1
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Bruno G, Pietrafesa M, Crispo F, Piscazzi A, Maddalena F, Giordano G, Conteduca V, Garofoli M, Porras A, Esposito F, Landriscina M. TRAP1 modulates mitochondrial biogenesis via PGC-1α/TFAM signalling pathway in colorectal cancer cells. J Mol Med (Berl) 2024; 102:1285-1296. [PMID: 39210159 PMCID: PMC11416412 DOI: 10.1007/s00109-024-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Metabolic rewiring promotes cancer cell adaptation to a hostile microenvironment, representing a hallmark of cancer. This process involves mitochondrial function and is mechanistically linked to the balance between mitochondrial biogenesis (MB) and mitophagy. The molecular chaperone TRAP1 is overexpressed in 60-70% of human colorectal cancers (CRC) and its over-expression correlates with poor clinical outcome, being associated with many cancer cell functions (i.e. adaptation to stress, protection from apoptosis and drug resistance, protein synthesis quality control, metabolic rewiring from glycolysis to mitochondrial respiration and vice versa). Here, the potential new role of TRAP1 in regulating mitochondrial dynamics was investigated in CRC cell lines and human CRCs. Our results revealed an inverse correlation between TRAP1 and mitochondrial-encoded respiratory chain proteins both at transcriptional and translational levels. Furthermore, TRAP1 silencing is associated with increased mitochondrial mass and mitochondrial DNA copy number (mtDNA-CN) as well as enhanced MB through PGC-1α/TFAM signalling pathway, promoting the formation of new functioning mitochondria and, likely, underlying the metabolic shift towards oxidative phosphorylation. These results suggest an involvement of TRAP1 in regulating MB process in human CRC cells. KEY MESSAGES: TRAP1 inversely correlates with protein-coding mitochondrial gene expression in CRC cells and tumours. TRAP1 silencing correlates with increased mitochondrial mass and mtDNA copy number in CRC cells. TRAP1 silencing favours mitochondrial biogenesis in CRC cells.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Annamaria Piscazzi
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Vincenza Conteduca
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Marianna Garofoli
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Matteo Landriscina
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
3
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Yang JX, Chuang YC, Tseng JC, Liu YL, Lai CY, Lee AYL, Huang CYF, Hong YR, Chuang TH. Tumor promoting effect of PDLIM2 downregulation involves mitochondrial ROS, oncometabolite accumulations and HIF-1α activation. J Exp Clin Cancer Res 2024; 43:169. [PMID: 38880883 PMCID: PMC11181580 DOI: 10.1186/s13046-024-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
5
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Xiang K, Ren M, Liu F, Li Y, He P, Gong X, Chen T, Wu T, Huang Z, She H, Liu K, Jing Z, Yang S. Tobacco toxins trigger bone marrow mesenchymal stem cells aging by inhibiting mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116392. [PMID: 38677065 DOI: 10.1016/j.ecoenv.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Smoking disrupts bone homeostasis and serves as an independent risk factor for the development and progression of osteoporosis. Tobacco toxins inhibit the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), promote BMSCs aging and exhaustion, but the specific mechanisms are not yet fully understood. Herein, we successfully established a smoking-related osteoporosis (SROP) model in rats and mice through intraperitoneal injection of cigarette smoke extract (CSE), which significantly reduced bone density and induced aging and inhibited osteogenic differentiation of BMSCs both in vivo and in vitro. Bioinformatics analysis and in vitro experiments confirmed that CSE disrupts mitochondrial homeostasis through oxidative stress and inhibition of mitophagy. Furthermore, we discovered that CSE induced BMSCs aging by upregulating phosphorylated AKT, which in turn inhibited the expression of FOXO3a and the Pink1/Parkin pathway, leading to the suppression of mitophagy and the accumulation of damaged mitochondria. MitoQ, a mitochondrial-targeted antioxidant and mitophagy agonist, was effective in reducing CSE-induced mitochondrial oxidative stress, promoting mitophagy, significantly downregulating the expression of aging markers in BMSCs, restoring osteogenic differentiation, and alleviating bone loss and autophagy levels in CSE-exposed mice. In summary, our results suggest that BMSCs aging caused by the inhibition of mitophagy through the AKT/FOXO3a/Pink1/Parkin axis is a key mechanism in smoking-related osteoporosis.
Collapse
Affiliation(s)
- Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Mingxing Ren
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Fengyi Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Tianli Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Ziyu Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Hui She
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Kehao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
7
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
8
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Yousefi M, Karimi A, Goudarzi A. The Association of Ketolytic Enzymes Gene Expression Levels
with Mitochondrial Activity and Content in Oral Squamous
Cell Carcinoma. Asian Pac J Cancer Prev 2022; 23:3953-3958. [PMID: 36444610 PMCID: PMC9930959 DOI: 10.31557/apjcp.2022.23.11.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Recent studies have pointed to the anti-tumour effects of a ketogenic diet (KD) in cancer. It is
believed that patients with low ketolytic Enzymes gene expression levels are more sensitive and may respond better
to the KD therapy. However, the ketolytic Enzymes gene expression levels and their association with mitochondrial
activity and content in oral squamous cell carcinoma (OSCC) is not yet obvious. Therefore, the aim of this study
was to explore the potential use of ketolytic enzymes as biomarkers for mitochondrial activity and content.
Materials and Methods: Here we aimed to compare the mRNA expression levels of ketolytic enzymes (ACAT1, BDH1,
BDH2 and OXCT1) between tumour and adjacent pre-tumor tissues of 16 OSCC patients. Additionally, we examined
the association of the mitochondrial ketolytic enzymes, including ACAT1, OXCT1, and BDH1 gene expression with
mitochondrial activity and content. Results: Our findings did not show any significant difference in ketolytic gene
expression levels between tumour and pre-tumor tissues of OSCC patients. ACAT1 and BDH1 mRNA expression
levels were significantly correlated with the mRNA level of ND2 in tumour of OSCC patients. The mRNA levels of
ACAT1, BDH1 and BDH2 were not correlated with the mRNA expression of 16srRNA. Conclusion: Our data suggest
that mRNA gene expression levels of BDH1 and ACAT1 correlate with the mitochondrial activity in tumour of OSCC
patients. BDH2 mRNA level significantly anti-correlate with tumour grade. We offer clues on the potential of ACAT1
as a biomarker of mitochondrial activity, but future studies are needed to establish this concept.
Collapse
Affiliation(s)
- Mahdisa Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Karimi
- Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,For Correspondence:
| |
Collapse
|
10
|
Zakirova NF, Kondrashova AS, Golikov MV, Ivanova ON, Ivanov AV, Isaguliants MG, Bayurova EO. Expression of HIV-1 Reverse Transcriptase in Murine Cancer Cells Increases Mitochondrial Respiration. Mol Biol 2022. [DOI: 10.1134/s0026893322050168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Kim CW, Lee HJ, Ahn D, Go RE, Choi KC. Establishment of a platform for measuring mitochondrial oxygen consumption rate for cardiac mitochondrial toxicity. Toxicol Res 2022; 38:511-522. [PMID: 36277363 PMCID: PMC9532483 DOI: 10.1007/s43188-022-00136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
The heart has an abundance of mitochondria since cardiac muscles require copious amounts of energy for providing continuous blood through the circulatory system, thereby implying that myocardial function is largely reliant on mitochondrial energy. Thus, cardiomyocytes are susceptible to mitochondrial dysfunction and are likely targets of mitochondrial toxic drugs. Various methods have been developed to evaluate mitochondrial toxicity by evaluating toxicological mechanisms, but an optimized and standardized assay for cardiomyocytes remains unmet. We have therefore attempted to standardize the evaluation system for determining cardiac mitochondrial toxicity, using AC16 human and H9C2 rat cardiomyocytes. Three clinically administered drugs (acetaminophen, amiodarone, and valproic acid) and two anticancer drugs (doxorubicin and tamoxifen) which are reported to have mitochondrial effects, were applied in this study. The oxygen consumption rate (OCR), which directly reflects mitochondrial function, and changes in mRNA levels of mitochondrial respiratory complex I to complex V, were analyzed. Our results reveal that exposure to all five drugs results in a concentration-dependent decrease in the basal and maximal levels of OCR in AC16 cells and H9C2 cells. In particular, marked reduction in the OCR was observed after treatment with doxorubicin. The reduction in OCR after exposure to mitochondrial toxic drugs was found to be associated with reduced mRNA expression in the mitochondrial respiratory complexes, suggesting that the cardiac mitochondrial toxicity of drugs is majorly due to dysfunction of mitochondrial respiration. Based on the results of this study, we established and standardized a protocol to measure OCR in cardiomyocytes. We expect that this standardized evaluation system for mitochondrial toxicity can be applied as basic data for establishing a screening platform to evaluate cardiac mitochondrial toxicity of drugs, during the developmental stage of new drug discovery.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Hee-Jin Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
12
|
Inhibition of human peptide deformylase by actinonin sensitizes glioblastoma cells to temozolomide chemotherapy. Exp Cell Res 2022; 420:113358. [PMID: 36116558 DOI: 10.1016/j.yexcr.2022.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is a common intracranial primary tumor of the central nervous system with high malignancy, poor prognosis, and short survival. Studies have shown that mitochondrial energy metabolism plays an important role in GBM chemotherapy resistance, suggesting that interrupting mitochondrial oxidative phosphorylation (OXPHOS) may improve GBM treatment. Human peptide deformylase (HsPDF) is a mitochondrial deformylase that removes the formylated methionine from the N-terminus of proteins encoded by mitochondrial DNA (mtDNA), thereby contributing to correct protein folding and participating in the assembly of the electron respiratory chain complex. In this study, we found that the expression of mtDNA-encoded proteins was significantly downregulated after treatment of GBM cells U87MG and LN229 with the HsPDF inhibitor, actinonin. In combination with temozolomide, a preferred chemotherapeutic medicine for GBM, the OXPHOS level decreased, mitochondrial protein homeostasis was unbalanced, mitochondrial fission increased, and the integrated stress response was activated to promote mitochondrial apoptosis. These findings suggest that HsPDF inhibition is an important strategy for overcoming chemoresistance of GBM cells.
Collapse
|
13
|
Zheng P, Zhou C, Lu L, Liu B, Ding Y. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 2022; 41:271. [PMID: 36089608 PMCID: PMC9465867 DOI: 10.1186/s13046-022-02485-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023] Open
Abstract
Elesclomol is an anticancer drug that targets mitochondrial metabolism. In the past, elesclomol was recognized as an inducer of oxidative stress, but now it has also been found to suppress cancer by inducing cuproptosis. Elesclomol’s anticancer activity is determined by the dependence of cancer on mitochondrial metabolism. The mitochondrial metabolism of cancer stem cells, cancer cells resistant to platinum drugs, proteasome inhibitors, molecularly targeted drugs, and cancer cells with inhibited glycolysis was significantly enhanced. Elesclomol exhibited tremendous toxicity to all three kinds of cells. Elesclomol's toxicity to cells is highly dependent on its transport of extracellular copper ions, a process involved in cuproptosis. The discovery of cuproptosis has perfected the specific cancer suppressor mechanism of elesclomol. For some time, elesclomol failed to yield favorable results in oncology clinical trials, but its safety in clinical application was confirmed. Research progress on the relationship between elesclomol, mitochondrial metabolism and cuproptosis provides a possibility to explore the reapplication of elesclomol in the clinic. New clinical trials should selectively target cancer types with high mitochondrial metabolism and attempt to combine elesclomol with platinum, proteasome inhibitors, molecularly targeted drugs, or glycolysis inhibitors. Herein, the particular anticancer mechanism of elesclomol and its relationship with mitochondrial metabolism and cuproptosis will be presented, which may shed light on the better application of elesclomol in clinical tumor treatment.
Collapse
|
14
|
Zhang YY, Hu ZL, Qi YH, Li HY, Chang X, Gao XX, Liu CH, Li YY, Lou JH, Zhai Y, Li CQ. Pretreatment of nucleus pulposus mesenchymal stem cells with appropriate concentration of H 2O 2 enhances their ability to treat intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:340. [PMID: 35883157 PMCID: PMC9327256 DOI: 10.1186/s13287-022-03031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Nucleus pulposus mesenchymal stem cells (NPMSCs) transplantation is a promising treatment for intervertebral disc degeneration (IVDD). However, the transplanted NPMSCs exhibited weak cell proliferation, high cell apoptosis, and a low ability to resist the harsh microenvironment of the degenerated intervertebral disc. There is an urgent need to explore feasible methods to enhance the therapeutic efficacy of NPMSCs transplantation. Objective To identify the optimal concentration for NPMSCs pretreatment with hydrogen peroxide (H2O2) and explore the therapeutic efficacy of NPMSCs transplantation using H2O2 pretreatment in IVDD. Methods Rat NPMSCs were pretreated with different concentrations (range from 25 to 300 μM) of H2O2. The proliferation, reactive oxygen species (ROS) level, and apoptosis of NPMSCs were detected by cell counting kit-8 (CCK-8) assay, 5-ethynyl-2′-deoxyuridine (EdU) staining, and flow cytometry in vitro. The underlying signalling pathways were explored utilizing Western blotting. A rat needle puncture-stimulated IVDD model was established. X-ray, histological staining, and a multimode small animal live imaging system were used to evaluate the therapeutic effect of H2O2-pretreated NPMSCs in vivo. Results NPMSCs pretreated with 75 μM H2O2 demonstrated the strongest elevated cell proliferation by inhibiting the Hippo pathway (P < 0.01). Meanwhile, 75 μM H2O2-pretreated NPMSCs exhibited significantly enhanced antioxidative stress ability (P < 0.01), which is related to downregulated Brd4 and Keap1 and upregulated Nrf2. NPMSCs pretreated with 75 μM H2O2 also exhibited distinctly decreased apoptosis (P < 0.01). In vivo experiments verified that 75 μM H2O2-pretreated NPMSCs-transplanted rats exhibited an enhanced disc height index (DHI% = 90.00 ± 4.55, P < 0.01) and better histological morphology (histological score = 13.5 ± 0.5, P < 0.01), which means 75 μM H2O2-pretreated NPMSCs can better adapt to the environment of degenerative intervertebral discs and promote the repair of IVDD. Conclusions Pretreatment with 75 μM H2O2 was the optimal concentration to improve the proliferation, antioxidative stress, and antiapoptotic ability of transplanted NPMSCs, which is expected to provide a new feasible method to improve the stem cell therapy efficacy of IVDD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03031-7.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhi-Lei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu-Han Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Hai-Yin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao-Xin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chen-Hao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yue-Yang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jin-Hui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Chang-Qing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
15
|
A Redoxable Mn Porphyrin, MnTnBuOE-2-PyP5+, Synergizes with Carboplatin in Treatment of Chemoresistant Ovarian Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9664636. [PMID: 35898616 PMCID: PMC9313984 DOI: 10.1155/2022/9664636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
We have employed a redox-active MnP (MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis (N-n-butoxyethylpyridinium-2-yl) porphyrin) frequently identified as superoxide dismutase mimic or BMX-001, to explore the redox status of normal ovarian cell in relation to two ovarian cancer cell lines: OV90 human serous ovarian cancer cell and chemotherapy-resistant OV90 cell (OVCD). We identified that OVCD cells are under oxidative stress due to high hydrogen peroxide (H2O2) levels and low glutathione peroxidase and thioredoxin 1. Furthermore, OVCD cells have increased glycolysis activity and mitochondrial respiration when compared to immortalized ovarian cells (hTER7) and parental cancer cells (OV90). Our goal was to study how ovarian cell growth depends upon the redox state of the cell; hence, we used MnP (BMX-001), a redox-active MnSOD mimetic, as a molecular tool to alter ovarian cancer redox state. Interestingly, OVCD cells preferentially uptake MnP relative to OV90 cells which led to increased inhibition of cell growth, glycolytic activity, OXPHOS, and ATP, in OVCD cells. These effects were further increased when MnP was combined with carboplatin. The effects were discussed with regard to the elevation in H2O2 levels, increased oxidative stress, and reduced Nrf2 levels and its downstream targets when cells were exposed to either MnP or MnP/carboplatin. It is significant to emphasize that MnP protects normal ovarian cell line, hTER7, against carboplatin toxicity. Our data demonstrate that the addition of MnP-based redox-active drugs may be used (via increasing excessively the oxidative stress of serous ovarian cancer cells) to improve cancer patients' chemotherapy outcomes, which develop resistance to platinum-based drugs.
Collapse
|
16
|
Amino-Functionalized Polystyrene Nano-Plastics Induce Mitochondria Damage in Human Umbilical Vein Endothelial Cells. TOXICS 2022; 10:toxics10050215. [PMID: 35622629 PMCID: PMC9145670 DOI: 10.3390/toxics10050215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
As emerging contaminants, nano-plastics have become a major cause for concern for their adverse effects on the ecosystem and human health. The nano-sized properties of nano-plastics enable their exposure risks to humans through the food chain or other ways. However, the fate and adverse impact of nano-plastics on the human cardiovascular system are lacking. In this regard, the human umbilical vein endothelial cell line HUVEC was applied as a cell model to investigate the biological effects of noncharged polystyrene nano-plastics (PS NPs) and amino-functionalized nano-plastics (NH2-PS NPs). The positively charged PS NPs exhibited higher cytotoxicity to HUVEC, as evidenced by the decreased cell viability, enhanced ROS generation, and decreased mitochondria membrane potential triggered by NH2-PS NPs. Importantly, RT-PCR analysis revealed that NH2-PS NPs dysregulated the mitochondrial dynamics, replication, and function-related gene expression. This study demonstrated that NH2-PS NPs presented higher risks to endothelial cells than non-charged nano-plastics by interfering with mitochondria, which supported the direct evidence and expanded the potential risks of PS NPs.
Collapse
|
17
|
Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for cancer stem cells. World J Stem Cells 2022; 14:146-162. [PMID: 35432735 PMCID: PMC8963380 DOI: 10.4252/wjsc.v14.i2.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qin-Chao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-An Tao
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
18
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Mikhaleva LM, Orekhov AN. The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. Int J Mol Sci 2021; 23:ijms23010460. [PMID: 35008887 PMCID: PMC8745127 DOI: 10.3390/ijms23010460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Street, 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
19
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|