1
|
Jiang Y, Guo N, Zhang Q, Xu X, Qiang M, Lv Y. MrgX2-targeted ligand screening from Artemisia capillaris Thunb. extract and receptor-ligand interaction analysis based on MrgX2-HALO-tag/CMC. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124252. [PMID: 39067315 DOI: 10.1016/j.jchromb.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Artemisia capillaris Thunb. (A. capillaris) is a well-known traditional Chinese herbal medicine with a wide range of pharmacological effects, such as soothing the liver and gallbladder, heat clearance, and detoxifying. Hence, its extract is commonly added to various traditional Chinese medicine formulas. Traditional Chinese medicine injection (TCMI) is a mature pharmaceutical dosage form developed using TCM theory combined with modern science and technology. Notably, allergic reactions, especially pseudo‑allergic reactions (PARs), greatly limited the use of these injections. Therefore, screening pseudo‑allergic components in A. capillaris extract is clinically significant. In the present study, we proposed a two-dimensional screening and identification system based on mas-related G protein-coupled receptor X2-HALO-tag/cell membrane chromatography (MrgX2-HALO-tag/CMC) high performance liquid chromatography mass spectrometry (HPLC-MS); seven potential active components were screened from 75 % ethanol extract of A. capillaris: NCA, CA, CCA, 1,3-diCQA, ICA-B, ICA-A, and ICA-C. The receptor-ligand interactions between these seven compounds and MrgX2 protein were analyzed using frontal analysis and molecular docking technology. Furthermore, a mast cell degranulation-related assay was used to assess the pseudo‑allergic activity of these compounds. The screened compounds can serve as ligands of MrgX2, and this study provides a research basis for pseudo‑allergic reactions caused by TCMIs containing A. capillaris.
Collapse
Affiliation(s)
- Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Na Guo
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Quan Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Xiaochan Xu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Mengyang Qiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China.
| |
Collapse
|
2
|
Feng X, Liu H, Sheng Y, Li J, Guo J, Song W, Li S, Liu Z, Zhou H, Wu N, Wang R, Chu J, Han X, Hu B, Qi Y. Yinchen gongying decoction mitigates CCl 4-induced chronic liver injury and fibrosis in mice implicated in inhibition of the FoxO1/TGF-β1/ Smad2/3 and YAP signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117975. [PMID: 38432576 DOI: 10.1016/j.jep.2024.117975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis (LF) is a common reversible consequence of chronic liver damage with limited therapeutic options. Yinchen Gongying decoction (YGD) composed of two homologous plants: (Artemisia capillaris Thunb, Taraxacum monochlamydeum Hand.-Mazz.), has a traditionally application as a medicinal diet for acute icteric hepatitis. However, its impact on LF and underlying mechanisms remain unclear. AIM OF THE STUDY This study aims to assess the impact of YGD on a carbon tetrachloride (CCl4) induced liver fibrosis and elucidate its possible mechanisms. The study seeks to establish an experimental foundation for YGD as a candidate drug for hepatic fibrosis. MATERIALS AND METHODS LC-MS/MS identified 11 blood-entry components in YGD, and network pharmacology predicted their involvement in the FoxO signaling pathway, insulin resistance, and PI3K-AKT signaling pathway. Using a CCl4-induced LF mouse model, YGD's protective effects were evaluated in comparison to a positive control and a normal group. The underlying mechanisms were explored through the assessments of hepatic stellate cells (HSCs) activation, fibrotic signaling, and inflammation. RESULTS YGD treatment significantly improved liver function, enhanced liver morphology, and reduced liver collagen deposition in CCl4-induced LF mice. Mechanistically, YGD inhibited HSC activation, elevated MMPs/TIMP1 ratios, suppressed the FoxO1/TGF-β1/Smad2/3 and YAP pathways, and exhibited anti-inflammatory and antioxidant effects. Notably, YGD improved the insulin signaling pathway. CONCLUSION YGD mitigates LF in mice by modulating fibrotic and inflammatory pathways, enhancing antioxidant responses, and specifically inhibiting FoxO1/TGF-β1/Smad2/3 and YAP signal pathways.
Collapse
Affiliation(s)
- Xinyi Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Hengxu Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Yifei Sheng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jiaqi Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Jiyuan Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Wenxuan Song
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Sha Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zixuan Liu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Haoyu Zhou
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Naijun Wu
- Department of Endocrinology, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, China
| | - Rui Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Jinxiu Chu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaolei Han
- Qian 'an Hospital of Chinese Medicine, Tangshan 063210, China
| | - Baofeng Hu
- Qian 'an Hospital of Chinese Medicine, Tangshan 063210, China
| | - Yajuan Qi
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China; Tangshan Key Laboratory of Basic Research in Medicine Development, North China University of Science and Technology, Tangshan 063210, China; Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; Department of Endocrinology, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, China.
| |
Collapse
|
3
|
Wang J, Ouyang B, Cao R, Xu Y. An UHPLC-QTOF-MS-based strategy for systematic profiling of chemical constituents and associated in vivo metabolites of a famous traditional Chinese medicine formula, Yinchenhao decoction. Biomed Chromatogr 2024; 38:e5784. [PMID: 38009806 DOI: 10.1002/bmc.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Yinchenhao decoction (YCHD), a famous traditional Chinese medicine formula, has been applied for relieving jaundice in China for more than 1800 years. However, the material basis for YCHD is still unclear, and the chemical composition and metabolism characteristic in vivo are undefined, making the potential effective constituents and mechanism of action unclear. Herein, an ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based strategy was applied for the chemical profiling of YCHD, as well as their in vivo prototypes and global metabolites that defined the metabolome. Our results showed that a total of 139 chemicals were identified in YCHD, including 28 organic acids, 12 monoterpenoids, five diterpenes, three triterpenoids, 17 iridoids, 23 anthraquinones, 26 flavonoids, four coumarins and 21 other types. Moreover, 58 prototypes and 175 metabolites were found in rat biological samples after oral administration of YCHD; those distributed in plasma, liver, intestine and feces were suggested to be potentially effective substances. Oxidation, hydrogenation, decarboxylation and conjugations with methyl, sulfate and glucuronate were considered as the predominant metabolic pathways in vivo. In conclusion, this is a systemic study of chemical constituents and in vivo metabolome profiles of YCHD, contributing to the material basis understanding and further mechanism research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingchen Ouyang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Cao
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang X, Liu H, Shu L, Yao Y, Xu Y, Wei J, Li Y. Rapid identification of chemical constituents in Hugan tablets by ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry. J Sep Sci 2023; 46:e2300302. [PMID: 37568249 DOI: 10.1002/jssc.202300302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Hugan tablet is a Chinese medicine preparation. It is composed of Bupleuri Radix, Artemisiae Scopariae Herba, Isatidis Radix, Schisandrae Chinensis Fructus, Suis Fellis Pulvis, and Vigna radiata L. It has the effects of dispersing stagnated liver qi, strengthening the spleen and eliminating food to be used for the treatment of chronic hepatitis and early cirrhosis. However, the chemical composition of Hugan tablet is complex and not fully understood, which hampers the research in pharmacology. In this study, a reliable method for the rapid analysis and identification of the chemical components in Hugan tablet by their characteristic fragments and neutral losses using ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry was developed. A total of 144 chemical components were tentatively identified, including 57 organic acids, 19 flavonoids, 23 alkaloids, 18 lignans, 7 saponins, and 20 others. These components may be the active ingredients of Hugan tablet. The established method can systematically and rapidly analyze the chemical components in Hugan tablet, which provides a basis for the pharmacodynamic substance study and is meaningful for the quality control of Hugan tablet.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huiru Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
5
|
Lim DJ, Song JS, Lee BH, Son YK, Kim Y. Qualitative and Quantitative Analysis of the Major Bioactive Components of Juniperus chinensis L. Using LC-QTOF-MS and LC-MSMS and Investigation of Antibacterial Activity against Pathogenic Bacteria. Molecules 2023; 28:molecules28093937. [PMID: 37175347 PMCID: PMC10180426 DOI: 10.3390/molecules28093937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Plants in the genus Juniperus have been reported to produce a variety of chemical components, such as coumarins, flavonoids, lignans, sterols, and terpenoids. Here, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were applied to qualitatively and quantitatively analyze the major bioactive components in an ethanolic crude extract from the leaves of Juniperus chinensis L., which grows naturally in Korea. In addition, the antibacterial activity of the crude extract against pathogenic bacteria was investigated. Using LC-QTOF-MS analysis, we identified ten compounds, of which six were confirmed to be flavonoid and lignan-based components as the major bioactive components, i.e., isoquercetin, quercetin-3-O-α-l-rhamnoside, hinokiflavone, amentoflavone, podocarpusflavone A, and matairesinoside. Among them, a quantitative analysis performed using LC-MS/MS revealed that the levels of quercetin-3-O-α-l-rhamnoside and amentoflavone in the crude extract were 203.78 and 69.84 mg/g, respectively. Furthermore, the crude extract exhibited potential antibacterial activity against 10 pathogenic bacteria, with the highest antibacterial activity detected against Bordetella pertussis. Thus, further studies of the leaf extract of J. chinensis L. must be carried out to correlate the compounds present in the extract with the antibacterial activity and elucidate the mechanisms of action of this extract against bacteria.
Collapse
Affiliation(s)
- Da Jung Lim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si 56212, Republic of Korea
| | - Jeong-Sup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si 56212, Republic of Korea
| | - Byoung-Hee Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Youn Kyoung Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si 56212, Republic of Korea
| |
Collapse
|
6
|
Yang Q, Wu X, Pan Z, Guan R, Yang P, Liu Y, Yang X, Du W, Liang J, Hu J, Cai W, Ma G. Integration of pharmacodynamics, network pharmacology and metabolomics to elucidate effect and mechanism of Artemisia capillaris Thunb. in the treatment of jaundice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115943. [PMID: 36414211 DOI: 10.1016/j.jep.2022.115943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the most commonly used herbs, Artemisia capillaris Thunb. (ACT) display favorable effect in the treatment of jaundice. However, mechanism of ACT in the treatment of jaundice remains unclear at present, which limits its development and application. AIM OF THE STUDY To investigate effect and mechanism of Artemisia capillaris Thunb. (ACT) in the treatment of jaundice using pharmacodynamics, network pharmacology and metabolomics. METHODS Effect of ACT in treating jaundice was evaluated by biochemical assays and pathological observation using the α-naphthyl isothiocyanate (ANIT)-induced mice. Jaundice-relieving mechanism of ACT was investigated by integration of network pharmacology and metabolomics. RESULTS After the mice with jaundice were administrated ACT extract for 9 days, compared to that of the model group, serum D-BIL, T-BIL and ALP levels of the mice in the low, medium, high dose of ACT group decreased by 39.81%, 15.30% and 16.92%; 48.06%, 42.54% and 36.91%; 26.90%, 12.34% and 16.90%, respectively. The pathologic study indicated that ACT improved the symptoms of liver injury of the mice with jaundice. The network of herb (i.e., ACT)-components-targets-disease (i.e., jaundice) was established, which consisted of 17 components classified in flavonoids, chromones, organic acids, terpenoids, and 234 targets related to treatment of jaundice. Metabolomics analysis showed that, compared to that in the model group, level of 8 differential metabolites were upregulated and level of 29 differential metabolites were downregulated in the mice liver in the ACT group, respectively. The main metabolic pathways involved in treatment of jaundice by ACT were pantothenate and CoA biosynthesis, glutathione metabolism, biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis in the liver, respectively. The integrated analysis of network pharmacology and metabolomics showed that 3α,7α,12α a-Trihydroxy-5β-cholanate, glycocholate, taurocholate, pantetheine 4'-phosphate, and d-4'-phosphopantothenate were the potential biomarkers for treatment of jaundice, and AKR1C4, ALDH2 and HSD11B were the potential drug targets in the treatment of jaundice by ACT. CONCLUSION The study based on metabolomics and network pharmacology indicated that ACT can display favorable jaundice-relieving effect by its multiple components regulating multiple biomarkers, multiple targets and multiple pathways, and may be a rational therapy for the treatment of jaundice.
Collapse
Affiliation(s)
- Qing Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xubo Wu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiyu Pan
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Ruifang Guan
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Ye Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiaolei Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Wandi Du
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jingru Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiarong Hu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Guo Ma
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
7
|
Qian ZM, Cheng XJ, Wang Q, Huang Q, Jin LL, Ma YF, Xie JS, Li DQ. On-line pre-column FRAP-based antioxidant reaction coupled with HPLC-DAD-TOF/MS for rapid screening of natural antioxidants from different parts of Polygonum viviparum†. RSC Adv 2023; 13:9585-9594. [PMID: 36968051 PMCID: PMC10035567 DOI: 10.1039/d2ra08247k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Polygonum viviparum L. (PV) is a widely used resource plant with high medicinal, feeding and ecological values. Our studies show that PV has strong antioxidant activity. However, up to date, the antioxidant activity and components in other parts were not fully elucidated. In the present study, a new online pre-column ferric ion reducing antioxidant power (FRAP)-based antioxidant reaction coupled with high performance liquid chromatography-diode array detector-quadrupole-time-of-flight mass spectrometry (HPLC-DAD-TOF/MS) was developed for rapid and high-throughput screening of natural antioxidants from three different parts of PV including stems and leaves, fruits and rhizomes. In this procedure, it was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be greatly diminished or vanish after incubating with the FRAP. The online incubation conditions including mixed ratios of sample and FRAP solution and reaction times were firstly optimized with six standards. Then, the repeatability of the screening system was evaluated by analysis of the samples of stems and leaves of PV. As a result, a total of 21 compounds mainly including flavonoids and phenolic acids were screened from the three parts of PV. In conclusion, the present study provided a simple and effective strategy to rapidly screen antioxidants in natural products. Polygonum viviparum L. (PV) is a widely used resource plant with high medicinal, feeding and ecological values.![]()
Collapse
Affiliation(s)
- Zheng-ming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan UniversityChenzhou 423000Hunan ProvinceChina
- Dongguan HEC Cordyceps R&D Co., Ltd.No. 368, Zhen'an Middle Road, Chang'an TownDongguan 523850Guangdong ProvinceChina
| | - Xin-jie Cheng
- Department of Pharmacy, The Second Hospital of Hebei Medical UniversityNo. 215, Heping West RoadShijiazhuang 050000Hebei ProvinceChina
- National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical SciencesLangfangChina
| | - Qiao Wang
- Dongguan HEC Cordyceps R&D Co., Ltd.No. 368, Zhen'an Middle Road, Chang'an TownDongguan 523850Guangdong ProvinceChina
| | - Qi Huang
- Dongguan HEC Cordyceps R&D Co., Ltd.No. 368, Zhen'an Middle Road, Chang'an TownDongguan 523850Guangdong ProvinceChina
| | - Li-ling Jin
- Dongguan HEC Cordyceps R&D Co., Ltd.No. 368, Zhen'an Middle Road, Chang'an TownDongguan 523850Guangdong ProvinceChina
| | - Ya-fei Ma
- Department of Pharmacy, The Second Hospital of Hebei Medical UniversityNo. 215, Heping West RoadShijiazhuang 050000Hebei ProvinceChina
| | - Jia-sheng Xie
- Guangdong Mige Sunshine Technology Co. Ltd.Guangzhou 510700Guangdong ProvinceChina
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical UniversityNo. 215, Heping West RoadShijiazhuang 050000Hebei ProvinceChina
| |
Collapse
|
8
|
Liang M, Huo M, Guo Y, Zhang Y, Xiao X, Xv J, Fang L, Li T, Wang H, Dong S, Jiang X, Yu W. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Front Pharmacol 2022; 13:1084435. [PMID: 36518663 PMCID: PMC9742474 DOI: 10.3389/fphar.2022.1084435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is a nutritional metabolic disease. Artemisia capillaris (AC) is the above-ground dried part of Artemisia capillaris Thunb. or Artemisia scoparia Waldst. et Kit., a natural medicinal plant with pharmacological effects of heat-clearing and biliary-promoting. In order to evaluate the therapeutic effect of Artemisia capillaris on NAFLD and obesity, experiments were conducted using aqueous extracts of Artemisia capillaris (WAC) to intervene in NAFLD models in vivo and in vitro. In vivo experiments were performed using HFD-fed (high fat diet) C57BL/6 mice to induce NAFLD model, and in vitro experiments were performed using oleic acid to induce HepG2 cells to construct NAFLD cell model. H.E. staining and oil red O staining of liver tissue were used to observe hepatocytes. Blood biochemistry analyzer was used to detect serum lipid levels in mice. The drug targets and mechanism of action of AC to improve NAFLD were investigated by western blotting, qRT-PCR and immunofluorescence. The results showed that C57BL/6 mice fed HFD continuously for 16 weeks met the criteria for NAFLD in terms of lipid index and hepatocyte fat accumulation. WAC was able to reverse the elevation of serum lipid levels induced by high-fat diet in mice. WAC promoted the phosphorylation levels of PI3K/AKT and AMPK in liver and HepG2 cells of NAFLD mice, inhibited SREBP-1c expression, reduced TG and lipogenesis, and decreased lipid accumulation. In summary, WAC extract activates PI3K/AKT pathway, reduces SREBP-1c protein expression by promoting AMPK phosphorylation, and decreases fatty acid synthesis and TG content in hepatocytes. AC can be used as a potential health herb to improve NAFLD and obesity.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mohan Huo
- Department of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuyi Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianwen Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lixue Fang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianqi Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huan Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Dong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Phytochemical Analysis Using UPLC-MS/MS Combined with Network Pharmacology Methods to Explore the Biomarkers for the Quality Control of Lingguizhugan Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:7849032. [PMID: 34976099 PMCID: PMC8716202 DOI: 10.1155/2021/7849032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
As a classic TCM prescription, LGZG has been widely used in clinical prevention and treatment of heart failure, nonalcoholic fatty liver, and hyperlipidemia. However, there are few studies on chemical components in recent years, and the basis of quality evaluation is not sufficient. This study was to find the active ingredients of the Lingguizhugan decoction using UPLC-MS/MS and network pharmacology. By comparing the retention time and MS dates of the reference and self-building database, the cleavage rules of chemical composition whose mass errors are less than 1 ppm(FL less than 3 ppm) are analyzed. On this basis, a network pharmacology method was used to find biomarkers for quantitative analysis. The results show that 149 compounds were preliminaries identified or inferred, including 63 flavonoids, 30 triterpenes, 22 phenylpropanoids, 13 organic acids, 6 lactones, 5 alkaloids, 4 anthraquinones, and 6 other compounds. According to the network pharmacology results, 20 chemical constituents were selected as the biomarkers, which were determined simultaneously for the first time, including poricoic acid A, poricoic acid B, glycyrrhizic acid, glycyrrhetinic acid, liquiritin, isoliquiritin, liquiritigenin, isoliquiritin apioside, cinnamic acid, caffeic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid A, B, and C, atractylenolide I, II, and III, and coumarin. The methodological results show that the linearity, stability, precision, repeatability, and recovery of the method are satisfactory. Therefore, a comprehensive quality assessment system for LGZG was established on the basis of a systematic study of chemical substances and network pharmacology, which provided an important reference for the foundation of pharmacological action and its mechanics.
Collapse
|
10
|
Xu J, Zhou R, Luo L, Dai Y, Feng Y, Dou Z. Quality Evaluation of Decoction Pieces of Gardeniae Fructus Based on Qualitative Analysis of the HPLC Fingerprint and Triple-Q-TOF-MS/MS Combined with Quantitative Analysis of 12 Representative Components. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2219932. [PMID: 35256913 PMCID: PMC8898142 DOI: 10.1155/2022/2219932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
In this study, quality evaluation (QE) of 40 batches of decoction pieces of Gardeniae Fructus (GF) produced by different manufacturers of herbal pieces was performed by qualitative analysis of the HPLC fingerprint and ultra-fast liquid chromatography (UFLC)-triple-Q-TOF-MS/MS combined with quantitative analysis of multiple components, which we established previously for QE of traditional medicine. First, HPLC fingerprints of 40 samples were determined, and the common peaks in the reference fingerprint were assigned. Second, the components of the common peaks in the HPLC fingerprints were identified by UFLC-triple-Q-TOF-MS/MS. Finally, the contents of the components confirmed by reference substances were measured. The results showed that there were 28 common peaks in the HPLC fingerprints of 40 samples. The components of these 28 common peaks were identified as 13 iridoids, 4 crocins, 7 monocyclic monoterpenoids, 3 organic acids, and 1 flavonoid. Of these, a total of 12 components, including 7 iridoids of geniposide, shanzhiside, geniposidic acid, deacetyl asperulosidic acid methyl ester, gardenoside, scandoside methyl ester, and genipin gentiobioside, 2 crocins such as crocin I and crocin II, 1 monocyclic monoterpenoid of jasminoside B, 1 organic acid of chlorogenic acid, and 1 flavonoid of rutin, were unambiguously identified by comparison with reference substances. There were certain differences in the contents of these 12 components among 40 samples. The geniposide content ranged from 37.917 to 72.216 mg/g, and the total content of the 7 iridoids ranged from 59.931 to 94.314 mg/g.
Collapse
Affiliation(s)
- Jing Xu
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Rongrong Zhou
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Ying Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaru Feng
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Zhihua Dou
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|