1
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
2
|
Velayati A, Vafa MR, Sani'ee N, Darabi Z. Therapeutic effects and mechanisms of action of ginger and its bioactive components on inflammatory response, oxidative stress, the immune system, and organ failure in sepsis: a comprehensive systematic review. Nutr Rev 2023:nuad156. [PMID: 38102801 DOI: 10.1093/nutrit/nuad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
CONTEXT Sepsis refers to a usually lethal medical condition that results from an extreme, uncontrolled, and multifaceted immune system response to infection. Ginger (Zingiber officinale Roscoe; Zingiberaceae) is 1 of the most popular spice. It is widely used as a traditional herb and as medicine in the treatment of some inflammatory conditions, such as vomiting, pain, cancer, diabetes, and cardiovascular diseases, because of its varied medical characteristics, including anti-inflammatory, antioxidant, antimicrobial, and antitumor effects. OBJECTIVE The aim of this study was to demonstrate the potential roles of ginger and its elements in sepsis. DATA SOURCES This systematic review article was conducted and reported by following the guideline of the Preferred Reporting for Systematic Reviews (PRISMA). Electronic databases, including Web of Sciences, Google Scholar, PubMed, Scopus, and ProQuest, were searched using related key words up to January 2023. DATA EXTRACTION Among 141 found articles, 48 eligible articles were included and reviewed for their details. Data were extracted, including the first author's name, year of publication, name of origin country, study design, number and type of subject, dosage and type of intervention, study duration, assay, and main results. DATA ANALYSIS The data from the included articles showed that ginger and its bioactive elements, such as gingerol (1-300 µg/mL or 1-100 mg/kg for 24 hours to 14 days), shogaol (0.2-100 µg/mL or 10-40 mg/kg body weight for 24 hours to 8 days), gingerdione (1-100 µg/mL for 20-48 hours), and zingerone (2-20 µM for 4 hours to 8 days), can be effective in sepsis via suppressing the gene expression and production of pro-inflammatory cytokines and oxidant agents, downregulating immune response, and protecting against sepsis-induced organ failures in experimental and animal models. CONCLUSION Ginger has potential therapeutic effects in sepsis. Human clinical trials are recommended. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023373613.
Collapse
Affiliation(s)
- Aynaz Velayati
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sani'ee
- Medical Library and Information Science, Asadabad School Medical Sciences, Asadabad, Iran
| | - Zahra Darabi
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Karimi A, Pourreza S, Vajdi M, Mahmoodpoor A, Sanaie S, Karimi M, Tarighat-Esfanjani A. Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: A randomized, double-blind, and placebo-controlled trial. Front Nutr 2022; 9:1037861. [PMID: 36562037 PMCID: PMC9763722 DOI: 10.3389/fnut.2022.1037861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction In sepsis, the immune system is overreacting to infection, leading to organ dysfunction and death. The purpose of this study was to investigate the impacts of curcumin nanomicelles on clinical outcomes and cellular immune responses in critically ill sepsis patients. Method For 10 days, 40 patients in the intensive care units (ICU) were randomized between the nano curcumin (NC) and placebo groups in a randomized study. We evaluated serum levels of biochemical factors, inflammatory biomarkers, the mRNA expression levels of FOXP3, NLRP-3, IFN-γ, and NF-κp genes in the PBMCs, and clinical outcomes before the beginning of the supplementation and on days 5 and 10. Results NLR family pyrin domain containing 3 (NLRP3), interferon gamma (IFN-γ), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mRNA expression levels significantly P = 0.014, P = 0.014, and P = 0.019, respectively) decreased, but forkhead box P3 (FOXP3) mRNA expression levels increased significantly (P = 0.008) in the NC group compared to the placebo group after 10 days. NC supplementation decreased serum levels of IL-22, IL-17, and high mobility group box 1 (HMGB1) (P < 0.05). Nevertheless, biochemical factors and nutritional status did not differ significantly (P > 0.05). NC supplementation resulted in decreased sequential organ failure assessment and multiple organ dysfunction syndromes scores, while it did not have significant impacts on length of stay in the ICU, systolic blood pressure, diastolic blood pressure, a saturation of oxygen (%), and respiratory rate (breaths/min) PaO2/FiO2 (p > 0.05). Conclusion For critically ill patients with sepsis, NC supplementation may be an effective therapeutic strategy. More randomized clinical trials involving longer follow-up periods and different doses are needed to achieve the best results.
Collapse
Affiliation(s)
- Arash Karimi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhde Karimi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ali Tarighat-Esfanjani
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
5
|
Are Uropathogenic Bacteria Living in Multispecies Biofilm Susceptible to Active Plant Ingredient-Asiatic Acid? Biomolecules 2021; 11:biom11121754. [PMID: 34944398 PMCID: PMC8698853 DOI: 10.3390/biom11121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem in the human population due to their chronic and recurrent nature. Bacteria causing UTIs form multispecies biofilms being resistant to the activity of the conventionally used antibiotics. Therefore, compounds of plant origin are currently being searched for, which could constitute an alternative strategy to antibiotic therapy. Our study aimed to determine the activity of asiatic acid (AA) against biofilms formed by uropathogenic Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. The influence of AA on the survival, biofilm mass formation by bacteria living in mono-, dual-, and triple-species consortia as well as the metabolic activity and bacterial cell morphology were determined. The spectrophotometric methods were used for biofilm mass synthesis and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and a weakening of the ability to create biofilms, both single and multi-species, as well as changes in the morphology of bacterial cells were noticed. As AA works best against young biofilms, the use of AA-containing formulations, especially during the initial stages of infection, seems to be reasonable. However, there is a need for further research concerning AA especially regarding its antibacterial mechanisms of action.
Collapse
|
6
|
Zhang L, Wen B, Bao M, Cheng Y, Mahmood T, Yang W, Chen Q, Lv L, Li L, Yi J, Xie N, Lu C, Tan Y. Andrographolide Sulfonate Is a Promising Treatment to Combat Methicillin-resistant Staphylococcus aureus and Its Biofilms. Front Pharmacol 2021; 12:720685. [PMID: 34603031 PMCID: PMC8481920 DOI: 10.3389/fphar.2021.720685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant pathogen threatening human health and safety. Biofilms are an important cause of its drug resistance and pathogenicity. Inhibition and elimination of biofilms is an important strategy for the treatment of MRSA infection. Andrographolide sulfonate (AS) is an active component of the traditional herbal medicine Andrographis paniculata. This study aims to explore the inhibitory effect and corresponding mechanisms of AS on MRSA and its biofilms. Three doses of AS (6.25, 12.5, and 25 mg/ml) were introduced to MRSA with biofilms. In vitro antibacterial testing and morphological observation were used to confirm the inhibitory effect of AS on MRSA with biofilms. Real-time PCR and metabonomics were used to explore the underlying mechanisms of the effect by studying the expression of biofilm-related genes and endogenous metabolites. AS displayed significant anti-MRSA activity, and its minimum inhibitory concentration was 50 μg/ml. Also, AS inhibited biofilms and improved biofilm permeability. The mechanisms are mediated by the inhibition of the expression of genes, such as quorum sensing system regulatory genes (agrD and sarA), microbial surface components–recognizing adhesion matrix genes (clfA and fnbB), intercellular adhesion genes (icaA, icaD, and PIA), and a gene related to cellular eDNA release (cidA), and the downregulation of five biofilm-related metabolites, including anthranilic acid, D-lactic acid, kynurenine, L-homocitrulline, and sebacic acid. This study provided valuable evidence for the activity of AS against MRSA and its biofilms and extended the methods to combat MRSA infection.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Weifeng Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Lang Lv
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Ning Xie
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Jiang M, Sheng F, Zhang Z, Ma X, Gao T, Fu C, Li P. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113954. [PMID: 33610706 DOI: 10.1016/j.jep.2021.113954] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (Burm.f.) Nees is widely used all over the world, especially in subtropical regions such as India, Thailand, Vietnam, and China. As a traditional folk Chinese medicine, A. paniculata has been extensively utilized for the treatment of cold, fever, sore throat, cough, carbuncle, and sores, and it is commonly employed for 'clearing heat and resolving toxicity'. Typical symptoms of 'heat and toxicity' include swollen, painful gums, associated with virus-related diseases to a great extent. In vivo and in vitro experiments have demonstrated the potential antiviral properties of A. paniculata and identified its major active constituents against various viruses. AIM OF THE STUDY This review focuses on connecting the traditional 'clearing heat and resolving toxicity' effect to compelling recent research advances on the antiviral effects of A. paniculata, explaining its major antiviral mechanisms, and assessing the shortcomings of existing work. Besides, ethnobotany, ethnopharmacological uses, phytochemicals, and toxicology of A. paniculata have been researched. MATERIALS AND METHODS The information about A. paniculata was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including WEB OF SCIENCE, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG. RESULTS In this review, the underlying mechanisms of antiviral effect mainly involve the regulation of virus entry, gene replication, and synthesis of functionally mature proteins. Also, A. paniculata is a safe agent without obvious toxicity. Ethnobotany, ethnopharmacological uses, and chemical constituents have been summarized. CONCLUSION Andrographis paniculata (Burm.f.) Nees could be used as an imperative complementary medicine for the treatment of diverse virus infection, efforts should be made to gain insights into its antiviral properties.
Collapse
Affiliation(s)
- Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Feiya Sheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Zhen Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Tianhui Gao
- Medical College, Qingdao Binhai University, Qingdao, 266555, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|