1
|
Drygalski K, Maciejczyk M, Miksza U, Ustymowicz A, Godzień J, Buczyńska A, Chomentowski A, Walczak I, Pietrowska K, Siemińska J, Pawlukianiec C, Czajkowski P, Fiedorczuk J, Moroz M, Modzelewska B, Zalewska A, Kutryb-Zając B, Kleszczewski T, Ciborowski M, Hady HR, Foretz M, Adamska-Patruno E. New Application of an Old Drug: Anti-Diabetic Properties of Phloroglucinol. Int J Mol Sci 2024; 25:10291. [PMID: 39408621 PMCID: PMC11477119 DOI: 10.3390/ijms251910291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Phloroglucinol (PHG), an analgesic and spasmolytic drug, shows promise in preventing high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. In Wistar rats, 10 weeks of PHG treatment did not prevent HFD-induced weight gain but significantly mitigated fasting hyperglycemia, impaired insulin responses, and liver steatosis. This protective effect was not linked to hepatic lipogenesis or AMP-activated protein kinase (AMPK) activation. Instead, PHG improved mitochondrial function by reducing oxidative stress, enhancing ATP production, and increasing anti-oxidant enzyme activity. PHG also relaxed gastric smooth muscles via potassium channel activation and nitric oxide (NO) signaling, potentially delaying gastric emptying. A pilot intervention in pre-diabetic men confirmed PHG's efficacy in improving postprandial glycemic control and altering lipid metabolism. These findings suggest PHG as a potential therapeutic for NAFLD and insulin resistance, acting through mechanisms involving mitochondrial protection, anti-oxidant activity, and gastric motility modulation. Further clinical evaluation is warranted to explore PHG's full therapeutic potential.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Urszula Miksza
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Andrzej Ustymowicz
- Department of Radiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Joanna Godzień
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Andrzej Chomentowski
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, 80-214 Gdansk, Poland; (I.W.); (B.K.-Z.)
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Julia Siemińska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Cezary Pawlukianiec
- Students Scientific Club “Biochemistry of Civilization Diseases”, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Przemysław Czajkowski
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Joanna Fiedorczuk
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Monika Moroz
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-214 Gdansk, Poland; (I.W.); (B.K.-Z.)
| | - Tomasz Kleszczewski
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Hady Razak Hady
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Marc Foretz
- Institut Cochin, Université Paris Cité, CNRS, INSERM, F-75014 Paris, France;
| | - Edyta Adamska-Patruno
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| |
Collapse
|
2
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
3
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Michalak D, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. The antiglycation potential of H1 receptor antagonists - in vitro studies in bovine serum albumin model and in silico molecular docking analyses. Biomed Pharmacother 2024; 175:116632. [PMID: 38663107 DOI: 10.1016/j.biopha.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
The H1 receptor belongs to the family of rhodopsin-like G-protein-coupled receptors activated by the biogenic amine histamine. H1 receptor antagonists are widely used in the treatment of allergies. However, these drugs could have a much broader spectrum of activity, including hypoglycemic effects, which can broaden the spectrum of their use. The aim of the study was to evaluate the antiglycation potential of twelve H1 receptor antagonists (diphenhydramine, antazoline, promethazine, ketotifen, clemastine, pheniramine, cetirizine, levocetirizine, bilastine, fexofenadine, desloratadine, and loratadine). Bovine serum albumin (BSA) was glycated with sugars (glucose, fructose, galactose, and ribose) and aldehydes (glyoxal and methylglyoxal) in the presence of H1 blockers. The tested substances did not induce a significant decrease in the content of albumin glycation end-products, and the inhibition rate of glycoxidation was not influenced by the chemical structure or generation of H1 blockers. None of the tested H1 receptor antagonists exhibited strong antiglycation activity. Antiglycemic potential of H1 blockers could be attributed to their antioxidant and anti-inflammatory activity, as well as their effects on carbohydrate metabolism/metabolic balance at the systemic level.
Collapse
Affiliation(s)
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Poland
| | - Daniel Michalak
- "Biochemistry of Civilization Diseases" Student Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24a, Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
4
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Michalak D, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists-In Vitro Studies and a Systematic Literature Review. Pharmaceuticals (Basel) 2023; 16:1273. [PMID: 37765081 PMCID: PMC10535796 DOI: 10.3390/ph16091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Histamine H2 receptor antagonists are a group of drugs that inhibit gastric juice secretion in gastrointestinal diseases. However, there is evidence to suggest that H2 blockers have a broader spectrum of activity. The antioxidant properties of H2 blockers have not been fully elucidated, and their anti-glycation potential has not been studied to date. Therefore, this is the first study to compare the antioxidant and antiglycation potentials of the most popular H2 antagonists (ranitidine, cimetidine, and famotidine) on protein glycoxidation in vitro. Methods: Bovine serum albumin (BSA) was glycated using sugars (glucose, fructose, galactose, and ribose) as well as aldehydes (glyoxal and methylglyoxal). Results: In the analyzed group of drugs, ranitidine was the only H2 blocker that significantly inhibited BSA glycation in all tested models. The contents of protein carbonyls, protein glycoxidation products (↓dityrosine, ↓N-formylkynurenine), and early (↓Amadori products) and late-stage (↓AGEs) protein glycation products decreased in samples of glycated BSA with the addition of ranitidine relative to BSA with the addition of the glycating agents. The anti-glycation potential of ranitidine was comparable to those of aminoguanidine and Trolox. In the molecular docking analysis, ranitidine was characterized by the lowest binding energy for BSA sites and could compete with protein amino groups for the addition of carbonyl groups. H2 blockers also scavenge free radicals. The strongest antioxidant properties are found in ranitidine, which additionally has the ability to bind transition metal ions. The systematic literature review also revealed that the anti-glycation effects of ranitidine could be attributed to its antioxidant properties. Conclusions: Ranitidine showed anti-glycation and antioxidant properties. Further research is needed, particularly in patients with diseases that promote protein glycation.
Collapse
Affiliation(s)
- Grzegorz Biedrzycki
- Hospital Pharmacy, Provincial Specialist Hospital in Olsztyn, 10-900 Olsztyn, Poland
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Daniel Michalak
- Students Scientific Club “Biochemistry of Civilization Diseases”, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Nesterowicz M, Lauko KK, Żendzian-Piotrowska M, Ładny JR, Zalewska A, Maciejczyk M. Agomelatine's antiglycoxidative action- In vitro and in silico research and systematic literature review. Front Psychiatry 2023; 14:1164459. [PMID: 37181902 PMCID: PMC10166843 DOI: 10.3389/fpsyt.2023.1164459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Agomelatine is an atypical antidepressant drug enhancing norepinephrine and dopamine liberation; nevertheless, additional mechanisms are considered for the drug's pharmacological action. Since protein glycoxidation plays a crucial role in depression pathogenesis, agomelatine's impact on carbonyl/oxidative stress was the research purpose. Methods Reactive oxygen species scavenging (hydroxyl radical, hydrogen peroxide, and nitrogen oxide) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating assays) of agomelatine were marked. Agomelatine's antiglycoxidation properties were assayed in sugars (glucose, fructose, and galactose) and aldehydes- (glyoxal and methylglyoxal) glycated bovine serum albumin (BSA). Aminoguanidine and α-lipoic acid were used as standard glycation/oxidation inhibitors. Results Agomelatine did not show meaningful scavenging/antioxidant capacity vs. standards. Sugars/aldehydes increased glycation (↑kynurenine, ↑N-formylkynurenine, ↑dityrosine, ↑advanced glycation end products, and ↑β-amyloid) and oxidation (↑protein carbonyls and ↑advanced oxidation protein products) parameters in addition to BSA. Standards restored BSA baselines of glycation and oxidation markers, unlike agomelatine which sometimes even intensifies glycation above BSA + glycators levels. Molecular docking analysis of agomelatine in BSA demonstrated its very weak binding affinity. Discussion Agomelatine's very low affinity to the BSA could proclaim non-specific bonding and simplify attachment of glycation factors. Thereby, the drug may stimulate brain adaptation to carbonyl/oxidative stress as the systematic review indicates. Moreover, the drug's active metabolites could exert an antiglycoxidative effect.
Collapse
Affiliation(s)
- Miłosz Nesterowicz
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | - Kamil Klaudiusz Lauko
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | | | - Jerzy Robert Ładny
- 1st Department of General Surgery and Endocrinology, Medical University of Bialystok, Białystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
6
|
How to Restore Oxidative Balance That Was Disrupted by SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23126377. [PMID: 35742820 PMCID: PMC9223498 DOI: 10.3390/ijms23126377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus 2019 disease (COVID-19) is caused by different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in December of 2019. COVID-19 pathogenesis is complex and involves a dysregulated renin angiotensin system. Severe courses of the disease are associated with a dysregulated immunological response known as cytokine storm. Many scientists have demonstrated that SARS-CoV-2 impacts oxidative homeostasis and stimulates the production of reactive oxygen species (ROS). In addition, the virus inhibits glutathione (GSH) and nuclear factor erythroid 2-related factor 2 (NRF2)-a major antioxidant which induces expression of protective proteins and prevents ROS damage. Furthermore, the virus stimulates NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes which play a significant role in inducing a cytokine storm. A variety of agents with antioxidant properties have shown beneficial effects in experimental and clinical studies of COVID-19. This review aims to present mechanisms of oxidative stress induced by SARS-CoV-2 and to discuss whether antioxidative drugs can counteract detrimental outcomes of a cytokine storm.
Collapse
|
7
|
The relationship between treatment response and precursors of advanced glycation end-products in type 2 diabetes: a prospective case-control study. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Choromańska B, Myśliwiec P, Kozłowski T, Łuba M, Wojskowicz P, Dadan J, Myśliwiec H, Choromańska K, Makarewicz K, Zalewska A, Maciejczyk M. Cross-Talk Between Nitrosative Stress, Inflammation and Hypoxia-Inducible Factor in Patients with Adrenal Masses. J Inflamm Res 2021; 14:6317-6330. [PMID: 34876829 PMCID: PMC8643214 DOI: 10.2147/jir.s337910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Adrenal masses are the most common of all human tumors. The role of nitrosative stress and inflammation in cancer development has already been demonstrated. However, it is not known whether they are involved in the pathogenesis of adrenal tumors. The aim of the study was to investigate a cross-talk between nitrosative stress, inflammation and hypoxia-inducible factor (HIF-1α) in 75 patients with different types of adrenal masses (non-functional incidentaloma, pheochromocytoma and Cushing's/Conn's adenoma). Methods The plasma concentrations of total nitric oxide (NO), S-nitrosothiols, peroxynitrite nitrotyrosine and the activity of serum myeloperoxidase (MPO) were measured spectrophotometrically, whereas concentrations of interleukin 1 beta (IL-1β), tumor necrosis factor α (TNF-α) and hypoxia-inducible factor 1 alpha (HIF-1α) were measured using commercial ELISA kits. The control group consisted of 50 healthy people matched by age and sex to the study group. The number of subjects was determined a priori based on our previous experiment (power of the test = 0.9; α = 0.05). Results We found significantly higher nitrosative stress (↑nitric oxide, ↑peroxynitrite, ↑S-nitrosothiols and ↑nitrotyrosine) in the plasma of patients with adrenal tumors, which was accompanied by increased inflammatory (↑myeloperoxidase, ↑interleukin 1 beta and ↑tumor necrosis factor α) and hypoxia (HIF-1α) biomarkers. Peroxynitrite and nitrotyrosine were positively correlated with aldosterone level. Nitrosative stress was also associated with inflammation and HIF-1α. Interestingly, plasma nitrotyrosine and serum MPO differentiated patients with adrenal tumor from healthy individuals with high sensitivity and specificity. Moreover, using multivariate regression analysis, we showed that ONOO- and IL-1β depended on cortisol level, while ONOO-, nitrotyrosine and HIF-1α were associated with aldosterone. Unfortunately, none of the assessed biomarkers differentiated between tumor types studied, suggesting that the severity of nitrosative damage and inflammation are similar in patients with incidentaloma, pheochromocytoma, and Cushing's or Conn's adenoma. Conclusion Adrenal tumors are associated with increased protein nitration/S-nitrosylation and inflammation.
Collapse
Affiliation(s)
- Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Myśliwiec
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kozłowski
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Łuba
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wojskowicz
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Dadan
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Baskal S, Post A, Kremer D, Bollenbach A, Bakker SJL, Tsikas D. Urinary excretion of amino acids and their advanced glycation end-products (AGEs) in adult kidney transplant recipients with emphasis on lysine: furosine excretion is associated with cardiovascular and all-cause mortality. Amino Acids 2021; 53:1679-1693. [PMID: 34693489 PMCID: PMC8592953 DOI: 10.1007/s00726-021-03091-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Arginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic NG- and Nε-methylation and non-enzymatic NG- and Nε-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as − 24% for CEL, and as much as − 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-l-cysteine (CEC) and NG-carboxyethylarginine (CEA)]. Simultaneous GC–MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation.
Collapse
Affiliation(s)
- Svetlana Baskal
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Drygalski K, Fereniec E, Zalewska A, Krętowski A, Żendzian-Piotrowska M, Maciejczyk M. Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomed Pharmacother 2021; 142:111958. [PMID: 34333287 DOI: 10.1016/j.biopha.2021.111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The treatment of diabetes mellitus aftermaths became one of medicine's most significant therapeutical and financial issues in the XXI century. Most of which are related to protein glycation and oxidative stress caused by long lasting periods of hyperglycemia. Thus, even within a venerable one, searching for new drugs, displaying anti-glycation and anti-oxidative properties seem useful as an additive therapy of diabetes. In this paper, we assessed the anti-glycating properties of phloroglucinol, a drug discovered in the XIX century and still used in many countries for its antispasmodic action. Herewith, we present its effect on protein glycation, glycoxidation, and oxidative damage in an albumin glycation/oxidation model and HepG2 cells treated with high glucose concentrations. The phloroglucinol showed the strongest and the widest protective effect within all analyzed antiglycating (aminoguanidine, pioglitazone) and anti-oxidative (vitamin C, GSH) agents. To the very best of our knowledge, this is the first study showing the properties of phloroglucinol in vitro what once is proven in other models might deepen its clinical applications.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
11
|
Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5593589. [PMID: 34336104 PMCID: PMC8294983 DOI: 10.1155/2021/5593589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been recognized as potent antioxidant agents. Since SGLT2i are nephroprotective drugs, we aimed to examine the urine antioxidant status in patients with type 2 diabetes mellitus (T2DM). One hundred and one subjects participated in this study, including 37 T2DM patients treated with SGLT2i, 31 T2DM patients not using SGLT2i, and 33 healthy individuals serving as a control group. Total antioxidant capacity (TAC), superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), free thiol groups (R-SH, sulfhydryl groups), and catalase (CAT) activity, as well as glucose concentration, were assessed in the urine of all participants. Urine SOD and MnSOD activity were significantly higher among T2DM patients treated with SGLT2i than T2DM patients without SGLT2i treatment (p = 0.009 and p = 0.003, respectively) and to the healthy controls (p = 0.002 and p = 0.001, respectively). TAC was significantly lower in patients with T2DM treated with SGLT2i when compared to those not treated and healthy subjects (p = 0.036 and p = 0.019, respectively). It could be hypothesized that the mechanism by which SGLT2i provides nephroprotective effects involves improvement of the SOD antioxidant activity. However, lower TAC might impose higher OS (oxidative stress), and elevation of SOD activity might be a compensatory mechanism.
Collapse
|
12
|
Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545330. [PMID: 33897941 PMCID: PMC8052150 DOI: 10.1155/2021/5545330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral stroke is a serious worldwide health problem, as can be seen by the global epidemic of the disease. In this disorder, when the blood flow is compromised by ruptures or blocked arteries, sudden death of neurons is observed as a result of a lack of oxygen and nutrients. Numerous severe problems and frequent complications also exist in stroke patients; therefore, there is an urgent need to develop new therapeutic, diagnostic, and prognostic methods for the disease. At present, the diagnosis of stroke is based on a neurological examination, medical history, and neuroimaging, due to the fact that rapid and noninvasive diagnostic tests are unavailable. Nevertheless, oxidative stress and inflammation are considered key factors in stroke pathogenesis. Oxygen free radicals are responsible for oxidation of lipids, proteins, and DNA/RNA, which in turn contributes to oxidative damage of the brain. Toxic products of the oxidation reactions act cytostatically on the cell by damaging cell membranes and leading to neuronal death by apoptosis or necrosis. Thus, it seems that redox/inflammatory biomarkers might be used in the diagnosis of the disease. Nowadays, saliva is of increasing interest in clinical laboratory medicine. Redox biomarkers could be obtained easily, noninvasively, cheaply, and stress-free from saliva. This minireview is aimed at presenting the current knowledge concerning the use of salivary biomarkers of oxidative stress and inflammation in the diagnosis and prognosis of stroke.
Collapse
|