide new ideas for their use in understanding the mechanism and improving the diagnosis and treatment of AF.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Deng
- Xiangya Medical College of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Jiang GT, Shao L, Kong S, Zeng ML, Cheng JJ, Chen TX, Han S, Yin J, Liu WH, He XH, Liu YM, Gongga L, Peng BW. Complement C3 Aggravates Post-epileptic Neuronal Injury Via Activation of TRPV1. Neurosci Bull 2021; 37:1427-1440. [PMID: 34309810 DOI: 10.1007/s12264-021-00750-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is a brain condition characterized by the recurrence of unprovoked seizures. Recent studies have shown that complement component 3 (C3) aggravate the neuronal injury in epilepsy. And our previous studies revealed that TRPV1 (transient receptor potential vanilloid type 1) is involved in epilepsy. Whether complement C3 regulation of neuronal injury is related to the activation of TRPV1 during epilepsy is not fully understood. We found that in a mouse model of status epilepticus (SE), complement C3 derived from astrocytes was increased and aggravated neuronal injury, and that TRPV1-knockout rescued neurons from the injury induced by complement C3. Circular RNAs are abundant in the brain, and the reduction of circRad52 caused by complement C3 promoted the expression of TRPV1 and exacerbated neuronal injury. Mechanistically, disorders of neuron-glia interaction mediated by the C3-TRPV1 signaling pathway may be important for the induction of neuronal injury. This study provides support for the hypothesis that the C3-TRPV1 pathway is involved in the prevention and treatment of neuronal injury and cognitive disorders.
Collapse
Affiliation(s)
- Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yu-Min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lanzi Gongga
- Medical College, Tibet University, Lhasa, 850013, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Tang L, Li P, Jang M, Zhu W. Circular RNAs and Cardiovascular Regeneration. Front Cardiovasc Med 2021; 8:672600. [PMID: 33928139 PMCID: PMC8076501 DOI: 10.3389/fcvm.2021.672600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
circular RNAs (circRNAs) are a type of non-coding RNAs that are widely present in eukaryotic cells. They have the characteristics of stable structure, high abundance, and cell or tissue specific expression. circRNAs are single-stranded RNAs that are covalently back spliced to form closed circular loops. They may participate in gene expression and regulation through a variety of action modes. circRNAs can encode proteins or function by acting as miRNA sponges for protein translation. Since 2016, a growing number of research studies have shown that circRNAs play important role in the pathogenesis of cardiovascular disease. With the construction of circRNA database, the differential expression of circRNAs in the heart tissue samples from different species and the gradual elucidation of its mode of action in disease may become an ideal diagnosis biomarker and an effective therapeutic target. What can be expected surely has a broader application prospect. In this review, we summarize recent publications on circRNA biogenesis, expression profiles, functions, and the most recent studies of circRNAs in the field of cardiovascular diseases with special emphasis on cardiac regeneration.
Collapse
Affiliation(s)
- Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center of Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center of Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center of Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center of Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
15
|
Qian J, Xu Y, Xu X, Tao Z, Luo Y, Xu Y, Zhang Y, Qian C. Hsa_circ_0091581 promotes glioma progression by regulating RMI1 via sponging miR-1243-5p. J Cancer 2021; 12:3249-3256. [PMID: 33976734 PMCID: PMC8100801 DOI: 10.7150/jca.55558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is a pervasive malignancy and the main cause of cancer-related deaths worldwide. Circular RNA is an important subject of cancer research, and its role and function in glioma are poorly understood. This study demonstrated that hsa_circ_0091581 is upregulated in glioma tissues and cells. The results of the CCK-8, EdU, and transwell assays indicated that hsa_circ_0091581 promotes proliferation, migration, and invasion of glioma cells. The results of the luciferase reporter and RNA immunoprecipitation assays indicated that the mechanism of the effects of hsa_circ_0091581 on glioma cells involves sponging miR-1243-5p to regulate RMI1. The results of the rescue experiments indicated that hsa_circ_0091581 regulates proliferation, migration, and invasion of glioma cells by targeting RMI1 in a miR-1243-5p dependent manner. The results of the nude mice xenograft assays showed that knockdown of hsa_circ_0091581 inhibits glioma growth in vivo. Thus, our study determined the role of hsa_circ_0091581/miR-1243-5p/RMI1 in glioma and suggests that this axis may be a novel therapeutic target in glioma.
Collapse
Affiliation(s)
- Jin Qian
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yingna Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Xing Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Zhenyu Tao
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yang Luo
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yichang Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yong Zhang
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Chunfa Qian
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|