1
|
Kyo M, Zhu Z, Shibata R, Ooka T, Mansbach JM, Harmon B, Hahn A, Pérez-Losada M, Camargo CA, Hasegawa K. Nasal microRNA signatures for disease severity in infants with respiratory syncytial virus bronchiolitis: a multicentre prospective study. BMJ Open Respir Res 2024; 11:e002288. [PMID: 39089741 PMCID: PMC11293419 DOI: 10.1136/bmjresp-2023-002288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) bronchiolitis contributes to a large morbidity and mortality burden globally. While emerging evidence suggests that airway microRNA (miRNA) is involved in the pathobiology of RSV infection, its role in the disease severity remains unclear. METHODS In this multicentre prospective study of infants (aged<1 year) hospitalised for RSV bronchiolitis, we sequenced the upper airway miRNA and messenger RNA (mRNA) at hospitalisation. First, we identified differentially expressed miRNAs (DEmiRNAs) associated with higher bronchiolitis severity-defined by respiratory support (eg, positive pressure ventilation, high-flow oxygen therapy) use. We also examined the biological significance of miRNAs through pathway analysis. Second, we identified differentially expressed mRNAs (DEmRNAs) associated with bronchiolitis severity. Last, we constructed miRNA-mRNA coexpression networks and determined hub mRNAs by weighted gene coexpression network analysis (WGCNA). RESULTS In 493 infants hospitalised with RSV bronchiolitis, 19 DEmiRNAs were associated with bronchiolitis severity (eg, miR-27a-3p, miR-26b-5p; false discovery rate<0.10). The pathway analysis using miRNA data identified 1291 bronchiolitis severity-related pathways-for example, regulation of cell adhesion mediated by integrin. Second, 1298 DEmRNAs were associated with bronchiolitis severity. Last, of these, 190 DEmRNAs were identified as targets of DEmiRNAs and negatively correlated with DEmiRNAs. By applying WGCNA to DEmRNAs, four disease modules were significantly associated with bronchiolitis severity-for example, microtubule anchoring, cell-substrate junction. The hub genes for each of these modules were also identified-for example, PCM1 for the microtubule anchoring module, LIMS1 for the cell-substrate junction module. CONCLUSIONS In infants hospitalised for RSV bronchiolitis, airway miRNA-mRNA coexpression network contributes to the pathobiology of bronchiolitis severity.
Collapse
Affiliation(s)
- Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Science, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brennan Harmon
- Centre for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Andrea Hahn
- Centre for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Division of Infectious Diseases, Children’s National Hospital, Washington, District of Columbia, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, District of Columbia, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
王 洪, 谢 海, 徐 乌, 李 明. [Urolithin A alleviates respiratory syncytial virus-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1370-1381. [PMID: 39051083 PMCID: PMC11270657 DOI: 10.12122/j.issn.1673-4254.2024.07.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To observe the therapeutic effects of urolithin A (UA) on respiratory syncytial virus (RSV)-induced lung infection in neonatal mice and explore the underlying mechanisms. METHODS Babl/c mice (5-7 days old) were subjected to nasal instillation of RSV and received intraperitoneal injection of saline or 2.5, 5 and 10 mg/kg UA 2 h after the infection and then once daily for 2 weeks. Bronchoalveolar lavage fluid (BALF) was then collected for detection of inflammatory cells and mediators, and lung pathology was evaluated with HE staining. RSV-infected BEAS-2B cells were treated with 2.5, 5 or 10 µmol/ L UA. Inflammatory factors, cell viability, apoptosis and autophagy were analyzed using ELISA, CCK-8 assay, TUNEL staining, flow cytometry, Western blotting and immunofluorescence staining. The cellular expressions of miR-136 and Sirt1 mRNAs were detected using qRT-PCR. A dual-luciferase reporter system was used to verify the binding between miR-136 and Sirt1. RESULTS In neonatal Babl/c mice, RSV infection caused obvious lung pathologies, promoted pulmonary cell apoptosis and LC3-Ⅱ/Ⅰ, Beclin-1 and miR-136 expressions, and increased the total cell number, inflammatory cells and factors in the BALF and decreased p62 and Sirt1 expressions. All these changes were alleviated dose-dependently by UA. In BEAS-2B cells, RSV infection significantly increased cell apoptosis, LC3B-positive cells and miR-136 expression and reduced Sirt1 expression (P<0.01), which were dose-dependently attenuated by UA. Dual-luciferase reporter assay confirmed the binding between miR-136 and Sirt1. In RSV-infected BEAS-2B cells with UA treatment, overexpression of miR-136 and Ex527 treatment both significantly increased the inflammatory factors and cell apoptosis but decreased LC3B expression, and these changes were further enhanced by their combined treatment. CONCLUSION UA ameliorates RSV-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling pathway.
Collapse
|
3
|
Sun YL, Zhao PP, Zhu CB, Li XM, Yuan B. Qingfei Formula Protects against Human Respiratory Syn cytial Virus-induced Lung Inflammatory Injury by Regulating the M APK Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:969-983. [PMID: 37605417 PMCID: PMC11165710 DOI: 10.2174/1386207326666230821121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Qingfei formula (QF) is an empirical formula that shows good clinical efficacy in treating human respiratory syncytial virus pneumonia (RSVP). However, the underlying mechanism remains unclear. This study explores the possible pharmacological actions of QF in RSVP treatment. METHODS We used a network pharmacology approach to identify the active ingredients of QF, forecast possible therapeutic targets, and analyze biological processes and pathways. Molecular docking simulation was used to evaluate the binding capability of active ingredients and therapeutic targets. Finally, in vivo experiments confirmed the reliability of network pharmacology-based prediction of underlying mechanisms. RESULTS The study identified 92 potential therapeutic targets and corresponding 131 active ingredients. Enrichment analysis showed that QF downregulated the MAPK signaling pathway and suppressed the inflammatory injury to the lungs induced by the RSV virus. Molecular docking simulations demonstrated that the core active ingredients of QF could stably bind to genes associated with the MAPK signaling pathway. QF had a protective effect against pneumonia in RSV-infected mice. The QF group exhibited a significant reduction in the levels of inflammatory mediators, interleukin- 6 (IL-6), interleukin-8 (CXCL8, IL-8), and P-STAT3, compared to the RSV-induced group. The QF group showed remarkably inhibited MAPK1+3(P-ERK1+2) and MAPK8(P-JNK) protein expression. CONCLUSION The current study showed that QF downregulated the MAPK signaling pathway, which inhibited pulmonary inflammation triggered by RSV infection. This study recommends the appropriate use of QF in the clinical management of RSVP.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| |
Collapse
|
4
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Xie J, Li Y, Wang M, He W, Zhao X. Diagnostic and Prognostic Value of Dysregulated miR-10a-3p in Patients with Severe Pneumonia. J Inflamm Res 2022; 15:6097-6104. [PMID: 36386576 PMCID: PMC9645114 DOI: 10.2147/jir.s380818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/12/2022] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Previous studies have shown that microRNA is involved in regulating a variety of human inflammatory diseases. The purpose of this study was to investigate the expression of miR-10a-3p in the blood of patients with severe pneumonia and evaluate its value in the diagnosis and prognosis of severe pneumonia. PATIENTS AND METHODS Seventy patients with severe pneumonia and 75 healthy individuals were included in this study. Venous blood of all subjects was obtained for RT-qPCR analysis to obtain the relative expression level of miR-10a-5p. The diagnostic accuracy of miR-10a-5p for severe pneumonia was assessed by ROC curve. After standardized treatment, the prognosis of patients with severe pneumonia was analyzed by a 28-day follow-up method. Kaplan-Meier curve and multivariate Cox regression analysis were used to determine the basic factors influencing the prognosis of patients. RESULTS Compared with healthy control, serum miR-10a-3p expression in patients with severe pneumonia was distinctly upregulated (P < 0.001). Besides, ROC analysis showed that miR-10a-3p had high diagnostic accuracy for severe pneumonia, with an AUC of 0.881, sensitivity and specificity of 75.7% and 84.0%, respectively. Kaplan-Meier curve exhibited that high miR-10a-3p expression group had a higher probability of death than those with low miR-10a-3p expression. Multivariate Cox regression analysis demonstrated that miR-10a-3p and CRP were independent risk factors affecting the prognosis of patients. CONCLUSION The expression of miR-10a-3p was increased in patients with severe pneumonia, and abnormally expressed miR-10a-3p has the potential to be used as a diagnostic and prognostic marker for severe pneumonia, which provides a new biological direction for the early detection and risk assessment of severe pneumonia.
Collapse
Affiliation(s)
- Jianwan Xie
- Department of Geriatric Medicine, Xuzhou No.1 People’s Hospital, Xuzhou, 221002, People’s Republic of China
| | - Yanchu Li
- Department of Geriatric Medicine, Xuzhou No.1 People’s Hospital, Xuzhou, 221002, People’s Republic of China
| | - Man Wang
- Medical Oncology, Xuzhou No.1 People’s Hospital, Xuzhou, 221002, People’s Republic of China
| | - Wenping He
- Department of Pharmacy, Xuzhou No.1 People’s Hospital, Xuzhou, 221002, People’s Republic of China
| | - Xinxin Zhao
- Department of Geriatric Medicine, Xuzhou No.1 People’s Hospital, Xuzhou, 221002, People’s Republic of China
| |
Collapse
|
6
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
7
|
Zhu J, Zhong Z. The expression and clinical significance of miR-30b-3p and miR-125b-1-3p in patients with periodontitis. BMC Oral Health 2022; 22:325. [PMID: 35931990 PMCID: PMC9354350 DOI: 10.1186/s12903-022-02360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Periodontitis is a chronic inflammatory infectious disease caused by the deposition of dental plaque on the tooth surface, leading to adverse systemic consequences. Accumulating evidence shows that dysregulated microRNAs (miRNAs) are associated with the disease severity of periodontitis. Herein, we report two novel miRNAs, miR-30b-3p and miR-125b-1-3p, in the context of periodontitis and their relationships with disease severity of periodontitis. METHODS The miRNA profiles of gingival crevicular fluid (GCF) samples were used to screen differentially expressed miRNAs (DEmiRNAs) between periodontitis patients and periodontally healthy individuals. Clinical human GCF samples were collected from 80 patients diagnosed with periodontitis (PD +) for the first time and 100 periodontally healthy individuals (PD-). The severity of periodontitis was categorized into mild/moderate (MPD) and severe (SPD) groups. The expressions of miR-30b-3p and miR-125b-1-3p were determined by quantitative real-time PCR. The levels of IL-1β, IL-6, and TNF-α were determined by ELISA methods. RESULTS We applied GEO2R bioinformatics tool to analyze the raw data of the GSE89081 dataset and identified miR-30b-3p (|logFC|= 1.987) and miR-125b-1-3p (|logFC|= 1.878) between periodontitis patients and periodontally healthy individuals. It was found that PPD, CAL, BOP, and the relative expression levels of miR-30b-3p and miR-125b-1-3p were all higher in the PD + group than the PD- group, in the SPD group than the MPD group (P < 0.05). The periodontitis patients with high-miR-30b-3p expression exhibited increased PPD, CAL, and BOP compared to those low-miR-30b-3p expression, while high-miR-125b-1-3p expression group showed significant differences on PPD and BOP from low-miR-125b-1-3p expression group (P < 0.05). Pearson correlation analysis demonstrated a significantly positive correlation between the levels of inflammatory cytokines, miR-30b-3p expression, and miR-125b-1-3p expression (P < 0.001). Results of ROC curves showed AUC of 0.878 and 0.927, sensitivity of 0.843 and 0.855, and specificity of 0.791 and 0.801, respectively, when miR-30b-3p and miR-125b-1-3p expression levels were used to diagnose periodontitis. CONCLUSION These data unveiled that miR-30b-3p and miR-125b-1-3p expressions may be associated with the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Jinjuan Zhu
- Department of Stomatology, China Resources and WISCO General Hospital, No. 209, Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China.
| | - Zhihong Zhong
- Department of Stomatology, China Resources and WISCO General Hospital, No. 209, Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China
| |
Collapse
|
8
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
9
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Li W, Ding X, Zhao R, Xiong D, Xie Z, Xu J, Tan M, Li C, Yang C. The role of targeted regulation of COX11 by miR-10a-3p in the development and progression of paediatric mycoplasma pneumoniae pneumonia. J Thorac Dis 2021; 13:5409-5418. [PMID: 34659807 PMCID: PMC8482332 DOI: 10.21037/jtd-21-710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Background MiR-10a-3p is associated with the pathogenesis of many immune inflammatory diseases including Mycoplasma pneumoniae pneumonia (MPP), and cytochrome coxidase assembly homologue 11 (COX11) is one of its direct target proteins. This study investigates the function and mechanism of miR-10a-3p targeting with COX11 in the development and progression of paediatric MPP. Methods Ninty-seven paediatric MPP patients and 100 age- and sex-matched healthy children were enrolled. Clinical and laboratory indicators of paediatric MPP patients were collected. The mRNA levels of the COX11 gene and miR-10a-3p were detected by qRT-PCR. THP-1 mononuclear macrophages were stimulated using MPP lipid-associated membrane proteins (Mp-LAMPs). The relative expression level of miR-10a-3p was detected after 12, 24, and 48 h. THP-1 cells were transfected to overexpress or inhibit the expression of miR-10a-3p, miR-10a-3p, COX11 mRNA, NF-κB signalling pathway-related proteins, and C-reactive protein (CRP) were detected after 48 h by Western blot. Results The relative expression level of miR-10a-3p in the MPP group was 2.38±0.52, compared with 1.76±0.38 in control group (t=4.584, P<0.001) whileCOX11 in MPP group was 3.70±1.12, compared to 5.78±1.84 in control group (t=4.876, P<0.001). Pearson correlation analysis showed that miR-10a-3p and COX11 in MPP group presented a negative correlation (r=-0.679, P<0.001). By searching in the prediction website of TargetScan database, it was found that miR-10a-3p and Cox11 genes had targeted regulatory binding sites, and the targeting relationship between miR-10a-3p and Cox11 genes was confirmed by dual luciferase reporting assay in 293T cells. Among paediatric MPP patients, miR-10a-3p expression had a positive correlation with the white blood cells count, erythrocyte sedimentation rate (ESR), and CRP expression, while COX11 mRNA expression had a positive correlation with ESR and CRP. After LAMP stimulation, the miR-10a-3p expression level in THP-1 cells significantly increased (P<0.05). After THP-1 cells were transfected with the miR-10a-3p mimic or inhibitor, the relative expression level of miR-10a-3p significantly increased or decreased, respectively. COX11 expression in the mimic group significantly decreased, whereas COX11 in the inhibitor group significantly increased (both P<0.05). In addition, after transfection, IκBα expression significantly decreased and that of p-IKKα/β, p-p65, and CRP significantly increased in the mimic group, and the opposite was true in the inhibitor group. Conclusions In paediatric MPP, increased miR-10a-3p downregulated COX11, activating NF-κB signalling pathway to promote disease development and progression.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Paediatrics, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Xin Ding
- Department of Paediatrics, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Rui Zhao
- Department of Medical Records, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Donghui Xiong
- Department of Personnel, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Zhiping Xie
- Department of Epidemiology and Health Statistics Public Health School of Qiqihar Medical University, Qiqihar, China
| | - Jing Xu
- Department of Paediatrics, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Meiling Tan
- Department of Paediatrics, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| | - Chunyu Li
- Department of Paediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Chunfu Yang
- Department of Paediatrics, The First Affiliated Hospital of the Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
11
|
Huang H, Xu L, Ding Y, Qin J, Huang C, Li X, Tang Y, Qian G, Lv H. Bioinformatics identification of hub genes and signaling pathways regulated by intravenous immunoglobulin treatment in acute Kawasaki disease. Exp Ther Med 2021; 22:784. [PMID: 34055083 PMCID: PMC8145699 DOI: 10.3892/etm.2021.10216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
Kawasaki disease (KD) is an acute, self-limiting form of vasculitis commonly encountered in infants and young children. Intravenous immunoglobulin (IVIG) is the primary drug used for the treatment of KD, which may significantly reduce the occurrence of coronary artery lesions. However, the specific molecular profile changes of KD caused by IVIG treatment have remained elusive and require further research. The present study was designed to identify key genes, pathways and immune cells affected by IVIG treatment using multiple bioinformatics analysis methods. The results suggested that myeloid cells and neutrophils were affected by IVIG treatment. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that hematopoietic cell lineages and osteoclast differentiation may have an important role in the mechanism of action of IVIG treatment. Immune cell analysis indicated that the levels of monocytes, M1 macrophages, neutrophils and platelets were markedly changed in patients with KD after vs. prior to IVIG treatment. The key upregulated genes, including ZW10 interacting kinetochore protein, GINS complex subunit 1 and microRNA-30b-3p in whole blood cells of patients with KD following treatment with IVIG indicated that these IVIG-targeted molecules may have important roles in KD. In addition, these genes were further examined by literature review and indicated to be involved in cell proliferation, apoptosis and virus-related immune response in patients with KD. Therefore, the present results may provide novel insight into the mechanisms of action of IVIG treatment for KD.
Collapse
Affiliation(s)
- Hongbiao Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yueyue Ding
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jie Qin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Chengcheng Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Xuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yunjia Tang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
12
|
Zhou G, Duan Y, Lu C, Wang W. Knockdown of circ-UQCRC2 ameliorated lipopolysaccharide-induced injury in MRC-5 cells by the miR-326/PDCD4/NF-κB pathway. Int Immunopharmacol 2021; 97:107633. [PMID: 33895481 DOI: 10.1016/j.intimp.2021.107633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown as important modulators in the pathogenesis of pediatric pneumonia. In this paper, we focused on the molecular basis of circRNA ubiquinol-cytochrome c reductase core protein 2 (circ-UQCRC2, circ_0038467) in lipopolysaccharide (LPS)-induced cell injury. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to gauge the levels of circ-UQCRC2, microRNA (miR)-326 and programmed cell death 4 (PDCD4) mRNA. PDCD4 protein expression and the activation of the NF-κB signaling pathway were evaluated by western blot. Ribonuclease R (RNase R) assay was performed to assess the stability of circ-UQCRC2. Cell viability and apoptosis were detected by the Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 were measured by the enzyme-linked immunosorbent assay (ELISA). Targeted relationship between miR-326 and circ-UQCRC2 or PDCD4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Our data showed the up-regulation of circ-UQCRC2 level in pneumonia serum and LPS-treated MRC-5 cells. The silencing of circ-UQCRC2 attenuated LPS-induced MRC-5 cell injury. Mechanistically, circ-UQCRC2 directly targeted miR-326, and circ-UQCRC2 regulated PDCD4 expression through miR-326. MiR-326 was a downstream effector of circ-UQCRC2 function, and PDCD4 was a functional target of miR-326 in regulating LPS-induced MRC-5 cell injury. Additionally, circ-UQCRC2 knockdown inactivated the NF-κB signaling pathway by regulating the miR-326/PDCD4 axis. CONCLUSION Our findings demonstrated a novel regulatory network, the miR-326/PDCD4/NF-κB pathway, for the function of circ-UQCRC2 in LPS-induced cell injury in MRC-5 cells.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Pediatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yunyan Duan
- Department of Pediatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Chi Lu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenguang Wang
- Department of Pediatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Whole-Transcriptome RNA Sequencing Reveals Significant Differentially Expressed mRNAs, miRNAs, and lncRNAs and Related Regulating Biological Pathways in the Peripheral Blood of COVID-19 Patients. Mediators Inflamm 2021; 2021:6635925. [PMID: 33833618 PMCID: PMC8018221 DOI: 10.1155/2021/6635925] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in China and currently worldwide dispersed, resulting in the coronavirus disease 2019 (COVID-19) pandemic. Notably, COVID-19 is characterized by systemic inflammation. However, the potential mechanisms of the “cytokine storm” of COVID-19 are still limited. In this study, fourteen peripheral blood samples from COVID-19 patients (n = 10) and healthy donors (n = 4) were collected to perform the whole-transcriptome sequencing. Lung tissues of COVID-19 patients (70%) presenting with ground-glass opacity. Also, the leukocytes and lymphocytes were significantly decreased in COVID-19 compared with the control group (p < 0.05). In total, 25,482 differentially expressed messenger RNAs (DE mRNA), 23 differentially expressed microRNAs (DE miRNA), and 410 differentially expressed long noncoding RNAs (DE lncRNAs) were identified in the COVID-19 samples compared to the healthy controls. Gene Ontology (GO) analysis showed that the upregulated DE mRNAs were mainly involved in antigen processing and presentation of endogenous antigen, positive regulation of T cell mediated cytotoxicity, and positive regulation of gamma-delta T cell activation. The downregulated DE mRNAs were mainly concentrated in the glycogen biosynthetic process. We also established the protein-protein interaction (PPI) networks of up/downregulated DE mRNAs and identified 4 modules. Functional enrichment analyses indicated that these module targets were associated with positive regulation of cytokine production, cytokine-mediated signaling pathway, leukocyte differentiation, and migration. A total of 6 hub genes were selected in the PPI module networks including AKT1, TNFRSF1B, FCGR2A, CXCL8, STAT3, and TLR2. Moreover, a competing endogenous RNA network showed the interactions between lncRNAs, mRNAs, and miRNAs. Our results highlight the potential pathogenesis of excessive cytokine production such as MSTRG.119845.30/hsa-miR-20a-5p/TNFRSF1B, MSTRG.119845.30/hsa-miR-29b-2-5p/FCGR2A, and MSTRG.106112.2/hsa-miR-6501-5p/STAT3 axis, which may also play an important role in the development of ground-glass opacity in COVID-19 patients. This study gives new insights into inflammation regulatory mechanisms of coding and noncoding RNAs in COVID-19, which may provide novel diagnostic biomarkers and therapeutic avenues for COVID-19 patients.
Collapse
|
14
|
Martinez-Espinoza I, Banos-Lara MDR, Guerrero-Plata A. The Importance of miRNA Identification During Respiratory Viral Infections. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:207-214. [PMID: 34541575 PMCID: PMC8445226 DOI: 10.33696/immunology.3.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of small non-coding RNA MicroRNAs (miRNAs) during respiratory viral infections is of critical importance as they are implicated in the viral replication, immune responses and severity of disease pathogenesis. Respiratory viral infections have an extensive impact on human health across the globe. For that is essential to understand the factors that regulate the host response against infections. The differential miRNA pattern induced by respiratory viruses has been reported, including include influenza A virus (IAV), human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), adenovirus (AdV), and more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In this commentary, we highlight the importance of miRNAs identification and the contribution of these molecules in the modulation of the immune response through the upregulation and downregulation of miRNAs expression in different immune and non-immune cells.
Collapse
Affiliation(s)
- Ivan Martinez-Espinoza
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|