1
|
Zhang C, Wang K, Chen X, Li Y. Mechanistic study on lncRNA XIST/miR-124-3p/ITGB1 axis in renal fibrosis in obstructive nephropathy. Exp Cell Res 2024; 442:114194. [PMID: 39127440 DOI: 10.1016/j.yexcr.2024.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate the role and possible mechanism of lncRNA XIST in renal fibrosis and to provide potential endogenous targets for renal fibrosis in obstructive nephropathy (ON). METHODS The study included 50 cases of ON with renal fibrosis (samples taken from patients undergoing nephrectomy due to ON) and 50 cases of normal renal tissue (samples taken from patients undergoing total or partial nephrectomy due to accidental injury, congenital malformations, and benign tumors). Treatment of human proximal renal tubular epithelium (HK-2) cells with TGF-β1 simulated renal fibrosis in vitro. Cell viability and proliferation were measured by CCK-8 and EdU, and cell migration was measured by transwell. XIST, miR-124-3p, ITGB1, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, α-SMA, and fibronectin) were detected by PCR and immunoblot. The targeting relationship between miR-124-3p and XIST or ITGB1 was verified by starBase and dual luciferase reporter gene experiments. In addition, The left ureter was ligated in mice as a model of unilateral ureteral obstruction (UUO), and the renal histopathology was observed by HE staining and Masson staining. RESULTS ON patients with renal fibrosis had elevated XIST and ITGB1 levels and reduced miR-124-3p levels. The administration of TGF-β1 exhibited a dose-dependent promotion of HK-2 cell viability, proliferation, migration, and EMT. Conversely, depleting XIST or enhancing miR-124-3p hindered HK-2 cell viability, proliferation, migration, and EMT in TGF-β1-damaged HK-2 cells HK-2 cells. XIST functioned as a miR-124-3p sponge. Additionally, miR-124-3p negatively regulated ITGB1 expression. Elevating ITGB1 weakened the impact of XIST depletion on TGF-β1-damaged HK-2 cells. Down-regulating XIST improved renal fibrosis in UUO mice. CONCLUSION XIST promotes renal fibrosis in ON by elevating miR-124-3p and reducing ITGB1 expressions.
Collapse
Affiliation(s)
- ChiTeng Zhang
- Department of Urology Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China
| | - KangNing Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410000, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410000, China
| | - Yong Li
- Department of Urology Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China.
| |
Collapse
|
2
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
3
|
Yang L, Xu Y, Pan J, Li R, Lan C, Zhang D. Discovery of mmu-lncRNA129814/hsa-lncRNA582795 as a Potential Biomarker and Intervention Target for Ischemia Reperfusion Injury-Induced AKI. J Inflamm Res 2024; 17:4277-4296. [PMID: 38973996 PMCID: PMC11227338 DOI: 10.2147/jir.s465910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024] Open
Abstract
Background Acute kidney injury (AKI) is associated with higher perioperative mortality and morbidity, as well as increased medical expenses. The molecular mechanisms underlying ischemia-reperfusion (I/R)-induced AKI remain unclear. Methods and Results We applied an RT-qPCR assay to measure the expression of mmu-lncRNA129814, hsa-lncRNA582795, and miRNA-494-5p, immunoblotting to detect IL-1α and cleaved caspase-3 expression, and TUNEL staining and flow cytometry (FCM) to evaluate apoptosis. The experiments were conducted using BUMPT and HK-2 cells, as well as C57BL/6J mice. Mechanistically, mmu-lncRNA129814 could sponge miRNA-494-5p and upregulate IL-1α expression to promote cell apoptosis. Furthermore, knockdown of mmu-lncRNA129814 ameliorated I/R-induced progression of AKI by targeting the miRNA-494-5p/IL-1α pathways. Interestingly, hsa-lncRNA582795, a homolog of mmu-lncRNA129814, also promoted I/R-stimulated HK-2 cell apoptosis and AKI progression by regulating the miRNA-494-5p/IL-1α axis. Finally, we found that patients with I/R-induced AKI exhibited significantly elevated plasma and urinary levels of hsa-lncRNA582795 compared to those who underwent ischemia-reperfusion without developing AKI. Spearman's test demonstrated a significant correlation between serum creatinine and plasma hsa-lncRNA582795 in I/R patients. Plasma hsa-lncRNA582795 showed high sensitivity but low specificity (86.7%) compared to urinary hsa-lncRNA582795. Conclusion The mmu-lncRNA129814/hsa-lncRNA582795/miRNA-494-5p/IL-1α axis was found to modulate the progression of ischemic AKI, and hsa-lncRNA582795 could act as a diagnosis biomarker and potential therapy target of I/R-induced AKI.
Collapse
Affiliation(s)
- Liu Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yan Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Renjie Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Kuang L, Zeng J, Li Y, Zheng J, Ren Y, Guo Z, Zhang X, Zhang C, Yang C, Mei X, Yang R, Tang L, Ji Y, Xie X, Lei M, Li C. Delineating molecular regulatory network of meat quality of longissimus dorsi indicated by transcriptomic, proteomic, and metabolomics analysis in rabbit. J Proteomics 2024; 300:105179. [PMID: 38657733 DOI: 10.1016/j.jprot.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This study aims to investigate the potential regulatory network responsible for the meat quality using multi-omics to help developing better varieties. Slaughter performance and meat quality of Shuxing No.1 rabbit outperformed IRA rabbit according to the tested rabbit parameters. Differentially expressed genes (DEGs) and differentially abundance proteins (DAPs) were involved in meat quality-related pathways, such as PI3K - Akt and MAPK signaling pathways. Only SMTNL1 and PM20D2 shared between DEGs and DAPs. Olfactory-sensitive undecanal, a differentially abundant metabolite (DAM) in volatilomics (vDAMs), correlated with all of the remaining 11 vDAMs, and most of 12 vDAMs were associated with amino acid metabolism. Integration revealed that 829 DEGs/DAPs were associated with 15 DAMs in four KEGG pathways, such as melatonin (a DAM in widely targeted metabolomics) was significantly positively correlated with ALDH and negatively correlated with RAB3D and CAT in the tryptophan metabolism pathway. This study sheds light on the potential mechanisms that contribute to the improved meat quality and flavor. SIGNIFICANCE: Shuxing No.1 rabbit is a new breed of meat rabbit in the Chinese market. In meat marketing, meat quality usually determines the purchase intention of consumers. Determining the biological and molecular mechanisms of meat quality in meat rabbit is essential for developing strategies to improve meat quality. According to the tested rabbit parameters, this study ascertained that the slaughter performance and meat quality of Shuxing No.1 rabbit surpasses that of IRA rabbit. The present study profiled the transcriptome, proteome, widely targeted metabolome, and volatilome of longissimus dorsi from Shuxing No.1 rabbit and IRA rabbit. The study found that meat quality and flavor-related tryptophan metabolism pathway is enriched with many DEGs/DAPs (including ALDH, RAB3D, and CAT), as well as a DAM, melatonin. This study sheds light on the potential mechanisms that contribute to the improved meat quality and flavor.
Collapse
Affiliation(s)
- Liangde Kuang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Jianhong Zeng
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Yuying Li
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Jie Zheng
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Yongjun Ren
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Zhiqiang Guo
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Xiangyu Zhang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Cuixia Zhang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Chao Yang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Xiuli Mei
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Rui Yang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Li Tang
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Yang Ji
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Xiaohong Xie
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
| | - Min Lei
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China.
| | - Congyan Li
- Sichuan Animal Science Academy, Chengdu 610066, Sichuan, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China.
| |
Collapse
|
5
|
Qi R, Zhang Y, Yan F. Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression. Cell Biol Toxicol 2024; 40:32. [PMID: 38767703 PMCID: PMC11106170 DOI: 10.1007/s10565-024-09879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Yong Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Qi R, Wang Y, Yan F, Zhong J. Exosomes derived from ITGB1 modified Telocytes alleviates LPS-induced inflammation and oxidative stress through YAP1/ROS axis. Heliyon 2024; 10:e27086. [PMID: 38486751 PMCID: PMC10938118 DOI: 10.1016/j.heliyon.2024.e27086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Aims Previous studies have demonstrated a significant upregulation of Integrin Beta 1 (ITGB1) in Telocytes. This study aims to explore the roles and underlying mechanisms of ITGB1 in inflammation and oxidative stress following Lipo-polysaccharide (LPS) administration in Telocytes. Methods We observed an increase in reactive oxygen species (ROS) production, accompanied by a reduction in ITGB1 levels post-LPS treatment. Results Notably, inhibiting ROS synthesis markedly reduced LPS-induced ITGB1 expression. Additionally, ectopic ITGB1 expression mitigated LPS-induced inflammation and oxidative stress, evident through decreased levels of pro-inflammatory markers such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1β, IL-6, and Monocyte Chemoattractant Protein (MCP)-1. Depletion of endothelial Yes-Associated Protein 1 (YAP1) notably diminished the levels of inflammatory markers and ROS production. Furthermore, exosomes secreted by ITGB1-modified Telocytes promoted Human Umbilical Vein Endothelial Cells (HUVECs) proliferation and inhibited apoptosis. In vivo experiments revealed that exosomes from ITGB1-modified Telocytes modulated functional and structural changes, as well as inflammatory responses in Acute Lung Injury (ALI). Conclusion These findings highlight the critical role of the YAP1/ROS axis in LPS-induced Telocyte injuries, underlining the therapeutic potential of targeting ITGB1 for mitigating inflammation and oxidative stress in these cells.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Wang
- Medical Imaging Department, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Zhong
- Department of Thoracic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xia W, Chen X, Zhu Z, Chen H, Li B, Wang K, Huang L, Liu Z, Chen Z. Knockdown of lncRNA MALAT1 attenuates renal interstitial fibrosis through miR-124-3p/ITGB1 axis. Sci Rep 2023; 13:18076. [PMID: 37872392 PMCID: PMC10593763 DOI: 10.1038/s41598-023-45188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Renal interstitial fibrosis (RIF) considered the primary irreversible cause of chronic kidney disease. Recently, accumulating studies demonstrated that lncRNAs play an important role in the pathogenesis of RIF. However, the underlying exact mechanism of lncRNA MALAT1 in RIF remains barely known. Here, the aim of our study was to investigate the dysregulate expression of lncRNA MALAT1 in TGF-β1 treated HK2/NRK-49F cells and unilateral ureteral obstruction (UUO) mice model, defining its effects on HK2/NRK-49F cells and UUO mice fibrosis process through the miR-124-3p/ITGB1 signaling axis. It was found that lncRNA MALAT1 and ITGB1 was significantly overexpression, while miR-124-3p was downregulated in HK2/NRK-49F cells induced by TGF-β1 and in UUO mice model. Moreover, knockdown of lncRNA MALAT1 remarkably downregulated the proteins level of fibrosis-related markers, ITGB1, and upregulated the expression of epithelial marker E-cadherin. Consistently, mechanistic studies showed that miR-124-3p can directly binds to lncRNA MALAT1 and ITGB1. And the protect effect of Len-sh-MALAT1 on fibrosis related protein levels could be partially reversed by co-transfected with inhibitor-miR-124-3p. Moreover, the expression trend of LncRNA MALAT1/miR-124-3p/ITGB1 in renal tissues of patients with obstructive nephropathy (ON) was consistent with the results of cell and animal experiments. Taken together, these results indicated that lncRNA MALAT1 could promote RIF process in vitro and in vivo via the miR-124-3p/ITGB1 signaling pathway. These findings suggest a new regulatory pathway involving lncRNA MALAT1, which probably serves as a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kangning Wang
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Wang P, Chen W, Zhao S, Cheng F. The role of LncRNA-regulated autophagy in AKI. Biofactors 2023; 49:1010-1021. [PMID: 37458310 DOI: 10.1002/biof.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 10/04/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome involving a series of pathophysiological processes regulated by multiple pathways at the molecular and cellular level. Long noncoding RNAs (lncRNAs) play an important role in the regulation of epigenetics, and their regulation of autophagy-related genes in AKI has attracted increasing attention. However, the role of lncRNA-regulated autophagy in AKI has not been fully elucidated. Evidence indicated that lncRNAs play regulatory roles in most factors that induce AKI. LncRNAs can regulate autophagy in AKI via a complex network of regulatory pathways to affect the development and prognosis of AKI. This article reviewed and analyzed the pathways of lncRNA regulation of autophagy in AKI in recent years. The results provide new ideas for further study of the pathophysiological process and targeted therapy for AKI.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Zununi Vahed S, Ardalan M. Ischemic tubular injury: Oxygen-sensitive signals and metabolic reprogramming. Inflammopharmacology 2023:10.1007/s10787-023-01232-x. [PMID: 37131045 DOI: 10.1007/s10787-023-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
The kidneys are the most vulnerable organs to severe ischemic insult that results in cellular hypoxia under pathophysiological conditions. Large amounts of oxygen are consumed by the kidneys, mainly to produce energy for tubular reabsorption. Beyond high oxygen demand and the low oxygen supply, different other factors make kidneys vulnerable to ischemia which is deemed to be a major cause of acute kidney injury (AKI). On the other hand, kidneys are capable of sensing and responding to oxygen alternations to evade harms resulting from inadequate oxygen. The hypoxia-inducible factor (HIF) is the main conserved oxygen-sensing mechanism that maintains homeostasis under hypoxia through direct/indirect regulation of several genes that contribute to metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, and so on. In response to oxygen availability, prolyl-hydroxylases (PHDs) control the HIF stability. This review focuses on the oxygen-sensing mechanisms in kidneys, particularly in proximal tubular cells (PTCs) and discusses the molecules involved in ischemic response and metabolic reprogramming. Moreover, the possible roles of non-coding RNAs (microRNAs and long non-coding RNAs) in the development of ischemic AKI are put forward.
Collapse
Affiliation(s)
| | | | - Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
10
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:cells12081115. [PMID: 37190024 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
11
|
Wei Y, Dai L, Deng Y, Ye Z. LncRNA XIST promotes adjuvant-induced arthritis by increasing the expression of YY1 via miR-34a-5p. Arch Rheumatol 2023; 38:82-94. [DOI: 10.46497/archrheumatol.2022.9250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/21/2022] [Indexed: 03/18/2023] Open
Abstract
Objectives: This study aims to explore the mechanism by which long non-coding ribonucleic acids (lncRNA) X-inactive specific transcript (XIST) affects the progression of adjuvant-induced arthritis (AIA).
Materials and methods: Freund's complete adjuvant was used to induce arthritis in rats. The polyarthritis, spleen and thymus indexes were calculated to evaluate AIA. Hematoxylin-eosin (H&E) staining was used to reveal the pathological changes in the synovium of AIA rats. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and IL-8 in the synovial fluid of AIA rats. The cell continuing kit (CCK)-8, flow cytometry, and Transwell assays were used to assess the proliferation, apoptosis, migration and invasion of transfected fibroblast-like synoviocytes (FLS) isolated from AIA rats (AIA-FLS). Dual-luciferase reporter assay was performed to verify the binding sites between XIST and miR-34b-5p or between YY1 mRNA and miR-34b-5p.
Results: The XIST and YY1 were highly expressed, and miR-34a-5p was lowly expressed in the synovium of AIA rats and in AIA-FLS. Silencing of XIST impaired the function of AIA-FLS in vitro and inhibited the progression of AIA in vivo. The XIST promoted the expression of YY1 by competitively binding to miR-34a-5p. Inhibition of miR-34a-5p strengthened the function of AIA-FLS by upregulating XIST and YY1.
Conclusion: The XIST controls the function of AIA-FLS and may promote the progression of rheumatoid arthritis via the miR-34a-5p/YY1 axis.
Collapse
|
12
|
Zhang J, Fu Y, Yang B, Xiang X. Total glucosides of paeony inhibits liver fibrosis and inflammatory response associated with cirrhosis via the FLI1/NLRP3 axis. Am J Transl Res 2022; 14:4321-4336. [PMID: 35836848 PMCID: PMC9274563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Total glucosides of paeony (TGP) has a myriad of hepatoprotective activities. However, its role in cirrhosis, a major risk factor for hepatocellular carcinoma, remains largely unexplored. Here, we determined the impact of TGP on liver fibrosis and inflammation in mice modeled by carbon tetrachloride with an aim to explore a possible molecular mechanism. METHODS Liver fibrosis and inflammation in mice were evaluated using ELISA, hematoxylin-eosin, Masson's trichrome, immunohistochemical staining and TUNEL methods. The impact of TGP on gene expression in the liver tissues of the mice was investigated using microarray analysis, showing the most significant increase in expression of friend leukemia integration 1 transcription factor (FLI1). After loss-of-functions assays of FLI1, the downstream gene of FLI1 was searched by bioinformatics analysis and verified. RESULTS TGP reduced liver tissue damage, inhibited apoptosis, and alleviated liver fibrosis and inflammation in cirrhotic mice. FLI1 was downregulated in the liver of cirrhotic mice and lipopolysaccharide-treated hepatocytes, and TGP promoted the expression of FLI1. FLI1 depletion inhibited the effects of TGP on alleviating liver fibrosis and inflammatory responses in mice. FLI1 repressed Nod-like receptor protein 3 (NLRP3) transcription by binding to its promoter. Further silencing of NLRP3 in the presence of shFLI1 alleviated histopathological changes, inhibited apoptosis, and attenuated liver fibrosis and inflammatory responses in the liver of cirrhotic mice. CONCLUSIONS TGP promotes the expression of FLI1, which in turn inhibits NLRP3 expression, thereby reducing cirrhosis-induced liver fibrosis and inflammatory response in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Yiwei Fu
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Bin Yang
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Xiaoxing Xiang
- Yangzhou University Medical CollegeYangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
13
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Fan J, Wu D, Guo Y, Yang Z. SOS1-IT1 silencing alleviates MPP +-induced neuronal cell injury through regulating the miR-124-3p/PTEN/AKT/mTOR pathway. J Clin Neurosci 2022; 99:137-146. [PMID: 35279586 DOI: 10.1016/j.jocn.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Long non-coding RNA (lncRNA) has been found to be involved in the regulation of a variety of disease progression, including Parkinson's disease (PD). However, the role and underlying mechanism of SOS1 intronic transcript 1 (SOS1-IT1) in the progression of PD is still unclear. 1-methyl-4-phenyl pyridine (MPP+) induced SK-N-SH cells were used to construct PD cell models in vitro. The expression levels of SOS1-IT1, microRNA (miR)-124-3p and phosphatase and tensin homolog (PTEN) were determined using quantitative real-time PCR. Cell counting kit 8 assay and flow cytometry were used to measure cell viability and apoptosis. Western blot analysis was performed to detect protein expression. The levels of inflammation cytokines and oxidative stress markers were examined to assess cell inflammation and oxidative stress. In addition, dual-luciferase reporter assay, RIP assay and RNA pull-down assay were used to confirm RNA interaction. Our results showed that SOS1-IT1 was upregulated in MPP+-induced SK-N-SH cells, and its silencing reversed the inhibition effect of MPP+ on the viability and the promotion effect on the apoptosis, inflammation and oxidative stress of SK-N-SH cells. MiR-124-3p was targeted by SOS1-IT1, and its inhibitor reversed the suppressive effect of SOS1-IT1 knockdown on MPP+-induced SK-N-SH cell injury. Furthermore, PTEN was a target of miR-124-3p, and the reduction effect of miR-124-3p on MPP+-induced SK-N-SH cell injury was reversed by PTEN overexpression. Additionally, the activity of AKT/mTOR pathway was regulated by the SOS1-IT1/miR-124-3p/PTEN axis. In conclusion, SOS1-IT1 regulated the miR-124-3p/PTEN/AKT/mTOR pathway to participate in the regulation of MPP+-induced neuronal cell injury, indicating the SOS1-IT1 might be an effective therapeutic target for PD.
Collapse
Affiliation(s)
- Jianhu Fan
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dahua Wu
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Yuxing Guo
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Zhongbao Yang
- Department of Pharmacy, The Affiliated Changsha Hospital of Human Normal University, Changsha, China
| |
Collapse
|
15
|
Min W, Wu Y, Fang Y, Hong B, Dai D, Zhou Y, Liu J, Li Q. Bone marrow mesenchymal stem cells-derived exosomal microRNA-124-3p attenuates hypoxic-ischemic brain damage through depressing tumor necrosis factor receptor associated factor 6 in newborn rats. Bioengineered 2022; 13:3194-3206. [PMID: 35067167 PMCID: PMC8973938 DOI: 10.1080/21655979.2021.2016094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes (Exo) are beneficial in the use of brain damages. Restrictively, the mechanism of Exo expressing miR-124-3p in hypoxic-ischemic brain damage (HIBD) is not completely comprehended. Thereupon, this work was put forward to reveal the action of bone marrow MSCs-derived Exo (BMSCs-Exo) expressing miR-124-3p in the illness. BMSCs were isolated and transfected with miR-124-3p agomir. Then, BMSCs-Exo were extracted and identified. The newborn HIBD rats were injected with miR-124-3p-modified BMSCs-Exo or tumor necrosis factor receptor associated factor 6 (TRAF6)-related vectors. Next, neurological functions, neuron pathological and structural damages, oxidative stress and neuronal apoptosis were observed. miR-124-3p and TRAF6 expression was tested, along with their targeting relationship. miR-124-3p was down-regulated, and TRAF6 was up-regulated in newborn HIBD rats. miR-124-3p targeted TRAF6. BMSCs-Exo improved neurological functions, alleviated neuron pathological and structural damages, suppressed oxidative stress and reduced neuronal apoptosis in newborn HIBD rats, whereas BMSCs-Exo-mediated effects were enhanced by restoring miR-124-3p. Silencing TRAF6 attenuated HIBD in newborn rats, but overexpression of TRAF6 reversed the protective role of miR-124-3p-overexpressing BMSCs-Exo. This work makes it comprehensive that up-regulated exosomal miR-124-3p ameliorates HIBD in newborn rats by targeting TRAF6, which replenishes the potential agents for curing HIBD.
Collapse
Affiliation(s)
| | | | | | - Bo Hong
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Dongwei Dai
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Yu Zhou
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Jianmin Liu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Qiang Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| |
Collapse
|
16
|
Pathare ADS, Hinduja I, Mahadik RC. Basic aspects of endometrial receptivity in PCOS patients. Mol Biol Rep 2022; 49:1519-1528. [PMID: 34988892 DOI: 10.1007/s11033-021-06976-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder commonly affecting the reproductive capacity of women leading to infertility. PCOS-related infertility is majorly due to anovulation; however, it is not the only cause. The defective endometrium causing recurrent miscarriage and implantation failure can also be accountable for infertility in PCOS women. The unusual levels of hormones and their receptors in the PCOS endometrium have a hostile effect during WOI, making the microenvironment unfavorable for embryo implantation. To date, many studies have been performed to determine the role of candidate genes in endometrial receptivity but very limited data is available using whole genome approach. This review aims at summarizing the existing studies on the basic aspects of endometrial receptivity in PCOS. The review focuses on aberrant levels of hormones and their receptors in the endometrium, affecting the receptivity. Additionally, it explores the novel approach reviewing the effect on treatment options administered for ovulation induction in PCOS on their endometrial receptivity. Overall, this review will help us to understand the molecular milieu in PCOS endometrium and its effect on the receptivity potential. However, to have a thorough understanding of the mechanistic approach of hormonal imbalance in PCOS on endometrial receptivity, there is a need to give more weightage to genome-wide studies in the future. The current review will further guide us to formulate future studies using whole genome technologies for the assessment of endometrial receptivity in different cohorts of PCOS women, which may have future diagnostic implementations.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India
| | - Indira Hinduja
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - Roshani C Mahadik
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India
| |
Collapse
|
17
|
Zhao W, Zhang Y, Zhang M, Zhi Y, Li X, Liu X. Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis. Immunobiology 2022; 227:152179. [DOI: 10.1016/j.imbio.2022.152179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
|
18
|
Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis. J Bioenerg Biomembr 2021; 53:643-653. [PMID: 34585325 DOI: 10.1007/s10863-021-09921-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023]
Abstract
Inflammasome-mediated pyroptosis can aggravate myocardial ischemia/reperfusion injury. Total glucosides of paeony (TGP) is widely used in anti-inflammation. This study investigated the effect of TGP on pyroptosis of hypoxia/reoxygenation (H/R)-induced cardiomyocytes. HL-1 cells were subjected to H/R treatment. H/R-induced cardiomyocytes were treated with TGP at different concentrations (50, 100, and 200 mg/kg). The viability of H/R-induced cardiomyocytes was measured. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were determined. The activity of caspase-1, the expressions of NLRP3 and GSDMD-N, and the concentrations of IL-1β and IL-18 were examined. miR-181a-5p expression in H/R cardiomyocytes was determined. The targeting relationship between miR-181a-5p and adenylate cyclase 1 (ADCY1) was verified. Functional rescue experiments were performed to verify the effect of miR-181a-5p or ADCY1 on the pyroptosis of H/R cardiomyocytes. TGP enhanced H/R-induced cardiomyocyte viability in a dose-dependent manner, reduced LDH, MDA, and ROS levels, increased SOD level, decreased caspase-1 activity, reduced NLRP3 and GSDMD-N expressions, and inhibited IL-1β and IL-18 concentrations. TGP suppressed miR-181a-5p expression in H/R cardiomyocytes. miR-181a-5p targeted ADCY1. miR-181a-5p overexpression or ADCY1 inhibition reversed the inhibitory effect of TGP on the pyroptosis of H/R cardiomyocytes. Collectively, TGP alleviated the pyroptosis of H/R cardiomyocytes via the miR-181a-5p/ADCY1 axis.
Collapse
|
19
|
Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. Int J Mol Sci 2021; 22:ijms22116077. [PMID: 34199920 PMCID: PMC8200121 DOI: 10.3390/ijms22116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Recent progress in genomic research has highlighted the genome to be much more transcribed than expected. The formerly so-called junk DNA encodes a miscellaneous group of largely unknown RNA transcripts, which contain the long non-coding RNAs (lncRNAs) family. lncRNAs are instrumental in gene regulation. Moreover, understanding their biological roles in the physiopathology of many diseases, including renal, is a new challenge. lncRNAs regulate the effects of microRNAs (miRNA) on mRNA expression. Understanding the complex crosstalk between lncRNA–miRNA–mRNA is one of the main challenges of modern molecular biology. This review aims to summarize the role of lncRNA on kidney diseases, the molecular mechanisms involved, and their function as emerging prognostic biomarkers for both acute and chronic kidney diseases. Finally, we will also outline new therapeutic opportunities to diminish renal injury by targeting lncRNA with antisense oligonucleotides.
Collapse
|
20
|
Renal-Protective Effects and Potential Mechanisms of Traditional Chinese Medicine after Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5579327. [PMID: 33680054 PMCID: PMC7910071 DOI: 10.1155/2021/5579327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Renal ischemia-reperfusion (I/R) injury mainly causes acute kidney injury (AKI) after renal transplantation, trauma, sepsis, and hypovolemic shock. Patients with renal I/R injury are frequently associated with a poor prognosis. Traditional Chinese medicine (TCM) has been used for the prevention and treatment of various diseases in China and other Asian countries for centuries. Many studies have shown the protective effect of TCM on renal I/R injury, due to its diverse bioactive components. The potential mechanisms of TCMs on renal I/R injury include anti-inflammation, antioxidative effect, anti-cell death, downregulation of adhesion molecule expression, regulation of energy metabolism by restoring Na+-K+-ATPase activity, and mitochondrial fission. This review summarizes the major developments in the effects and underlying mechanisms of TCMs on the renal I/R injury.
Collapse
|