1
|
Nikseresht M, Dabidi Roshan V, Nasiri K. Inflammatory markers and noncoding-RNAs responses to low and high compressions of HIIT with or without berberine supplementation in middle-aged men with prediabetes. Physiol Rep 2024; 12:e16146. [PMID: 39107107 PMCID: PMC11303016 DOI: 10.14814/phy2.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024] Open
Abstract
This study compared the capacity of two different models of HIIT [high-(HC) and low-(LC) compression], with or without the use of berberine (BBR), on NOD-like receptor pyrin domain-containing protein-3 (NLRP3), H19, interleukin (IL)-1β, high-sensitivity C-reactive protein (hs-CRP), and insulin resistance markers. Fifty-four middle-aged men with overweight or obesity and prediabetes [fasting blood glucose (FBG) 110-180 mg/dL] were randomly and equally assigned to the HC, LC, HC + BBR, LC + BBR, BBR, and non-exercising control (CON) groups. The HC (2:1 work-to-rest) and LC (1:1 work-to-rest) home-based training programs included 2-4 sets of 8 exercises at 80%-95% HRmax, twice a week for 8 weeks. Participants in the berberine groups received approximately 1000 mg daily. All exercise interventions led to a significant reduction in hs-CRP, IL-1β, insulin, FBG, and insulin resistance index (HOMA-IR) versus CON. Notably, there was a significant reduction in FBG and HOMA-IR with the BBR group compared to the baseline. Both NLRP3 and H19 experienced a significant drop only with LC in comparison to the baseline. While both exercise protocols were beneficial overall, LC uniquely exhibited more anti-inflammatory effects, as indicated by reductions in H19 and NLRP3. However, the addition of berberine to the exercise programs did not demonstrate additional benefits.
Collapse
Affiliation(s)
- Mehdi Nikseresht
- Department of Exercise Physiology, Faculty of Sport ScienceUniversity of MazandaranBabolsarIran
| | - Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport ScienceUniversity of MazandaranBabolsarIran
- Athletic Performance and Health Research Centre, Faculty of Sport ScienceUniversity of MazandaranBabolsarIran
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport ScienceUniversity of MazandaranBabolsarIran
| |
Collapse
|
2
|
Farhadnejad H, Saber N, Neshatbini Tehrani A, Kazemi Jahromi M, Mokhtari E, Norouzzadeh M, Teymoori F, Asghari G, Mirmiran P, Azizi F. Herbal Products as Complementary or Alternative Medicine for the Management of Hyperglycemia and Dyslipidemia in Patients with Type 2 Diabetes: Current Evidence Based on Findings of Interventional Studies. J Nutr Metab 2024; 2024:8300428. [PMID: 39021815 PMCID: PMC11254466 DOI: 10.1155/2024/8300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Type 2 diabetes (T2D) is known as a major public health problem with a noticeable adverse impact on quality of life and health expenditures worldwide. Despite using routine multiple pharmacological and nonpharmacological interventions, including diet therapy and increasing physical activity, controlling this chronic disease remains a challenging issue, and therapeutic goals are often not achieved. Therefore, recently, other therapeutic procedures, such as using herbal products and functional foods as complementary or alternative medicine (CAM), have received great attention as a new approach to managing T2D complications, according to the literature. We reviewed the existing evidence that supports using various fundamental medicinal herbs, including cinnamon, saffron, ginger, jujube, turmeric, and barberry, as CAM adjunctive therapeutic strategies for T2D patients. The current review addressed different aspects of the potential impact of the abovementioned herbal products in improving glycemic indices and lipid profiles, including the effect size reported in the studies, their effective dose, possible side effects, herbs-drug interactions, and their potential action mechanisms.
Collapse
Affiliation(s)
- Hossein Farhadnejad
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Student Research CommitteeAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of NutritionSchool of Allied Medical SciencesAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research CenterHormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
4
|
Abbaspour M, Faeznia F, Zanjanian P, Ruzbehi M, Shourgashti K, Ziaee A, Sardou HS, Nokhodchi A. Preparation and Evaluation of Berberine-Excipient Complexes in Enhancing the Dissolution Rate of Berberine Incorporated into Pellet Formulations. AAPS PharmSciTech 2024; 25:154. [PMID: 38961012 DOI: 10.1208/s12249-024-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Berberine is used in the treatment of metabolic syndrome and its low solubility and very poor oral bioavailability of berberine was one of the primary hurdles for its market approval. This study aimed to improve the solubility and bioavailability of berberine by preparing pellet formulations containing drug-excipient complex (obtained by solid dispersion). Berberine-excipient solid dispersion complexes were obtained with different ratios by the solvent evaporation method. The maximum saturation solubility test was performed as a key factor for choosing the optimal complex for the drug-excipient. The properties of these complexes were investigated by FTIR, DSC, XRD and dissolution tests. The obtained pellets were evaluated and compared in terms of pelletization efficiency, particle size, mechanical strength, sphericity and drug release profile in simulated media of gastric and intestine. Solid-state analysis showed complex formation between the drug and excipients used in solid dispersion. The optimal berberine-phospholipid complex showed a 2-fold increase and the optimal berberine-gelucire and berberine-citric acid complexes showed more than a 3-fold increase in the solubility of berberine compared to pure berberine powder. The evaluation of pellets from each of the optimal complexes showed that the rate and amount of drug released from all pellet formulations in the simulated gastric medium were significantly lower than in the intestine medium. The results of this study showed that the use of berberine-citric acid or berberine-gelucire complex could be considered a promising technique to increase the saturation solubility and improve the release characteristics of berberine from the pellet formulation.
Collapse
Affiliation(s)
- Mohammadreza Abbaspour
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Faeznia
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Zanjanian
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Ruzbehi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Shourgashti
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosseinn Ziaee
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Shahdadi Sardou
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc, Coral Springs, Florida, USA.
| |
Collapse
|
5
|
Pradhan M, Hedaoo R, Joseph A, Jain R. Charting Wellness in India: Piloting the iTHRIVE's Functional Nutrition Approach to Improve Glycaemic and Inflammatory Parameters in Prediabetes and Type 2 Diabetes Mellitus. Cureus 2024; 16:e63744. [PMID: 39100011 PMCID: PMC11296214 DOI: 10.7759/cureus.63744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by elevation of blood glucose levels due to underlying insulin resistance and inflammation. Multiple modifiable risk factors such as unhealthy dietary habits, physical inactivity, obesity, smoking and psychological stress contribute to T2DM. We investigated the efficacy of a comprehensive functional nutrition approach aimed at mitigating T2DM using the iTHRIVE approach which encompassed anti-inflammatory and elimination diets, micronutrient supplements, physical activity, stress management and environmental modifications through a pre-post study design. The research assessed changes in blood glucose and inflammatory markers following the implementation of the functional nutrition program. Methods A prospective pre-post intervention pilot study was conducted at ThriveTribe Wellness Solutions Pvt Ltd. (iTHRIVE), where 50 study participants from urban areas of Pune city, India (n=25 each group) were recruited voluntarily in the age group of 20-60 years. The participants were subjected to 90 days of the iTHRIVE functional nutrition approach which consisted of eliminating certain inflammatory foods and adding a combination of nutritious organic foods, adding dietary supplements like magnesium, vitamin D, alpha lipoic acid, chromium picolinate, berberine and biogymnema, physical activities like resistance training, stress reduction techniques like meditation and deep breathing exercises along with environmental changes. The blood parameters like fasting blood glucose, postprandial blood glucose, glycated haemoglobin (HbA1C), fasting serum insulin, post-prandial serum insulin, high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), vitamin D, body weight and waist circumference were measured before and after the intervention. The changes were statistically analyzed using a paired t-test. Results The mean age of the participants was found to be 43.76±10.58 years. Around 68% of the participants were prediabetic (HbA1c: 5.7-6.4%) and 32% had T2DM (HbA1c ≥6.5%). A significant reduction was observed in the average HbA1c (13.75% reduction, p<0.0001), average post-prandial blood glucose levels (14.51% reduction, p<0.048), average post-prandial serum insulin (34.31% reduction, p<0.017) and average ESR levels (34.51% reduction, p<0.006). The hs-CRP levels were reduced by 6.6%, but not statistically significant. The average body weight of the participants dropped from 78.59±15.18 kg to 75.20±14.20 kg with a mean loss of 2.91 kg (p<0.05) whereas the waist circumference decreased from 37.54±5.09 to 35.97±4.74 inches with an average loss of 1.19 inches (p<0.0004). Conclusions Following the intervention, several health indicators indicated significant improvements. Particularly, there was a significant drop in HbA1c levels, suggesting better long-term blood glucose control. Blood glucose and serum insulin levels after a meal dropped significantly, indicating enhanced insulin sensitivity. There was a decrease in systemic inflammation as evidenced by the decrease in ESR levels. These results imply that the iTHRIVE functional nutrition approach used in this investigation might be beneficial for enhancing glycemic control and insulin sensitivity, along with reducing inflammatory markers in people with prediabetes and T2DM. Larger sample sizes and longer periods of monitoring would be useful in subsequent research to validate and build on these encouraging findings.
Collapse
Affiliation(s)
- Mugdha Pradhan
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Radhika Hedaoo
- Nutrition, Symbiosis School of Culinary Arts, Symbiosis International (Deemed University), Pune, IND
| | - Anitta Joseph
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Ria Jain
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| |
Collapse
|
6
|
Yao P, Yang X, Qiao Y. A Review on the Natural Products in Treatment of Diabetic Cardiomyopathy (DCM). Rev Cardiovasc Med 2024; 25:165. [PMID: 39076497 PMCID: PMC11267204 DOI: 10.31083/j.rcm2505165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Diabetic cardiomyopathy is an insidious and fatal disease, imposing major financial and social burdens on affected individuals. Among the various methods proposed for the treatment of diabetic cardiomyopathy (DCM), treatments with natural products have achieved promising results due to their high efficiency and minimal side-effects. Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, Excerpt Medica, Science Direct, and Springer. In this study, we reviewed the DCM-related studies on 72 representative natural products. These natural products have been confirmed to be applicable in the therapeutic intervention of DCM, acting through various mechanisms such as the amelioration of metabolic abnormalities, protecting the mitochondrial structure and function, anti-oxidant stress, anti-inflammatory, anti-fibrosis, regulation of Ca 2 + homeostasis and regulation of programmed cell death. The nuclear factor kappa B (NF- κ B), nuclear factor erythroid 2-related factor 2 (Nrf-2), and transforming growth factor- β (TGF- β ) have been extensively studied as high frequency signaling pathways for natural product intervention in DCM. The effectiveness of natural products in treating DCM has been revealed and studied, which provides a reference for DCM-specific drug discovery.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000 Jinan, Shandong, China
| | - Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), 250014 Jinan, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
7
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
8
|
Nazari A, Ghotbabadi ZR, Kazemi KS, Metghalchi Y, Tavakoli R, Rahimabadi RZ, Ghaheri M. The Effect of Berberine Supplementation on Glycemic Control and Inflammatory Biomarkers in Metabolic Disorders: An Umbrella Meta-analysis of Randomized Controlled Trials. Clin Ther 2024; 46:e64-e72. [PMID: 38016844 DOI: 10.1016/j.clinthera.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Several meta-analyses reported berberine (BBR) supplementation improves glycemic parameters and inflammatory marker, but findings remain inconsistent. Therefore, this study was conducted. METHODS We systematically searched PubMed, Embase, Web of Science, Scopus, and Google Scholar to identify the relevant meta-analyses up to April 2023. FINDINGS BBR supplementation was effective in reducing fasting blood glucose (FBG) (ESWMD: -0.77; 95% CI: -0.90 to -0.63, and ESSMD: -0.65; 95% CI: -0.83 to -0.47), hemoglobin A1C (HbA1C) (ESWMD: -0.57; 95% CI: -0.68 to -0.46), homeostasis model assessment for insulin resistance (HOMA-IR) (ESWMD: -1.04; 95% CI: -1.66 to -0.42, and ESSMD: -0.71; 95% CI: -0.97 to -0.46), insulin (ESWMD: -1.00; 95% CI: -1.70 to -0.30, and ESSMD: -0.63; 95% CI: -0.94 to -0.32), interleukin (IL)-6 (ESSMD: -1.23; 95% CI: -1.61 to -0.85), tumor necrosis factor-α (TNF-α) (ESSMD: -1.04; 95% CI: -1.28 to -0.79), and C-reactive protein (CRP) (ESWMD: -0.62; 95% CI: -0.74 to -0.50, and ESSMD: -1.70; 95% CI: -2.21 to -1.19). IMPLICATIONS The finding of our umbrella showed that the supplementation of BBR could be effective in improving glycemic parameters and inflammatory marker in adults.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Metghalchi
- Department of Pharmacoeconomics and Pharma Management, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tavakoli
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
9
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
10
|
Suciu I, Delp J, Gutbier S, Suess J, Henschke L, Celardo I, Mayer TU, Amelio I, Leist M. Definition of the Neurotoxicity-Associated Metabolic Signature Triggered by Berberine and Other Respiratory Chain Inhibitors. Antioxidants (Basel) 2023; 13:49. [PMID: 38247474 PMCID: PMC10812665 DOI: 10.3390/antiox13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Julian Suess
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Lars Henschke
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Thomas U. Mayer
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
11
|
Solnier J, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Wood S, Chang C. Characterization and Pharmacokinetic Assessment of a New Berberine Formulation with Enhanced Absorption In Vitro and in Human Volunteers. Pharmaceutics 2023; 15:2567. [PMID: 38004546 PMCID: PMC10675484 DOI: 10.3390/pharmaceutics15112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yiming Zhang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yun Chai Kuo
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Min Du
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Kyle Roh
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | | | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N 4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chuck Chang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| |
Collapse
|
12
|
Cavaleiro C, Afonso GJM, Oliveira PJ, Valero J, Mota SI, Ferreiro E. Urine-derived stem cells in neurological diseases: current state-of-the-art and future directions. Front Mol Neurosci 2023; 16:1229728. [PMID: 37965041 PMCID: PMC10642248 DOI: 10.3389/fnmol.2023.1229728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
14
|
Zhao JV, Huang X, Zhang J, Chan YH, Tse HF, Blais JE. Overall and Sex-Specific Effect of Berberine on Glycemic and Insulin-Related Traits: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Nutr 2023; 153:2939-2950. [PMID: 37598753 DOI: 10.1016/j.tjnut.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Berberine is widely available as a nutraceutical supplement for improving glucose metabolism. Berberine affects sex hormones, raising the possibility that its effects on glycemic traits and insulin sensitivity have sex disparity which has been overlooked. OBJECTIVE To assess the overall and sex-specific effects of berberine on glycemic- and insulin-related traits. METHODS We identified randomized trials of berberine versus placebo from Medline, Embase, CNKI, clinical trial registries and previous systematic reviews. Mean differences were estimated using inverse-variance weighting with random effects models. Subgroup analyses were conducted by sex, diabetes diagnosis, trial duration, berberine dose and ethnicity. RESULTS We identified 20 eligible studies (n = 1761). Berberine lowered fasting glucose (-0.52 mmol/L, 95% CI -0.72 to -0.33; 18 studies, n = 1522), HbA1c (-4.48 mmol/mol, 95% CI -6.53 to -2.44, 7 studies, n = 756), fasting insulin (-2.36 mU/L, 95% CI -3.64 to -1.08, 11 studies, n = 966), HOMA-IR (-0.85, 95% CI -1.16 to -0.53,12 studies, n = 1065), and 2-h postprandial glucose (-1.81 mmol/L, 95% CI -2.37 to -1.24, 4 studies, n = 501). Effects on fasting glucose and HOMA-IR showed potential differences by sex, with larger reductions in women than in men. Comparing 4 studies conducted in women to one study conducted in men, the mean difference was -0.21 mmol/L (95% CI -0.41 to -0.00) for fasting glucose and -0.97 (95% CI -1.84 to -0.10) for HOMA-IR. We also found larger reductions in fasting glucose in participants with diabetes and in Asians. CONCLUSION Berberine is effective in improving glucose metabolism and may result in larger effects on fasting glucose in women, in people with diabetes and in Asians, but subgroup comparisons remain to be replicated given the limited number of studies. Berberine can be considered as a complementary intervention in individuals who may benefit from modest improvements in glucose metabolism and who prefer taking a nutraceutical. STUDY REGISTRATION PROSPERO (CRD42022345172).
Collapse
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Junmeng Zhang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yap-Hang Chan
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joseph E Blais
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Pérez-Martínez P, Ros E, Pedro-Botet J, Civeira F, Pascual V, Garcés C, Solá R, Pérez-Jiménez F, Mostaza JM. Functional foods and nutraceuticals in the treatment of hypercholesterolemia: Statement of the Spanish Society of Arteriosclerosis 2023. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:248-261. [PMID: 36932013 DOI: 10.1016/j.arteri.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
In the management of hypercholesterolemia, besides advising a healthy, plant-based diet, it may be useful to recommend functional foods or nutraceutical with cholesterol-lowering properties. Given the progressive increase in the number of these products and their rising use by the population, the Spanish Society of Arteriosclerosis (SEA) has considered it appropriate to review the available information, select the results of the scientifically more robust studies and take a position on their usefulness, to recommend to health professionals and the general population their potential utility in terms of efficacy and their possible benefits and limitations. The following clinical scenarios have been identified in which these products could be used and will be analyzed in more detail in this document: (1) Hypolipidemic treatment in subjects with statin intolerance. (2) Hypolipidemic treatment «a la carte» in individuals in primary prevention. (3) Long-term cardiovascular prevention in individuals with no indication for lipid-lowering therapy. (4) Patients with optimized lipid-lowering treatment who do not achieve therapeutic objectives.
Collapse
Affiliation(s)
- Pablo Pérez-Martínez
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos, Servicio de Endocrinología y Nutrición, Instituto de Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Hospital Clinic, Universidad de Barcelona, Barcelona, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, España
| | - Vicente Pascual
- Centro de Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| | - Carmen Garcés
- Laboratorio de Lípidos, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, España
| | - Rosa Solá
- Grupo de Nutrición Funcional, Oxidación y Enfermedades Cardiovasculares (NFOC-Salut), Hospital Universitario Sant Joan, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Reus, Tarragona, España
| | - Francisco Pérez-Jiménez
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - José M Mostaza
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital La Paz-Carlos III, Madrid, España
| |
Collapse
|
16
|
Liu P, Yan X, Pu J, Liao Q, Wang K, Lan J, Wang R, Wang Z, Ding L, Yang L. A Plantaginis Semen-Coptidis Rhizoma compound alleviates type 2 diabetic mellitus in mice via modulating AGEs-RAGE pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116290. [PMID: 36933875 DOI: 10.1016/j.jep.2023.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plantaginis Semen-Coptidis Rhizoma Compound(CQC) was first recorded in Shengji Zonglu. Clinical and experimental studies have reported that both of Plantaginis Semen and Coptidis Rhizoma exerted the effects of lowering blood glocose and lipid. However, the potential mechanism of CQC on type 2 diabetes (T2DM) remain unclear. AIM OF THE STUDY The main objective of our investigation was to explore the mechanisms of CQC on T2DM based on network pharmacology and experimental research. MATERIALS AND METHODS Streptozotocin(STZ)/high fat diet(HFD)-induced T2DM models in mice were established to evaluate the antidiabetic effect of CQC in vivo. We obtained the chemical constituents of Plantago and Coptidis from the TCMSP database and literature sources. Potential targets of CQC were gleaned from the Swiss-Target-Prediction database, and T2DM targets were obtained from Drug-Bank, TTD, and DisGeNet. A protein-protein interaction (PPI) network was constructed in the String database. The David database was used for gene ontology (GO) and KEGG pathway enrichment analyses. We then verified the potential mechanism of CQC that were predicted by network pharmacological analysis in STZ/HFD-induced T2DM mouse model. RESULTS Our experiments confirmed that CQC improved hyperglycemia and liver injury. We identified 21 components and gleaned 177 targets for CQC treatment of T2DM. The core component-target network included 13 compounds and 66 targets. We further demonstrated that CQC improve T2DM through various pathways, especially the AGEs/RAGE signal pathway. CONCLUSION Our results indicated that CQC could improve the metabolic disorders of T2DM and it is a promising TCM compound for the treatment of T2DM. The potential mechanism may probably involve the regulation of the AGEs/RAGE signaling pathway.
Collapse
Affiliation(s)
- Pei Liu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Yan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaying Pu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Liao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kang Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiping Lan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Kiani Z, Amini S, Askari G, Kesharwani P, Bagherniya M, Sahebkar A. The effect of phytochemicals in prediabetic patients: A systematic review of randomized controlled trials. Phytother Res 2023; 37:3239-3261. [PMID: 37246835 DOI: 10.1002/ptr.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
This study aimed to perform a systematic review to evaluate the effect of phytochemical consumption on the cardiometabolic parameters of prediabetic patients. A comprehensive search was conducted in PubMed, Scopus and ISI Web of Science, and Google Scholar up to June 2022 to find randomized controlled trials investigating the effects of phytochemicals alone or in combination with other nutraceuticals on prediabetic patients. Twenty-three studies with 31 treatment arms comprising 2177 individuals were included in this study. Totally, in 21 arms, phytochemicals had positive effects on at least one measured cardiometabolic factor. In 13 out of 25 arms, fasting blood glucose (FBG) and in 10 out of 22 arms, hemoglobin A1c (HbA1c) significantly decreased compared with the control group. Furthermore, phytochemicals had beneficial effects on 2-h postprandial and postprandial glucose, serum insulin, insulin sensitivity, and insulin resistance as well as inflammatory factors including high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6). Triglyceride (TG) was the abundant improved factor in the lipid profile. However, no sufficient evidence for notable positive effects of phytochemicals on blood pressure and anthropometry indices was observed. Phytochemical supplementation may have beneficial impacts on prediabetic patients by ameliorating glycemic status.
Collapse
Affiliation(s)
- Zahra Kiani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepide Amini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Chen Y, Zhou X, Jiang Z, Liu Y. Gegen Qinlian Decoction combined with Metformin for the treatment of patients with Type-2 Diabetes Mellitus: A retrospective observational study. Pak J Med Sci 2023; 39:1108-1112. [PMID: 37492293 PMCID: PMC10364285 DOI: 10.12669/pjms.39.4.7776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023] Open
Abstract
Objectives To investigate Gegen Qinlian Decoction (GQD) combined with metformin for treatment of patients with Type-2 Diabetes Mellitus (T2DM). Methods This retrospective observational study reviewed the clinical data of 89 patients diagnosed with T2DM in the Department of Acupuncture and Massage, Hainan Medical University from January 2021 to June 2022. Patients were non-randomized and divided into two groups based on the treatment received: observation group (n=41, GQD combined with metformin); control group (n=48, metformin only). Fasting blood glucose levels (FBG), traditional Chinese medicine (TCM) syndrome scores, clinical effect, blood glucose time in range and adverse reactions were compared between the two groups. Results There were no statistically significant differences in age, gender, BMI and duration of T2DM between the two groups (P>0.05). The FBG, 2h glucose, HbA1c levels and TCM syndrome scores of the two groups were significantly lower post-treatment (P<0.001) with a greater decrease in the observation group (P<0.001). The observation group was more clinically efficacious than the control group post-treatment (92.68% vs. 77.08%; P<0.05). Blood glucose time in range and the incidence of adverse reactions were lower in the observation group than the control group (P<0.001 and P<0.05). Conclusions GQD combined with metformin can significantly reduce FBG, 2h glucose and HbA1c levels, and improve TCM syndrome, with good clinical efficacy, shorter blood glucose time in range and less adverse reactions.
Collapse
Affiliation(s)
- Yingqi Chen
- Yingqi Chen Department of Chinese Medicine Prescription, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Xiazhi Zhou
- Xiazhi Zhou Department of Gynecology of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Zixiang Jiang
- Zixiang Jiang School of Traditional Chinese Medicine. Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Yinglian Liu
- Yinglian Liu Department of Gynecology of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| |
Collapse
|
19
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
20
|
Khater SI, Almanaa TN, Fattah DMA, Khamis T, Seif MM, Dahran N, Alqahtani LS, Metwally MMM, Mostafa M, Albedair RA, Helal AI, Alosaimi M, Mohamed AAR. Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring. Antioxidants (Basel) 2023; 12:1220. [PMID: 37371950 DOI: 10.3390/antiox12061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the advanced stages of type 2 diabetes mellitus (T2DM), diabetic liver damage is a common complication that can devastate a patient's quality of life. The present study investigated the ability of liposomal berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM) and the possible pathways by which it does so. Liver tissue microarchitectures and immunohistochemical staining were applied during the study. The rats were divided into a control non-diabetic group and four diabetic groups, which are the T2DM, T2DM-Lip-BBR (10 mg/kg b.wt), T2DM-Vildagliptin (Vild) (10 mg/kg b.wt), and T2DM-BBR-Vild (10 mg/kg b.wt + Vild (5 mg/kg b.wt) groups. The findings demonstrated that Lip-BBR treatment could restore liver tissue microarchitectures, reduce steatosis and liver function, and regulate lipid metabolism. Moreover, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats. Lip-BBR also activated the GLP-1 expression, which stimulated insulin biosynthesis. It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation. Collectively, Lip-BBR ameliorated diabetic liver injury in a T2DM rat model with its promotion activity of AMPK/mTOR-mediated autophagy and limiting ER stress.
Collapse
Affiliation(s)
- Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona M Seif
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Raghad A Albedair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
21
|
Li Z, Wang Y, Xu Q, Ma J, Li X, Yan J, Tian Y, Wen Y, Chen T. Berberine and health outcomes: An umbrella review. Phytother Res 2023; 37:2051-2066. [PMID: 36999891 DOI: 10.1002/ptr.7806] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/01/2023]
Abstract
Berberine is a plant extract widely used in clinical practice. This review aimed to summarize and to grade the available evidence on the association between berberine consumption and health-related outcomes. The PubMed, Cochrane Library, and Embase databases were searched for meta-analyses of randomized controlled trials (RCTs) assessing the efficacy and safety of berberine from inception to June 30, 2022. The AMSTAR-2 and GRADE system were used to assess the methodological quality and evidence level of the included meta-analyses. A total of 11 eligible meta-analyses were identified from 235 publications, which were published in peer-reviewed journals between 2013 and 2022. The results revealed that berberine significantly affects blood glucose levels, insulin resistance, blood lipids, body parameters and composition, inflammatory markers, colorectal adenomas, and Helicobacter pylori infections as compared to controls. Common side effects of berberine consumption include gastrointestinal symptoms, such as constipation and diarrhea. Berberine is a safe medicinal plant ingredient that improves various clinical outcomes; however, there is a need for improvement of methodological quality in published meta-analyses. Additionally, the clinical effects of berberine need to be confirmed in high-quality RCTs.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Yan
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yibing Tian
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Jo HG, Baek E, Lee D. Comparative Efficacy of East Asian Herbal Formulae Containing Astragali Radix-Cinnamomi Ramulus Herb-Pair against Diabetic Peripheral Neuropathy and Mechanism Prediction: A Bayesian Network Meta-Analysis Integrated with Network Pharmacology. Pharmaceutics 2023; 15:pharmaceutics15051361. [PMID: 37242603 DOI: 10.3390/pharmaceutics15051361] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The Astragali Radix-Cinnamomi Ramulus herb-pair (ACP) has been widely used in the treatment of diabetic peripheral neuropathy (DPN) as part of East Asian herbal medicine (EAHM). Eligible randomized controlled trials (RCTs) were identified by searching 10 databases. The outcomes investigated were response rate, sensory nerve conduction velocity (SNCV), and motor nerve conduction velocity (MNCV) in four regions of the body. The compounds in the ACP and their targets of action, disease targets, common targets, and other relevant information were filtered using network pharmacology. Forty-eight RCTs, with 4308 participants, and 16 different interventions were identified. Significant differences were observed in the response rate, MNCV, and SNCV, as all EAHM interventions were superior to conventional medicine or lifestyle modification. The EAHM formula containing the ACP ranked highest in more than half of the assessed outcomes. Furthermore, major compounds, such as quercetin, kaempferol, isorhamnetin, formononetin, and beta-sitosterol, were found to suppress the symptoms of DPN. The results of this study suggest that EAHM may increase therapeutic efficacy in DPN management, and EAHM formulations containing the ACP may be more suitable for improving treatment response rates to NCV and DPN therapy.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam 13549, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
23
|
Li Z, Chen M, Wang Z, Fan Q, Lin Z, Tao X, Wu J, Liu Z, Lin R, Zhao C. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis. Bone Joint Res 2023; 12:91-102. [PMID: 36718649 PMCID: PMC9950669 DOI: 10.1302/2046-3758.122.bjr-2022-0269.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. METHODS Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. RESULTS Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. CONCLUSION The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells.Cite this article: Bone Joint Res 2023;12(2):91-102.
Collapse
Affiliation(s)
- Zhiqi Li
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zhaoyi Wang
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zili Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Tao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China, Mr. Chongjun Zhao. E-mail:
| |
Collapse
|
24
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
25
|
Xie W, Su F, Wang G, Peng Z, Xu Y, Zhang Y, Xu N, Hou K, Hu Z, Chen Y, Chen R. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1015045. [PMID: 36467075 PMCID: PMC9709280 DOI: 10.3389/fphar.2022.1015045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 09/11/2023] Open
Abstract
Background: Insulin secretory agents are commonly used to treat type 2 diabetes. However, traditional insulin secretory agents such as sulfonylureas and glinides have side effects of hypoglycemia. In recent years, researchers have discovered that berberine can inhibit the voltage-gated k+ channels of pancreatic β cell membrane and promote insulin secretion without causing hypoglycemia, because the glucose-lowering effects of berberine are only under hyperglycemic conditions or in a high-glucose-dependent manner. In order to shed light on the glucose-lowing effects of berberine in type 2 diabetes with different baseline fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c), we conducted a meta-analysis of randomized controlled trials. Methods: We searched eight databases, which included PubMed, EMBASE, Web of Science, the Cochrane Library, and the Chinese databases such as Sino-Med, China National Knowledge Infrastructure (CNKI), Wanfang Database, and VIP Database for Chinese Technical Periodicals, for randomized controlled trials, with berberine as the intervention and patients with type 2 diabetes mellitus as subjects, published up until November 2021. We analyzed the glucose-lowing effects of berberine, including its effects on FPG, HbA1c and 2-h plasma blood glucose (2hPBG), by calculating weighted mean differences (WMD) and 95% confidence interval (CI). To assess the safety of berberine, we analyzed the incidence of total adverse events and hypoglycemia by calculating relative risk (RR) and 95% CI. Results: Thirty-seven studies involving 3,048 patients were included in the meta-analysis. The results showed that berberine could reduce FPG (WMD = -0.82 mmol/L, 95% CI (-0.95, -0.70)), HbA1c (WMD = -0.63%, 95% CI (-0.72, -0.53)), and 2hPBG (WMD = -1.16 mmol/L, 95% CI (-1.36, -0.96)), with all results being statistically significant. Subgroup analyses revealed that the glucose-lowering effect of berberine was associated with baseline mean FPG and HbA1c in type 2 diabetes. In addition, berberine alone or in combination with oral hypoglycemic agents (OHAs) in the treatment of T2DM did not significantly increase the incidence of total adverse events (RR = 0.73, 95% CI (0.55, 0.97), p = 0.03) and the risk of hypoglycemia (RR = 0.48, 95% CI (0.21, 1.08), p = 0.08). Conclusion: Berberine has a glucose-lowering effect, which is related to the baseline FPG and HbA1c levels of patients. Treatment with berberine may be safe since it does not increase the incidence of total adverse events and the risk of hypoglycemia. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=292975, identifier CRD42021292975.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fugui Su
- Department of Endocrinology, Suixi Country People’s Hospital, Guangdong Medical University, Guangzhou, Guangdong, China
| | - Guizhong Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zichong Peng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaomin Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affifiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, China
| | - Zhuping Hu
- Department of Endocrinology, Wengyuan Country People’s Hospital, Shaoguan, China
| | - Yan Chen
- Department of Reproductive Medicine, Center of Maternal and Child Health Hospital of Shaoguan City, Shaoguan, Guangdong, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Ma Y, Ma R, ZhiGui, Sa Q, Zhao N, Wurigumala, Burentegusi, Guo Z, Tumenwuliji. Chemicolome and Metabolome Profiling of Xieriga-4 Decoction, A Traditional Mongolian Medicine, Using the UPLC-QTOF/MS Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8197364. [PMID: 36437832 PMCID: PMC9683986 DOI: 10.1155/2022/8197364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024]
Abstract
Background Xieriga-4 decoction (XRG-4) is a classic prescription Mongolian medicine that has potent diuretic and anti-inflammatory activities. However, its functional components remain unknown. Purpose This study aimed to identify the chemical components in XRG-4 and its metabolome in vivo. Methods An ultra-performance liquid chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry based approach was proposed to systematically profile the chemicolome and metabolome of XRG-4. Result A total of 106 constituents were identified in XRG-4. Eighty-nine components were identified in biological samples, including 78 in urine (24 prototypes and 54 metabolites), 26 in feces (19 prototypes and 7 metabolites), and 9 in plasma (5 prototypes and 4 metabolites). In other tissues, only a few compounds, including alkaloids and iridoids, were detected. Conclusion This comprehensive investigation of the chemical and metabolic profiles of XRG-4 provides a scientific foundation for its quality control and administration of clinically-safe medication.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Ruiting Ma
- Life Sciences Department, Nanjing Normal University, Nanjing 210026, China
- Clinical Lab Department, Inner Mongolia Autonomous Region Mental Health Center, Hohhot 010010, China
| | - ZhiGui
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - QiLa Sa
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Na Zhao
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Wurigumala
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Burentegusi
- Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| | - Zhigang Guo
- Life Sciences Department, Nanjing Normal University, Nanjing 210026, China
| | - Tumenwuliji
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, Hohhot 010010, China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the potential roles of omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) in the prevention and treatment of metabolic diseases, to provide the latest evidence from epidemiological and clinical studies, and to highlight novel insights into this field. RECENT FINDINGS Higher dietary or circulating ω-3 PUFA levels are related to a lower risk of metabolic syndrome. Novel findings in obesity indicate higher proportions of ω-6 and ω-3 PUFAs, a modulated oxylipin profile and an altered transcriptome in subcutaneous white adipose tissue, that seem resistant to the effects of ω-3 PUFAs compared with what occurs in normal weight individuals. ω-3 PUFAs may improve the blood lipid profile and glycemic outcomes in patients with type 2 diabetes mellitus and reduce liver fat in nonalcoholic fatty liver disease (NAFLD); the findings of several recent meta-analyses support these effects. Genetic background affects inter-individual variability in the insulin sensitivity response to ω-3 PUFA supplementation. ω-3 PUFAs have prebiotic effects, altering the gut microbiota. SUMMARY Although evidence for health benefits of ω-3 PUFAs is strong, recent findings suggest a more personalized approach to ω-3 PUFA intake for individuals at high risk for metabolic diseases.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
28
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
29
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Hosseini S, Shiraseb F, Asbaghi O. The effects of berberine supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1013055. [PMID: 36313096 PMCID: PMC9614282 DOI: 10.3389/fnut.2022.1013055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease (CVD) is a major concern today. Herbal medicine is one helping way to control CVD risks. One conclusive of herbal medicine is Berberine (BBR) and converse about it still exists, to clarify this issue, this meta-analysis was performed. PubMed/Medline, Scopus, and Web of Science were searched for RCTs in adults on the effect of BBR supplementation on CVD risk factors up to July 2022. The pooled results showed BBR significantly reduced triglyceride (WMD = -23.70 mg/dl; 95%CI -30.16, -17.25; P < 0.001), total cholesterol (WMD = -20.64 mg/dl; 95%CI -23.65, -17.63; P < 0.001), low-density lipoprotein WMD = -9.63 mg/dl; 95%CI, -13.87, -5.39; P < 0.001), fasting blood glucose (FBG) (WMD = -7.74 mg/dl; 95%CI -10.79, -4.70; P < 0.001), insulin (WMD = -3.27 mg/dl; 95%CI -4.46,-2.07; P < 0.001), HbA1c (WMD = -0.45%; 95%CI -0.68, -0.23; P < 0.001), HOMA-IR (WMD = -1.04; 95%CI -1.55, -0.52; P < 0.001), systolic blood pressure (WMD = -5.46 mmHg; 95%CI -8.17, -2.76; P < 0.001), weight (WMD = -0.84; 95%CI -1.34,-0.34; P < 0.001), body mass index (WMD = -0.25 kg/m2; 95%CI -0.46, -0.04; P = 0.020), while increased high-density lipoprotein (HDL) (WMD = 1.37 mg/dl; 95%CI 0.41,2.23; P = 0.005). The optimal dose of BBR was 1 g/day for TG, TC, and weight, 1.8 g/day for insulin and HOMA-IR, and 5 g/day for HDL. FBG's most efficient time frame was 40 weeks from the beginning of supplementation, whereas DBP and waist circumference was 50 weeks. In conclusion, the lipid profile, FBG balance, obesity parameters, and SBP were improved with BBR supplementation. Systematic review registration CRD42022347004.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Shabnam Hosseini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
31
|
Lupo MG, Brilli E, De Vito V, Tarantino G, Sut S, Ferrarese I, Panighel G, Gabbia D, De Martin S, Dall’Acqua S, Ferri N. In Vitro and In Vivo Sucrosomial® Berberine Activity on Insulin Resistance. Nutrients 2022; 14:nu14173595. [PMID: 36079851 PMCID: PMC9459874 DOI: 10.3390/nu14173595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Berberine is a natural alkaloid with hypoglycemic properties. However, its therapeutic use is limited by a very low oral bioavailability. Here we developed a new oral formulation of berberine based on Sucrosomial® technology and tested its effect on insulin resistance. Methods: Sucrosomial® berberine was first tested in vitro in the hepatoma cell line Huh7 to assess its effect on proteins involved in glucose homeostasis and insulin resistance. The pharmacokinetics and efficacy on insulin resistance were then studied in C57BL/6 mice fed with standard (SD) and high-fat diet (HFD) for 16 weeks and treated daily during the last 8 weeks with oral gavage of Sucrosomial® berberine or berberine. Results: Sucrosomial® berberine did not affect Huh7 cell viability at concentrations up to 40 µM. Incubation of Huh7 with 20 µM of Sucrosomial® and control berberine induced glucokinase (GK) and the phosphorylation of 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK), both known targets for the control of insulin resistance. In vivo, we observed an 8-fold higher plasma concentration after 3 weeks of oral administration of 50 mg/kg/day of Sucrosomial® formulation compared to berberine. HFD, compared to SD, induced insulin resistance in mice as determined by oral glucose tolerance test (OGTT). The treatment with a 6.25 mg/kg/daily dose of Sucrosomial® berberine significantly reduced the area under the curve (AUC) of OGTT (73,103 ± 8645 vs. 58,830 ± 5597 mg/dL × min), while control berberine produced the same effects at 50 mg/Kg/day (51518 ± 1984 mg/dL × min). Under these conditions, the two formulations resulted in similar berberine plasma concentration in mice. Nevertheless, a different tissue distribution of metabolites was observed with a significant accumulation of reduced, demethylated and glucuronide berberine in the brain after the oral administration of the Sucrosomial® form. Glucuronide berberine plasma concentration was higher with Sucrosomial® berberine compared to normal berberine. Finally, we observed similar increases of AMPK phosphorylation in the liver in response to the treatment with Sucrosomial® berberine and berberine. Conclusions: The Sucrosomial® formulation is an innovative and effective technology to improve berberine gastrointestinal (GI) absorption with proven in vitro and in vivo activity on insulin resistance.
Collapse
Affiliation(s)
| | - Elisa Brilli
- R&D Department, PharmaNutra S.p.A., 56122 Pisa, Italy
| | | | | | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Panighel
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8275080
| |
Collapse
|
32
|
Lewis KD, Falk M. Toxicological assessment of dihydroberberine. Food Chem Toxicol 2022; 168:113301. [PMID: 35868606 DOI: 10.1016/j.fct.2022.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
A battery of studies was conducted to examine the toxicological potential of dihydroberberine (DHBBR), a derivative of berberine (BBR). The genotoxicity studies conducted on DHBBR, including the bacterial reverse mutation test, the mouse lymphoma assay, and the in vivo micronucleus test showed that DHBBR is non-mutagenic and non-clastogenic. An acute oral toxicity study revealed that the LD50 of DHBBR in female Sprague Dawley rats was greater than 2000 mg/kg bw. In a 14-day oral dose range finding study, the maximum tolerated dose was the high dose, 120 mg/kg bw/day. Based on a 90-day oral toxicity study in males and female Sprague Dawley rats, it was concluded that the NOAEL for DHBBR is 100 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Kara D Lewis
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA
| | - Michael Falk
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA.
| |
Collapse
|
33
|
Casula M, Catapano AL, Magni P. Nutraceuticals for Dyslipidaemia and Glucometabolic Diseases: What the Guidelines Tell Us (and Do Not Tell, Yet). Nutrients 2022; 14:606. [PMID: 35276964 PMCID: PMC8839347 DOI: 10.3390/nu14030606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of nutraceutical products and functional foods in the cardiovascular and metabolic field is rising in several countries. Preparation and implementation of guidelines are pivotal for translating research-derived knowledge and evidence-based medicine to the clinical practice. Based on these considerations, the aim of this paper is to explore if and how nutraceutical products are discussed by the most recent international guidelines related to cardio-metabolic diseases (dyslipidaemia, obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) prevention). Some, but not all, guidelines for dyslipidaemia mention nutraceutical products as potential useful options for the treatment of mild dyslipidaemia, but also indicate the low level of evidence associated to their effects on hard endpoints (myocardial infarction, stroke, CVD-related death). In the most recent guidelines on obesity, it is mentioned that no safe and effective dietary supplement nor nutraceutical product is available for the management of weight loss in this condition, and more high-quality studies are necessary in this field. The examined guidelines for T2DM do not mention any specific nutraceutical approach to this disease, nor to milder forms, such as insulin resistance and pre-diabetes. CONCLUSIONS The focus on nutraceutical products in the main international guidelines for cardio-metabolic disease management remains limited. Since robust scientific evidence is the background of useful and effective guidelines, the implementation of high-quality clinical research is strongly needed in the field of nutraceutical products for cardio-metabolic diseases.
Collapse
Affiliation(s)
- Manuela Casula
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.C.); (A.L.C.)
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, Italy
| | - Alberico Luigi Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.C.); (A.L.C.)
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.C.); (A.L.C.)
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, Italy
| |
Collapse
|