1
|
Li Y, Su Q, Tao Z, Cai X, Zhao Y, Zhou Z, Huang Y, Xiang Q. Human Periodontal Ligament Stem Cells (hPDLSCs) Spontaneously Differentiate into Myofibroblasts to Repair Diabetic Wounds. Bioengineering (Basel) 2024; 11:602. [PMID: 38927838 PMCID: PMC11200790 DOI: 10.3390/bioengineering11060602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic and refractory skin ulcers, their delivery methods are still under investigation. Human periodontal ligament stem cells (hPDLSCs) can spontaneously differentiate into myofibroblasts in specific cultures; therefore, they have the potential to effectively treat diabetic wounds and may also have applications in the field of medical cosmetics. The myofibroblastic differentiation ability of hPDLSCs in the presence of AGEs was evaluated by the expression of α-SMA and COL1A1 using RT-qPCR and WB technology. Wound healing in diabetic mice, induced by streptozotocin (STZ) and assessed using H&E staining, Masson staining, and immunohistochemical (IHC) and immunofluorescence (IF) staining, was used to validate the effects of hPDLSCs. In the wound tissues, the expression of α-SMA, COL1A1, CD31, CD206, iNOS, and vimentin was detected. The findings indicated that in H-DMEM, the expression of COL1A1 exhibited a significant decrease, while α-SMA demonstrated an increase in P7 cells, ignoring the damage from AGEs (p < 0.05). In an STZ-induced diabetic C57BL/6J mice whole-skin defect model, the healing rate of the hPDLSCs treatment group was significantly higher than that in the models (on the 7th day, the rate was 65.247% vs. 48.938%, p < 0.05). hPDLSCs have been shown to spontaneously differentiate into myofibroblasts in H-DMEM and resist damage from AGEs in both in vivo and in vitro models, suggesting their potential in the field of cosmetic dermatology.
Collapse
Affiliation(s)
- Yuxiao Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Z.)
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Z.)
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhaoyu Tao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Z.)
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiang Cai
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
| | - Yueping Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Z.)
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhiying Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Z.)
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (Q.S.); (Z.T.); (X.C.); (Y.H.)
| |
Collapse
|
2
|
Ponnaiyan D, Rughwani RR, Victor DJ, Shetty G. Stem Cells in the Periodontium-Anatomically Related Yet Physiologically Diverse. Eur J Dent 2024; 18:1-13. [PMID: 36588293 PMCID: PMC10959637 DOI: 10.1055/s-0042-1759487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a complex chronic disease discernible by the deterioration of periodontal tissue. The goal of periodontal therapy is to achieve complete tissue regeneration, and one of the most promising treatment options is to harness the regenerative potential of stem cells available within the periodontal complex. Periodontal ligament stem cells, gingival mesenchymal stem cells, oral periosteal stem cells, and dental follicle stem cells have structural similarities, but their immunological responses and features differ. The qualities of diverse periodontal stem cells, their immune-modulatory effects, and variances in their phenotypes and characteristics will be discussed in this review. Although there is evidence on each stem cell population in the periodontium, understanding the differences in markers expressed, the various research conducted so far on their regenerative potential, will help in understanding which stem cell population will be a better candidate for tissue engineering. The possibility of selecting the most amenable stem cell population for optimal periodontal regeneration and the development and current application of superior tissue engineering treatment options such as autologous transplantation, three-dimensional bioengineered scaffolds, dental stem cell-derived extracellular vesicles will be explored.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Roshan R. Rughwani
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Ganesh Shetty
- Dental and Orthodontic Clinic, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Thamnium S, Laomeephol C, Pavasant P, Osathanon T, Tabata Y, Wang C, Luckanagul JA. Osteogenic induction of asiatic acid derivatives in human periodontal ligament stem cells. Sci Rep 2023; 13:14102. [PMID: 37644086 PMCID: PMC10465493 DOI: 10.1038/s41598-023-41388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Asiatic acid (AA) and asiaticoside, pentacyclic triterpenoid compounds derived from Centella asiatica, are known for their biological effects in promoting type I collagen synthesis and inducing osteogenesis of stem cells. However, their applications in regenerative medicine are limited due to their low potency and poor aqueous solubility. This work aimed to evaluate the osteogenic induction activity of AA derivatives in human periodontal ligament stem cells (hPDLSCs) in vitro. Four compounds were synthesised, namely 501, 502, 503, and 506. AA was used as the control. The 502 exhibited low water solubility, while the 506 compound showed the highest. The cytotoxicity analysis demonstrated that 503 caused significant deterioration in cell viability, while other derivatives showed no harmful effect on hPDLSCs. The dimethyl aminopropyl amine derivative of AA, compound 506, demonstrated a relatively high potency in inducing osteogenic differentiation. An elevated mRNA expression of osteogenic-related genes, BMP2, WNT3A, ALP, OSX and IBSP was observed with 506. Additionally, the expression of BMP-2 protein was enhanced with increasing dose of 506, and the effect was pronounced when the Erk signalling molecule was inhibited. The 506 derivative was proposed for the promotion of osteogenic differentiation in hPDLSCs by upregulating BMP2 via the Erk signalling pathway. The 506 molecule showed promise in bone tissue regeneration.
Collapse
Affiliation(s)
- Sirikool Thamnium
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 6100641, Sichuan, People's Republic of China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, People's Republic of China
| | - Jittima A Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
6
|
Amato M, Santonocito S, Viglianisi G, Tatullo M, Isola G. Impact of Oral Mesenchymal Stem Cells Applications as a Promising Therapeutic Target in the Therapy of Periodontal Disease. Int J Mol Sci 2022; 23:ijms232113419. [PMID: 36362206 PMCID: PMC9658889 DOI: 10.3390/ijms232113419] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontal disease is a chronic inflammatory condition affecting about 20–50% of people, worldwide, and manifesting clinically through the detection of gingival inflammation, clinical attachment loss, radiographically assessed resorption of alveolar bone, gingival bleeding upon probing, teeth mobility and their potential loss at advanced stages. It is characterized by a multifactorial etiology, including an imbalance of the oral microbiota, mechanical stress and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include eliminating the microbial pathogens and applying biomaterials to treat the bone defects. However, periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing the relevant literature that assesses the periodontal-regenerative potential of stem cells.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
- Correspondence: (S.S.); (G.I.); Tel.: +39-0953782638 (S.S. & G.I.)
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
- Correspondence: (S.S.); (G.I.); Tel.: +39-0953782638 (S.S. & G.I.)
| |
Collapse
|
7
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. Int J Nanomedicine 2022; 17:5165-5186. [PMID: 36388874 PMCID: PMC9642321 DOI: 10.2147/ijn.s384481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The functional reconstruction of periodontal tissue defects remains a clinical challenge due to excessive and prolonged host response to various endogenous and exogenous pro-inflammatory stimuli. Thus, a biomimetic nanoplatform with the capability of modulating inflammatory response in a microenvironment-responsive manner is attractive for regenerative therapy of periodontal tissue. Methods Herein, a facile and green design of engineered bone graft materials was developed by integrating a biomimetic apatite nanocomposite with a smart-release coating, which could realize inflammatory modulation by “on-demand” delivery of the anti-inflammatory agent through a pH-sensing mechanism. Results In vitro and in vivo experiments demonstrated that this biocompatible nanoplatform could facilitate the clearance of reactive oxygen species in human periodontal ligament stem cells under inflammatory conditions via inhibiting the production of endogenous proinflammatory mediators, in turn contributing to the enhanced healing efficacy of periodontal tissue. Moreover, this system exhibited effective antimicrobial activity against common pathogenic bacteria in the oral cavity, which is beneficial for the elimination of exogenous pro-inflammatory factors from bacterial infection during healing of periodontal tissue. Conclusion The proposed strategy provides a versatile apatite nanocomposite as a promising “inflammation scavenger” and propels the development of intelligent bone graft materials for periodontal and orthopedic applications.
Collapse
Affiliation(s)
- Poyu Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, SiChuan, 635000, People’s Republic of China
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Zhangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Correspondence: Xiang Gao; Jinlin Song, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China, Tel/Fax +86 23 88860105; Tel/Fax +86 23 88860026, Email ;
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
9
|
Li H, Yuan Y, Chen H, Dai H, Li J. Indoleamine 2,3-dioxygenase mediates the therapeutic effects of adipose-derived stromal/stem cells in experimental periodontitis by modulating macrophages through the kynurenine-AhR-NRF2 pathway. Mol Metab 2022; 66:101617. [PMID: 36270612 PMCID: PMC9627099 DOI: 10.1016/j.molmet.2022.101617] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Mesenchymal stromal/stem cell (MSC)-based therapy has become a promising approach to periodontal tissue repair. Adipose-derived stromal/stem cells (ASCs), compared with other dental or non-dental MSCs, serve as promising candidates for MSC therapy due to non-invasive acquisition and abundant sources. This study aimed to explore the effects of ASC therapy in experimental periodontitis and the underlying mechanism. METHODS Micro-CT was performed to evaluate the alveolar bone parameters following local injection of ASCs. Immunohistochemistry and immunofluorescence were employed to detect the expression of IL-1β, osteocalcin (OCN), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and surface markers of macrophage polarization. Afterward, multiple reaction monitoring (MRM)-based targeted tryptophan metabolomic analysis was used to examine the ASC metabolites. Chromatin immunoprecipitation (ChIP)-qPCR assay was performed to investigate the direct binding of aryl hydrocarbon receptor (AhR) and NRF2. RESULTS Alveolar bone loss was reduced, and the ratio of iNOS+/CD206+ macrophages was significantly decreased after ASC injection in the rat models of periodontitis. ASCs promoted NRF2 expression and activation in macrophages, while NRF2 silencing in macrophages blocked the regulation of ASCs on macrophages. Furthermore, the expression of indoleamine 2,3-dioxygenase (IDO) of ASCs in the inflammatory condition was high. The inhibitor of IDO, 1-methyltryptophan (1-MT), impaired the therapeutic effects of ASCs in experimental periodontitis and regulation of macrophage polarization. Mechanistically, kynurenine (Kyn), a metabolite of ASCs catalyzed by IDO, activated AhR and enhanced its binding to the promoter of NRF2, which stimulated M2 macrophage polarization. CONCLUSIONS These findings suggested that ASCs can alleviate ligature-induced periodontitis through modulating macrophage polarization by the IDO-dependent Kyn-AhR-NRF2 pathway, uncovering a novel mechanism and providing a scientific basis for ASC-based therapy in experimental periodontitis.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Yu Yuan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Hongying Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China,Corresponding author. College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, PR China. Fax: +86 23 8886 0222.
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China,Corresponding author. College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, PR China. Fax: +86 23 8886 0222.
| |
Collapse
|
10
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
11
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|
12
|
Yu XY, Zhang ZQ, Huang JC, Lin JY, Cai XP, Liu CF. IL-7-Treated Periodontal Ligament Cells Regulate Local Immune Homeostasis by Modulating Treg/Th17 Cell Polarization. Front Med (Lausanne) 2022; 9:754341. [PMID: 35280902 PMCID: PMC8905254 DOI: 10.3389/fmed.2022.754341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Both interleukin (IL)-7 and human periodontal ligament cells (hPDLCs) have immunomodulatory properties. However, their combined effect on CD4+T cells has never been studied. In this study, we aimed to investigate the effect of conditioned medium of hPDLCs treated with rhIL-7 on the differentiation of CD4+T cells into regulatory T cells/T helper 17 cells (Treg/Th17 cells) and observe the effect of IL-7 on the immunomodulatory properties of PDLCs. After hPDLCs were treated with different concentrations of rhIL-7 for 24 h, the collected supernatants were used to incubate CD4+T cells for 3 days. A gamma-secretase inhibitor (DAPT) was used to suppress the activation of the Notch1 signaling pathway. Cell proliferation, apoptosis, and necrosis were determined using the cell counting kit-8 (CCK-8) and flow cytometry (FCM). The expressions of forkhead box P3 (Foxp3) in CD4+T cells and transforming growth factor (TGF-β) and IL-6 in the supernatants were determined by ELISA. Reverse transcription-quantitative PCR (RT-qPCR), and the Western blot (WB) determined the mRNA levels and protein expression of various target factors. FCM was used to detect the mean fluorescence intensity of PD-L1 in hPDLCs and to analyze the differentiation of Treg/Th17 cells. Our results showed that IL-7 promoted proliferation and inhibited apoptosis in hPDLCs, promoted the expression of TGF-β, PD-L1, Notch1, Jagged1, and Hes1, and inhibited the levels of hypoxia-inducible factor (HIF)-1α and TCF7, whereas the addition of DAPT effectively reversed these effects. Importantly, we found that the conditioned medium of hPDLCs treated with rhIL-7 promoted the polarization of CD4+T cells into Treg cells but had no significant effect on the differentiation of Th17 cells. Our study indicated that treatment of PDLCs with IL-7 can promote the polarization of CD4+T cells into Treg cells by modulating the expression of inflammatory factors and signaling molecules through activating the Notch1 signaling pathway, thus participating in the regulation of immune homeostasis in the periodontal microenvironment.
Collapse
Affiliation(s)
- Xin-Yi Yu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Qiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Chang Huang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Pei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Feng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zarubova J, Hasani‐Sadrabadi MM, Dashtimoghadam E, Zhang X, Ansari S, Li S, Moshaverinia A. Engineered Delivery of Dental Stem-Cell-Derived Extracellular Vesicles for Periodontal Tissue Regeneration. Adv Healthc Mater 2022; 11:e2102593. [PMID: 35191610 DOI: 10.1002/adhm.202102593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 11/05/2022]
Abstract
Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering University of California 420 Westwood Plaza, 5121 Engineering V Los Angeles CA 90095‐1600 USA
- Department of Biomaterials and Tissue Engineering Institute of Physiology of the Czech Academy of Sciences Prague 14220 Czech Republic
| | | | - Erfan Dashtimoghadam
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599‐3290 USA
| | - Xuexiang Zhang
- Department of Bioengineering University of California 420 Westwood Plaza, 5121 Engineering V Los Angeles CA 90095‐1600 USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology Division of Advanced Prosthodontics School of Dentistry University of California Los Angeles CA 90095 USA
| | - Song Li
- Department of Bioengineering University of California 420 Westwood Plaza, 5121 Engineering V Los Angeles CA 90095‐1600 USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology Division of Advanced Prosthodontics School of Dentistry University of California Los Angeles CA 90095 USA
| |
Collapse
|
14
|
Paganelli A, Trubiani O, Diomede F, Pisciotta A, Paganelli R. Immunomodulating Profile of Dental Mesenchymal Stromal Cells: A Comprehensive Overview. FRONTIERS IN ORAL HEALTH 2022; 2:635055. [PMID: 35047993 PMCID: PMC8757776 DOI: 10.3389/froh.2021.635055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity. in vitro studies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action is via the production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Alessandra Pisciotta
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Paganelli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy.,YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| |
Collapse
|
15
|
Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A Comprehensive Review). Biomedicines 2022; 10:biomedicines10010118. [PMID: 35052797 PMCID: PMC8773777 DOI: 10.3390/biomedicines10010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.
Collapse
|
16
|
Farias ZBBMD, Silva LPD, De Arruda JAA, Cavalcante JDS, Almeida HCRD, Oliveira MCVD, Souza LBD, Sobral APV. ALDH1 expression and potential clinical implications in chronic inflammatory periapical lesions. Braz Oral Res 2022; 36:e019. [DOI: 10.1590/1807-3107bor-2022.vol36.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
|
17
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
19
|
Shang L, Shao J, Ge S. Immunomodulatory functions of oral mesenchymal stem cells: Novel force for tissue regeneration and disease therapy. J Leukoc Biol 2021; 110:539-552. [PMID: 34184321 DOI: 10.1002/jlb.3mr0321-766r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-based therapeutic strategies have achieved remarkable efficacies. Oral tissue-derived MSCs, with powerful self-renewal and multilineage differentiation abilities, possess the features of abundant sources and easy accessibility and hold great potential in tissue regeneration and disease therapies. Oral MSCs mainly consist of periodontal ligament stem cells, gingival mesenchymal stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and alveolar bone-derived mesenchymal stem. Early immunoinflammatory response stage is the prerequisite phase of healing process. Besides the potent capacities of differentiation and regeneration, oral MSCs are capable of interacting with various immune cells and function as immunomodulatory regulators. Consequently, the immunomodulatory effects of oral MSCs during damage repair seem to be crucial for exploring novel immunomodulatory strategies to achieve disease recovery and tissue regeneration. Herein, we reviewed various oral MSCs with their immunomodulatory properties and the potential mechanism, as well as their effects on immunomodulation-mediated disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
20
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Harrell CR, Volarevic V. Mesenchymal Stem Cell-Derived Secretome: A New Remedy for the Treatment of Autoimmune and Inflammatory Diseases. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|