1
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
2
|
Moreno-Cortes E, Franco-Fuquen P, Garcia-Robledo JE, Forero J, Booth N, Castro JE. ICOS and OX40 tandem co-stimulation enhances CAR T-cell cytotoxicity and promotes T-cell persistence phenotype. Front Oncol 2023; 13:1200914. [PMID: 37719008 PMCID: PMC10502212 DOI: 10.3389/fonc.2023.1200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapies have emerged as an effective and potentially curative immunotherapy for patients with relapsed or refractory malignancies. Treatment with CD19 CAR T-cells has shown unprecedented results in hematological malignancies, including heavily refractory leukemia, lymphoma, and myeloma cases. Despite these encouraging results, CAR T-cell therapy faces limitations, including the lack of long-term responses in nearly 50-70% of the treated patients and low efficacy in solid tumors. Among other reasons, these restrictions are related to the lack of targetable tumor-associated antigens, limitations on the CAR design and interactions with the tumor microenvironment (TME), as well as short-term CAR T-cell persistence. Because of these reasons, we developed and tested a chimeric antigen receptor (CAR) construct with an anti-ROR1 single-chain variable-fragment cassette connected to CD3ζ by second and third-generation intracellular signaling domains including 4-1BB, CD28/4-1BB, ICOS/4-1BB or ICOS/OX40. We observed that after several successive tumor-cell in vitro challenges, ROR1.ICOS.OX40ζ continued to proliferate, produce pro-inflammatory cytokines, and induce cytotoxicity against ROR1+ cell lines in vitro with enhanced potency. Additionally, in vivo ROR1.ICOS.OX40ζ T-cells showed anti-lymphoma activity, a long-lasting central memory phenotype, improved overall survival, and evidence of long-term CAR T-cell persistence. We conclude that anti-ROR1 CAR T-cells that are activated by ICOS.OX40 tandem co-stimulation show in vitro and in vivo enhanced targeted cytotoxicity associated with a phenotype that promotes T-cell persistence.
Collapse
Affiliation(s)
- Eider Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Jose Forero
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
- Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Natalie Booth
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
3
|
Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol 2022; 13:1019115. [PMID: 36248810 PMCID: PMC9557333 DOI: 10.3389/fimmu.2022.1019115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Collapse
|
4
|
Abrantes R, Duarte HO, Gomes C, Wälchli S, Reis CA. CAR-Ts: new perspectives in cancer therapy. FEBS Lett 2022; 596:403-416. [PMID: 34978080 DOI: 10.1002/1873-3468.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer treatment that exploits the host's immune system to fight cancer. CAR-T cell therapy relies on immune cells being modified to express an artificial receptor targeting cancer-specific markers, and infused into the patients where they will recognize and eliminate the tumour. Although CAR-T cell therapy has produced encouraging outcomes in patients with haematologic malignancies, solid tumours remain challenging to treat, mainly due to the lack of cancer-specific molecular targets and the hostile, often immunosuppressive, tumour microenvironment. CAR-T cell therapy also depends on the quality of the injected product, which is closely connected to CAR design. Here, we explain the technology of CAR-Ts, focusing on the composition of CARs, their application, and limitations in cancer therapy, as well as on the current strategies to overcome the challenges encountered. We also address potential future targets to overcome the flaws of CAR-T cell technology in the treatment of cancer, emphasizing glycan antigens, the aberrant forms of which attain high tumour-specific expression, as promising targets for CAR-T cell therapy.
Collapse
Affiliation(s)
- Rafaela Abrantes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
| | - Henrique O Duarte
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Catarina Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Norway
| | - Celso A Reis
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
5
|
Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol 2021; 14:199. [PMID: 34809678 PMCID: PMC8609883 DOI: 10.1186/s13045-021-01209-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Although chimeric antigen receptor T cells demonstrated remarkable efficacy in patients with chemo-resistant hematologic malignancies, a significant portion still resist or relapse. This immune evasion may be due to CAR T cells dysfunction, a hostile tumor microenvironment, or resistant cancer cells. Here, we review the intrinsic resistance mechanisms of cancer cells to CAR T cell therapy and potential strategies to circumvent them.
Collapse
Affiliation(s)
- Jean Lemoine
- Department of Hematology, AP-HP, Université de Paris, Paris, France
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roch Houot
- Department of Hematology, CHU de Rennes, Université de Rennes, INSERM U1236, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| |
Collapse
|
6
|
El Khawanky N, Hughes A, Yu W, Myburgh R, Matschulla T, Taromi S, Aumann K, Clarson J, Vinnakota JM, Shoumariyeh K, Miething C, Lopez AF, Brown MP, Duyster J, Hein L, Manz MG, Hughes TP, White DL, Yong ASM, Zeiser R. Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia. Nat Commun 2021; 12:6436. [PMID: 34750374 PMCID: PMC8575966 DOI: 10.1038/s41467-021-26683-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Successful treatment of acute myeloid leukemia (AML) with chimeric antigen receptor (CAR) T cells is hampered by toxicity on normal hematopoietic progenitor cells and low CAR T cell persistence. Here, we develop third-generation anti-CD123 CAR T cells with a humanized CSL362-based ScFv and a CD28-OX40-CD3ζ intracellular signaling domain. This CAR demonstrates anti-AML activity without affecting the healthy hematopoietic system, or causing epithelial tissue damage in a xenograft model. CD123 expression on leukemia cells increases upon 5'-Azacitidine (AZA) treatment. AZA treatment of leukemia-bearing mice causes an increase in CTLA-4negative anti-CD123 CAR T cell numbers following infusion. Functionally, the CTLA-4negative anti-CD123 CAR T cells exhibit superior cytotoxicity against AML cells, accompanied by higher TNFα production and enhanced downstream phosphorylation of key T cell activation molecules. Our findings indicate that AZA increases the immunogenicity of AML cells, enhancing recognition and elimination of malignant cells by highly efficient CTLA-4negative anti-CD123 CAR T cells.
Collapse
MESH Headings
- Acute Disease
- Animals
- Azacitidine/administration & dosage
- Cell Line, Tumor
- Cells, Cultured
- Cytotoxicity, Immunologic
- DNA Methylation/drug effects
- Enzyme Inhibitors/administration & dosage
- HEK293 Cells
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Kaplan-Meier Estimate
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Mice, Knockout
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Single-Chain Antibodies/immunology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Nadia El Khawanky
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Amy Hughes
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Wenbo Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Tony Matschulla
- Institute of Experimental and Clinical Pharmacology and Toxicology, Division II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanaz Taromi
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medical and Life Sciences, University Furtwangen, Villingen-Schwenningen, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Jade Clarson
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angel F Lopez
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael P Brown
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Department of Medical Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Division II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Timothy P Hughes
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Deborah L White
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA, Australia
| | - Agnes S M Yong
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia.
- School of Medicine, The University of Western Australia, Perth, WA, Australia.
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signaling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z, Marincola F. Improving CAR T-Cell Persistence. Int J Mol Sci 2021; 22:ijms221910828. [PMID: 34639168 PMCID: PMC8509430 DOI: 10.3390/ijms221910828] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decade remarkable progress has been made in enhancing the efficacy of CAR T therapies. However, the clinical benefits are still limited, especially in solid tumors. Even in hematological settings, patients that respond to CAR T therapies remain at risk of relapsing due to several factors including poor T-cell expansion and lack of long-term persistence after adoptive transfer. This issue is even more evident in solid tumors, as the tumor microenvironment negatively influences the survival, infiltration, and activity of T-cells. Limited persistence remains a significant hindrance to the development of effective CAR T therapies due to several determinants, which are encountered from the cell manufacturing step and onwards. CAR design and ex vivo manipulation, including culture conditions, may play a pivotal role. Moreover, previous chemotherapy and lymphodepleting treatments may play a relevant role. In this review, the main causes for decreased persistence of CAR T-cells in patients will be discussed, focusing on the molecular mechanisms underlying T-cell exhaustion. The approaches taken so far to overcome these limitations and to create exhaustion-resistant T-cells will be described. We will also examine the knowledge gained from several key clinical trials and highlight the molecular mechanisms determining T-cell stemness, as promoting stemness may represent an attractive approach to improve T-cell therapies.
Collapse
Affiliation(s)
- Violena Pietrobon
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
- Correspondence: (V.P.); (F.M.)
| | - Lauren Anne Todd
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anghsumala Goswami
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Ofir Stefanson
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Zhifen Yang
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Francesco Marincola
- Kite Pharma, Inc., Santa Monica, CA 90404, USA
- Correspondence: (V.P.); (F.M.)
| |
Collapse
|
8
|
Hernández-López A, Téllez-González MA, Mondragón-Terán P, Meneses-Acosta A. Chimeric Antigen Receptor-T Cells: A Pharmaceutical Scope. Front Pharmacol 2021; 12:720692. [PMID: 34489708 PMCID: PMC8417740 DOI: 10.3389/fphar.2021.720692] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer is among the leading causes of death worldwide. Therefore, improving cancer therapeutic strategies using novel alternatives is a top priority on the contemporary scientific agenda. An example of such strategies is immunotherapy, which is based on teaching the immune system to recognize, attack, and kill malignant cancer cells. Several types of immunotherapies are currently used to treat cancer, including adoptive cell therapy (ACT). Chimeric Antigen Receptors therapy (CAR therapy) is a kind of ATC where autologous T cells are genetically engineered to express CARs (CAR-T cells) to specifically kill the tumor cells. CAR-T cell therapy is an opportunity to treat patients that have not responded to other first-line cancer treatments. Nowadays, this type of therapy still has many challenges to overcome to be considered as a first-line clinical treatment. This emerging technology is still classified as an advanced therapy from the pharmaceutical point of view, hence, for it to be applied it must firstly meet certain requirements demanded by the authority. For this reason, the aim of this review is to present a global vision of different immunotherapies and focus on CAR-T cell technology analyzing its elements, its history, and its challenges. Furthermore, analyzing the opportunity areas for CAR-T technology to become an affordable treatment modality taking the basic, clinical, and practical aspects into consideration.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, UAEM, Cuernavaca, Mexico
| | - Mario A. Téllez-González
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, UAEM, Cuernavaca, Mexico
- Coordinación de Investigación, Centro Médico Nacional “20 de Noviembre” ISSSTE, Mexico city, Mexico
| | - Paul Mondragón-Terán
- Coordinación de Investigación, Centro Médico Nacional “20 de Noviembre” ISSSTE, Mexico city, Mexico
| | - Angélica Meneses-Acosta
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, UAEM, Cuernavaca, Mexico
| |
Collapse
|
9
|
PD-L1 Overexpression, SWI/SNF Complex Deregulation, and Profound Transcriptomic Changes Characterize Cancer-Dependent Exhaustion of Persistently Activated CD4 + T Cells. Cancers (Basel) 2021; 13:cancers13164148. [PMID: 34439305 PMCID: PMC8391521 DOI: 10.3390/cancers13164148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Growing tumors induce an immune response. For proper immune response, both CD8+ and CD4+ effector T cells are required. Tumors avoid attacks from tumor-infiltrating lymphocytes (TILs) via induction of several inhibitory signals, such as PD-L1/2, which bind to the PD-1 receptor, consequently leading to T cell dysfunction, exhaustion, and apoptosis. The mechanism of T cell exhaustion has been studied mostly in CD8+ T cells, although some results suggest that CD4+ effector T cells also undergo exhaustion. In this study, we analyze global transcript profiling, PD-1 and PD-L1 expression, and chromatin status on the PD-L1 locus. We find that in exhausted CD4+ T cells, the levels of PD-L1 are increased at both the transcript and protein levels, while PD-L1 expression depends on SWI/SNF chromatin remodeling and PRC2-repressive complexes. The expression of PD-L1 in exhausted CD4+ T cells can be reversible. Abstract Growing tumors avoid recognition and destruction by the immune system. During continuous stimulation of tumor-infiltrating lymphocytes (TILs) by tumors, TILs become functionally exhausted; thus, they become unable to kill tumor cells and to produce certain cytokines and lose their ability to proliferate. This collectively results in the immune escape of cancer cells. Here, we show that breast cancer cells expressing PD-L1 can accelerate exhaustion of persistently activated human effector CD4+ T cells, manifesting in high PD-1 and PD-L1 expression level son T cell surfaces, decreased glucose metabolism genes, strong downregulation of SWI/SNF chromatin remodeling complex subunits, and p21 cell cycle inhibitor upregulation. This results in inhibition of T cell proliferation and reduction of T cell numbers. The RNAseq analysis on exhausted CD4+ T cells indicated strong overexpression of IDO1 and genes encoding pro-inflammatory cytokines and chemokines. Some interleukins were also detected in media from CD4+ T cells co-cultured with cancer cells. The PD-L1 overexpression was also observed in CD4+ T cells after co-cultivation with other cell lines overexpressing PD-L1, which suggested the existence of a general mechanism of CD4+ T cell exhaustion induced by cancer cells. The ChIP analysis on the PD-L1 promoter region indicated that the BRM recruitment in control CD4+ T cells was replaced by BRG1 and EZH2 in CD4+ T cells strongly exhausted by cancer cells. These findings suggest that epi-drugs such as EZH2 inhibitors may be used as immunomodulators in cancer treatment.
Collapse
|
10
|
Shao J, Hou L, Liu J, Liu Y, Ning J, Zhao Q, Zhang Y. Indoleamine 2,3-Dioxygenase 1 Inhibitor-Loaded Nanosheets Enhance CAR-T Cell Function in Esophageal Squamous Cell Carcinoma. Front Immunol 2021; 12:661357. [PMID: 33828565 PMCID: PMC8019778 DOI: 10.3389/fimmu.2021.661357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
In chimeric antigen receptor (CAR)-T cell therapy, the role and mechanism of indoleamine 2, 3 dioxygenase 1 (IDO1) in enhancing antitumor immunity require further study. IDO1 is one of the most important immunosuppressive proteins in esophageal squamous cell carcinoma (ESCC). However, the IDO1 inhibitor, epacadostat, has failed in phase III clinical trials; its limited capacity to inhibit IDO1 expression at tumor sites was regarded as a key reason for clinical failure. In this study, we innovatively loaded the IDO1 inhibitor into hyaluronic acid-modified nanomaterial graphene oxide (HA-GO) and explored its potential efficacy in combination with CAR-T cell therapy. We found that inhibition of the antitumor effect of CAR-T cells in ESCC was dependent on the IDO1 metabolite kynurenine. Kynurenine could suppress CAR-T cell cytokine secretion and cytotoxic activity. Inhibiting IDO1 activity significantly enhanced the antitumor effect of CAR-T cells in vitro and in vivo. Our findings suggested that IDO1 inhibitor-loaded nanosheets could enhance the antitumor effect of CAR-T cells compared with free IDO1 inhibitor. Nanosheet-loading therefore provides a promising approach for improving CAR-T cell therapeutic efficacy in solid tumors.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Nanostructures/chemistry
- Oximes/chemistry
- Oximes/pharmacology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/metabolism
- Squamous Cell Carcinoma of Head and Neck/therapy
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Treatment Outcome
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Jingwen Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Hou
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Ning
- School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|