1
|
Qian X, Liu Y, Wei X, Chen X, Rong G, Hu X. Unique Gut Microbiome and Metabolic Profiles in Chinese Workers Exposed to Dust: Insights From a Case-Control Study. J Occup Environ Med 2024; 66:1072-1082. [PMID: 39393924 DOI: 10.1097/jom.0000000000003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
OBJECTIVES This study aimed to identify distinct gut microbiome and serum metabolic features in workers exposed to dust compared to healthy controls. METHODS A case-control study was conducted with dust-exposed workers without silicosis and age-matched healthy controls. Gut microbiome composition was analyzed using 16S rRNA sequencing, and serum and fecal metabolomic profiles were assessed by LC-MS. RESULTS Dust-exposed workers showed higher levels of Blautia and Trichoderma and lower levels of Anaplasma , Aspergillus , Plasmodiophoromycetes, and Escherichia coli-Shigella . Metabolites such as indole-3-acetate and gentamicin C1a were downregulated, while adenine, 2-phenylacetamide, and 4-pyridoxic acid were upregulated. CONCLUSIONS Blautia spp. were linked to altered metabolites in dust-exposed workers, suggesting microbiome-metabolite interactions that may affect silicosis progression. However, the small sample size and cross-sectional design limit generalizability, and further longitudinal studies are needed.
Collapse
Affiliation(s)
- Xiaojun Qian
- From the Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Hefei, Hefei, Anhui, China (X.Q., X.W., X.C., G.R.); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China (X.Q., Y.L.); Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China (X.Q.); and Department of Science and Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China (X.H.)
| | | | | | | | | | | |
Collapse
|
2
|
Zhang J, Zhang J, Yao Z, Shao W, Song Y, Tang W, Li B. GAMG ameliorates silica-induced pulmonary inflammation and fibrosis via the regulation of EMT and NLRP3/TGF-β1/Smad signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117124. [PMID: 39342756 DOI: 10.1016/j.ecoenv.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models. GAMG significantly improved fibrotic pathological changes and collagen deposition in the lungs, alleviated lung inflammation in the BALF, reduced the expression of TNF-α, IL-6, NLRP3, TGF-β1, vimentin, Col-Ⅰ, N-cadherin, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Moreover, the dose of 100 mg/kg GAMG can effectively prevent early-stage silicosis, while that of 200 mg/kg was recommended for advanced silicosis. In vitro and in vivo study verified that GAMG can suppress EMT through the NLRP3/TGF-β1/Smad2/3 signaling pathway. Therefore, GAMG could be a promising preventive (early-stage silicosis) and therapeutic (advanced silicosis) strategy, which provides a new idea for formulating prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| | - Jiazhen Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Zongze Yao
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
3
|
Chen F, Sun J, Ye R, Virk TL, Liu Q, Yuan Y, Xu X. Taurine Protects against Silica Nanoparticle-Induced Apoptosis and Inflammatory Response via Inhibition of Oxidative Stress in Porcine Ovarian Granulosa Cells. Animals (Basel) 2024; 14:2959. [PMID: 39457890 PMCID: PMC11506286 DOI: 10.3390/ani14202959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Silica nanoparticles (SNPs) induce reproductive toxicity through ROS production, which significantly limits their application. The protective effects of taurine (Tau) against SNP-induced reproductive toxicity remain unexplored. So this study aims to investigate the impact of Tau on SNP-induced porcine ovarian granulosa cell toxicity. In vitro, granulosa cells were exposed to SNPs combined with Tau. The localization of SNPs was determined by TEM. Cell viability was examined by CCK-8 assay. ROS levels were measured by CLSM and FCM. SOD and CAT levels were evaluated using ELISA and qPCR. Cell apoptosis was detected by FCM, and pro-inflammatory cytokine transcription levels were measured by qPCR. The results showed that SNPs significantly decreased cell viability, while increased cell apoptosis and ROS levels. Moreover, SOD and CAT were decreased, while IFN-α, IFN-β, IL-1β, and IL-6 were increased after SNP exposures. Tau significantly decreased intracellular ROS, while it increased SOD and CAT compared to SNPs alone. Additionally, Tau exhibited anti-inflammatory effects and inhibited cell apoptosis. On the whole, these findings suggest that Tau mitigates SNP-induced cytotoxicity by reducing oxidative stress, inflammatory response, and cell apoptosis. Tau may be an effective strategy to alleviate SNP-induced toxicity and holds promising application prospects in the animal husbandry and veterinary industry.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiarong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Rongrong Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Tuba Latif Virk
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Qi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Li H, Liao X, Lan M, He J, Gao J, Fan Z, Huang J, Wu X, Chen J, Sun G. Arctigenin Modulates Adipogenic-Osteogenic Balance in the Bone Marrow Microenvironment of Ovariectomized Rats via the MEK1/PPARγ/Wnt/β-Catenin Pathway. Chem Biol Drug Des 2024; 104:e14625. [PMID: 39289148 DOI: 10.1111/cbdd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Arctigenin (Ar) is a promising therapeutic candidate for postmenopausal osteoporosis (PMOP). This study explores its mechanism by examining its effects on adipogenesis and osteogenesis in ovariectomized (OVX) rats. In vitro, Ar effectively suppressed the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from OVX rats, reducing lipid droplet formation and downregulating proteins associated with lipid synthesis. In vivo, Ar treatment significantly reduced bone loss, inhibited adipocyte development, improved lipid metabolism, and promoted bone formation in OVX rats. Mechanistically, Ar inhibited the phosphorylation of Mitogen-Activated Protein Kinase 1 (MEK1), downregulated Peroxisome Proliferator-Activated Receptor gamma (PPARγ), promoted the accumulation of β-catenin in the nucleus, and prevented the direct binding of PPARγ to β-catenin in BMSCs. This regulation of the PPARγ/Wnt signaling axis underlies its dual role in inhibiting adipogenesis and promoting osteogenesis. Notably, co-treatment with rosiglitazone (RGZ) reversed the effects of Ar on adipogenesis and osteogenesis without affecting MEK1 inhibition. These findings offer valuable insights into arctigenin's potential as a therapeutic strategy for PMOP by modulating MEK1 signaling and regulating the PPARγ/Wnt axis.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xingen Liao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Min Lan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jianying He
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingping Gao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Zhiqiang Fan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiayu Huang
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xin Wu
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiaxin Chen
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Guicai Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Lu X, Han Y, Zhang Y, Li R, Xu J, Yang J, Yao J, Lv Z. An integrated network pharmacology and molecular docking approach to reveal the role of Arctigenin against Cutibacterium acnes-induced skin inflammation by targeting the CYP19A1. Chem Biol Drug Des 2024; 104:e14598. [PMID: 39090783 DOI: 10.1111/cbdd.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1β to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17β-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Yanzhong Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Yongkang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Rui Li
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jiaoyan Xu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Zhihai Lv
- Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
HU Y, LIU X, ZHAO P, WU J, YAN X, HOU R, WANG X, YANG F, TIAN X, LI J. Integration of serum pharmacochemistry with network pharmacology to reveal the potential mechanism of Yangqing Chenfei formula for the treatment of silicosis. J TRADIT CHIN MED 2024; 44:784-793. [PMID: 39066539 PMCID: PMC11337247 DOI: 10.19852/j.cnki.jtcm.20240610.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To explore the mechanisms of Yangqing Chenfei formula (, YCF) in the treatment of silicosis through a comprehensive strategy consisting of serum pharmacochemistry, network pharmacology analysis, and in vitro validation. METHODS An ultrahigh-performance liquid chroma-tography-tandem mass spectrometry method was used to confirm the active components in YCF-medicated serum. Then, we obtained targets for active components and genes for silicosis from multiple databases. Furthermore, a protein-protein interaction network was constructed, and Kyoto Encyclopedia of Genes and Genomes pathway and biological process analyses were conducted to elucidate the mechanisms of YCF for the treatment of silicosis. Finally, we validated the important components and mechanisms in vitro. RESULTS Altogether, 19 active components were identified from rat serum after YCF administration. We identified 724 targets for 19 components, which were mainly related to inflammation [phosphatidy linositol 3 kinase/protein kinase B, forkhead box O, hypoxia inducible factor, and T-cell receptor signaling pathway, nitric oxide biosynthetic process], fibrotic processes [vascular endothelial growth factor signaling pathway, extracellular signal regulated kinase (ERK) 1 and ERK2 cascade, smooth muscle cell proliferation], and apoptosis (negative regulation of apoptotic process). In addition, 218 genes for silicosis were identified and were mainly associated with the inflammatory response and immune process [cytokine?cytokine receptor interaction, tumor necrosis factor alpha (TNF-α), toll-like receptor, and nucleotide binding oligomerization domain-like receptor signaling pathway]. Taking an intersection of active component targets and silicosis genes, we obtained 61 common genes that were mainly related to the inflammatory response and apoptosis, such as the phosphatidylinositol-3-kinase/protein kinase B signaling pathway, mitogen activated protein kinases signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, biosynthesis of nitric oxide, and apoptotic process. In the herb-component-gene-pathway network, paeoniflorin, rutin and nobiletin targeted the most genes. In vitro, paeoniflorin, rutin and nobiletin decreased the mRNA levels of inflammatory factors [interleukin (IL)-6, TNF-α, and IL-1β], suppressed p-AKT and cleaved caspase-3, and increased B cell lymphoma (Bcl)-2 protein expression in silica-induced macrophages in a concentration-dependent manner. CONCLUSION YCF could significantly relieve the inflammatory response of silicosis via suppression of the AKT/Bcl-2/Caspase-3 pathway.
Collapse
Affiliation(s)
- Yuanyuan HU
- 1 Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinguang LIU
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng ZHAO
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinyan WU
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinhua YAN
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Runsu HOU
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiangcheng WANG
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Fan YANG
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinrong TIAN
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiansheng LI
- 2 Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China. Zhengzhou, 450046, China
- 3 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
7
|
Ribeiro PC, Ferreira TPT, Martins MA, Martins PMRES, de Castro HA. Inflammatory biomarkers in workers exposed to silica dust: integrative review. Rev Bras Med Trab 2024; 22:e20231224. [PMID: 39606764 PMCID: PMC11595387 DOI: 10.47626/1679-4435-2023-1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2024] Open
Abstract
Introduction Silicosis is a severe, progressive, fibrosing lung disease caused by the inhalation of free crystalline silica dust; it is the most prevalent pneumoconiosis worldwide. It is associated with a chronic inflammatory process triggered by silica particles in the pulmonary alveoli. Alveolar macrophages play a key role in the pathogenesis of silicosis, with additional contributions from polymorphonuclear cells, epithelial cells, and the release of inflammatory mediators. Objectives To compile updated information on key inflammatory biomarkers in workers exposed to silica. Methods Integrative review to discuss the state of the art regarding major biomarkers used in the early diagnosis and search for treatments for workers exposed to silica. The SciELO and PubMed databases were searched for articles published from 2012 to 2022. Results The search strategy retrieved 111 articles, of which 29 were duplicates across the two databases. Of the 82 remaining articles, 67 were excluded after screening of abstracts (review articles, articles on polymorphisms/genetics, and animal studies). Fifteen articles were read in full; of these, two were eliminated as they did not meet the inclusion criteria. Of the 13 articles retained for analysis, 12 were cross-sectional and only 1 was a prospective observational study. Conclusions This integrative review identified the importance of cytokines in silica-related illness. This can help encourage future research and guide the development of new therapies and interventions for silicosis.
Collapse
Affiliation(s)
- Patricia Canto Ribeiro
- Escola Nacional de Saúde Pública Sérgio
Arouca, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Marco Aurélio Martins
- Laboratório de Inflamação do Instituto Oswaldo
Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
8
|
Almeaqli MT, Alaidaa Y, Alnajjar FM, Al Shararh AS, Alharbi DS, Almslmani YI, Alotibi YA, Alrashidi HS, Alshehri WA, Hassan HM, Al-Gayyar MMH. Therapeutic Effects of Arctiin on Alzheimer's Disease-like Model in Rats by Reducing Oxidative Stress, Inflammasomes and Fibrosis. Curr Alzheimer Res 2024; 21:276-288. [PMID: 39136502 DOI: 10.2174/0115672050333388240801043509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) affects approximately 50 million people globally and is expected to triple by 2050. Arctiin is a lignan found in the Arctium lappa L. plant. Arctiin possesses anti-proliferative, antioxidative and anti-adipogenic. OBJECTIVES We aimed to explore the potential therapeutic effects of Arctiin on rats with AD by evaluating the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. METHODS AD was induced in rats by administering 70 mg/kg of aluminum chloride through intraperitoneal injection daily for six weeks. After inducing AD, some rats were treated with 25 mg/kg of Arctiin daily for three weeks through oral gavage. Furthermore, to examine the brain tissue structure, hippocampal sections were stained with hematoxylin/eosin and anti-TLR4 antibodies. The collected samples were analyzed for gene expression and protein levels of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. RESULTS In behavioral tests, rats showed a significant improvement in their behavior when treated with Arctiin. Microimages stained with hematoxylin/eosin showed that Arctiin helped to improve the structure and cohesion of the hippocampus, which was previously impaired by AD. Furthermore, Arctiin reduced the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. CONCLUSION Arctiin can enhance rats' behavior and structure of the hippocampus in AD rats. This is achieved through its ability to reduce the expression of both TLR4 and NLRP3, hence inhibiting the inflammasome pathway. Furthermore, Arctiin can improve tissue fibrosis by regulating STAT3 and TGF-β. Lastly, it can block the cell cycle proteins cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mohamed T Almeaqli
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed Alaidaa
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Faisal M Alnajjar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah S Al Shararh
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Danah S Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed I Almslmani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yousef A Alotibi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hani S Alrashidi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Wael A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
9
|
Lv C, Yang J, Zhao L, Zou Z, Kang C, Zhang Q, Wu C, Yang L, Cheng C, Zhao Y, Liao Q, Hu X, Li C, Sun X, Jin M. Bacillus subtilis partially inhibits African swine fever virus infection in vivo and in vitro based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. J Virol 2023; 97:e0071923. [PMID: 37929962 PMCID: PMC10688316 DOI: 10.1128/jvi.00719-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhong Zou
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Li Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chuxing Cheng
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qi Liao
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Xiaotong Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chengfei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Li M, Pan Z, He Q, Xiao J, Chen B, Wang F, Kang P, Luo H, Li J, Zeng J, Li S, Yang J, Wang H, Zhou C. Arctiin attenuates iron overload‑induced osteoporosis by regulating the PI3K/Akt pathway. Int J Mol Med 2023; 52:108. [PMID: 37800616 PMCID: PMC10558215 DOI: 10.3892/ijmm.2023.5311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload‑induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3‑E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3‑E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3‑E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis‑related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3‑E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3‑E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3‑E1 cells. ARC not only positively regulated the anti‑apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti‑apoptotic, antioxidant and osteogenic properties.
Collapse
Affiliation(s)
- Miao Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qi He
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fanchen Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Pan Kang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haoran Luo
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Chi Zhou
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, Guangdong 525022, P.R. China
| |
Collapse
|
11
|
Alfair BM, Jabarti AA, Albalawi SS, Khodir AE, Al-Gayyar MM. Arctiin Inhibits Inflammation, Fibrosis, and Tumor Cell Migration in Rats With Ehrlich Solid Carcinoma. Cureus 2023; 15:e44987. [PMID: 37701157 PMCID: PMC10495034 DOI: 10.7759/cureus.44987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES ESC or Ehrlich solid carcinoma is a type of tumor originating from a spontaneous mammary adenocarcinoma in mice. It is a highly aggressive and fast-growing carcinoma that can create a solid mass when inserted under the skin. Its solid, undifferentiated form makes it an ideal model for researching cancer biology, tumor immunology, and testing various anti-cancer treatments. Additionally, arctiin has multiple beneficial properties, such as anti-proliferative, anti-oxidative, anti-adipogenic, and anti-bacterial. This study aimed to explore the potential anti-cancer benefits of arctiin in rats with ESC while also analyzing its effects on cell fibrosis markers, tumor cell migration, and inflammasome pathways. METHODS Rats were given a tumor in their left hind limb via an intramuscular injection consisting of 2×106 cells. After eight days, some of the rats received a daily oral dose of 30 mg/kg of arctiin for three weeks. Muscle samples were observed under an electron microscope or stained with hematoxylin/eosin. Additionally, gene expression and protein levels of toll-like receptor 4 (TLR4), NLR family pyrin domain containing 3 (NLRP3), signal transducer and activator of transcription 3 (STAT3), transforming growth factor (TGF)-β, endothelial growth factor (VEGF), and cyclin D1 were assessed in another part of the muscle samples. RESULTS When ESC rats were given arctiin as a treatment, their mean survival time increased and their tumor volume and weight decreased. Additionally, when tumor tissue was examined under an electron microscope, it showed signs of pleomorphic cells, necrosis, nuclear fragmentation, membrane damage with cytoplasmic content spilling, and loss of cellular junction. The stained sections with hematoxylin/eosin showed a dense cellular mass and compressed, degenerated, and atrophied muscle. However, treatment with arctiin improved all these effects. Finally, the expression of TLR4, NLRP3, STAT3, TGF-β, VEGF, and cyclin D1 was significantly reduced with arctiin treatment. CONCLUSIONS Through the use of arctiin, tumor size and weight were effectively reduced, leading to an increase in the average survival time of rats and an improvement in muscle structure. Additional research has shown that arctiin is able to suppress inflammation, fibrosis, and the migration of tumor cells by inhibiting STAT3, TGF-β1, TLR4, NLRP3, VEGF, and cyclin D1.
Collapse
Affiliation(s)
| | | | | | - Ahmed E Khodir
- Pharmacology and Toxicology, Horus University, New Damietta, EGY
| | - Mohammed M Al-Gayyar
- Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
- Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, EGY
| |
Collapse
|
12
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
13
|
Wang Y, Jiang H, Wang L, Gan H, Xiao X, Huang L, Li W, Li Z. Arctiin alleviates functional constipation by enhancing intestinal motility in mice. Exp Ther Med 2023; 25:199. [PMID: 37090075 PMCID: PMC10119619 DOI: 10.3892/etm.2023.11898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 04/25/2023] Open
Abstract
Functional constipation (FC), a common symptom that is primarily associated with intestinal motility dysfunction, is a common problem worldwide. Arctiin (Arc) is a lignan glycoside isolated from the Chinese herbal medicine Arctium lappa L., which is a health food in China. The present study aimed to evaluate the laxative effects of Arc against FC in mice. A model of FC induced by loperamide (5 mg/kg) was established in male Institute of Cancer Research (ICR) mice. Arc was administered at a dose of 100 mg/kg as a protective agent. The faecal status, intestinal motility and histological analyses were evaluated. Furthermore, the levels of gastrointestinal motility-associated neurotransmitters, such as motilin (MTL), nitric oxide (NO), and brain-derived neurotrophic factor (BDNF) and the protective effect of Arc on interstitial cells of Cajal (ICC) were assessed. Arc treatment reversed the loperamide-induced reduction in faecal number and water content and the intestinal transit ratio in ICR mice. Histological analysis confirmed that Arc administration mitigated colonic injury. Moreover, Arc treatment increased levels of motilin and brain-derived neurotrophic factor while decreasing nitric oxide levels and ICC injury in the colon of FC mice. Arc decreased inflammation induction and aquaporin expression levels. Owing to its pro-intestinal motility property, Arc was shown to have a protective effect against FC and may thus serve as a promising therapeutic strategy for the management of FC.
Collapse
Affiliation(s)
- Yujin Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Hua Jiang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
- Correspondence to: Mrs. Hua Jiang, The First Clinical Medical College, Shaanxi University of Chinese Medicine, Qindu, Xianyang, Shaanxi 712046, P.R. China
| | - Lijun Wang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Huiping Gan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xinchun Xiao
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Liangwu Huang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Wenxin Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Zongrun Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
14
|
Xiong D, Gao F, Shao J, Pan Y, Wang S, Wei D, Ye S, Chen Y, Chen R, Yue B, Li J, Chen J. Arctiin-encapsulated DSPE-PEG bubble-like nanoparticles inhibit alveolar epithelial type 2 cell senescence to alleviate pulmonary fibrosis via the p38/p53/p21 pathway. Front Pharmacol 2023; 14:1141800. [PMID: 36998607 PMCID: PMC10043219 DOI: 10.3389/fphar.2023.1141800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis is a severe and deadly form of diffuse parenchymal lung disease and treatment options are few. Alveolar epithelial type 2 (AEC2) cell senescence is implicated in the pathogenies of IPF. A major bioactive compound from the traditional Chinese medicine Fructus arctii, arctiin (ARC) has robust anti-inflammatory, anti-senescence, and anti-fibrosis functions. However, the potential therapeutic effects of ARC on IPF and the underlying mechanisms involved are still unknown.Methods: First of all, ARC was identified as an active ingredient by network pharmacology analysis and enrichment analysis of F. arctii in treating IPF. We developed ARC-encapsulated DSPE-PEG bubble-like nanoparticles (ARC@DPBNPs) to increase ARC hydrophilicity and achieve high pulmonary delivery efficiency. C57BL/6 mice were used to establish a bleomycin (BLM)-induced pulmonary fibrosis model for assessing the treatment effect of ARC@DPBNPs on lung fibrosis and the anti-senescence properties of AEC2. Meanwhile, p38/p53 signaling in AEC2 was detected in IPF lungs, BLM-induced mice, and an A549 senescence model. The effects of ARC@DPBNPs on p38/p53/p21 were assessed in vivo and in vitro.Results: Pulmonary route of administration of ARC@DPBNPs protected mice against BLM-induced pulmonary fibrosis without causing significant damage to the heart, liver, spleen, or kidney. ARC@DPBNPs blocked BLM-induced AEC2 senescence in vivo and in vitro. The p38/p53/p21 signaling axis was significantly activated in the lung tissues of patients with IPF, senescent AEC2, and BLM-induced lung fibrosis. ARC@DPBNPs attenuated AEC2 senescence and pulmonary fibrosis by inhibiting the p38/p53/p21 pathway.Conclusion: Our data suggest that the p38/p53/p21 signaling axis plays a pivotal role in AEC2 senescence in pulmonary fibrosis. The p38/p53/p21 signaling axis inhibition by ARC@DPBNPs provides an innovative approach to treating pulmonary fibrosis in clinical settings.
Collapse
Affiliation(s)
- Dian Xiong
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Fei Gao
- Department of Emergency, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Department of Emergency, Nanjing General Hospital of Nanjing Military Region, Nanjing, China
| | - Jingbo Shao
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yueyun Pan
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Song Wang
- Department of Intensive Care Medicine, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Dong Wei
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Shugao Ye
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yuan Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Bingqing Yue
- Department of Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Li
- Department of Chemistry, Fudan University, Shanghai, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| | - Jingyu Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| |
Collapse
|
15
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
16
|
Zhou H, Zhang Q, Huang W, Zhou S, Wang Y, Zeng X, Wang H, Xie W, Kong H. NLRP3 Inflammasome Mediates Silica-induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-derived Organotypic Models. Int J Biol Sci 2023; 19:1875-1893. [PMID: 37063430 PMCID: PMC10092774 DOI: 10.7150/ijbs.80605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Silica-induced lung epithelial injury and fibrosis are vital pathogeneses of silicosis. Although the NOD-like receptor protein 3 (NLRP3) inflammasome contributes to silica-induced chronic lung inflammation, its role in epithelial injury and regeneration remains unclear. Here, using mouse lung stem/progenitor cell-derived organotypic systems, including 2D air-liquid interface and 3D organoid cultures, we investigated the effects of the NLRP3 inflammasome on airway epithelial phenotype and function, cellular injury and regeneration, and the potential mechanisms. Our data showed that silica-induced NLRP3 inflammasome activation disrupted the epithelial architecture, impaired mucociliary clearance, induced cellular hyperplasia and the epithelial-mesenchymal transition in 2D culture, and inhibited organoid development in 3D system. Moreover, abnormal expression of the stem/progenitor cell markers SOX2 and SOX9 was observed in the 2D and 3D organotypic models after sustained silica stimulation. Notably, these silica-induced structural and functional abnormalities were ameliorated by MCC950, a selective NLRP3 inflammasome inhibitor. Further studies indicated that the NF-κB, Shh-Gli and Wnt/β-catenin pathways were involved in NLRP3 inflammasome-mediated abnormal differentiation and dysfunction of the airway epithelium. Thus, prolonged NLRP3 inflammasome activation caused injury and aberrant lung epithelial regeneration, suggesting that the NLRP3 inflammasome is a pivotal target for regulating tissue repair in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiping Xie
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| | - Hui Kong
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| |
Collapse
|
17
|
Peng F, Dai J, Qian Q, Cao X, Wang L, Zhu M, Han S, Liu W, Li Y, Xue T, Chen X, Yang X, Wang J, Wang H, Li T, Ding C. Serum metabolic profiling of coal worker's pneumoconiosis using untargeted lipidomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85444-85453. [PMID: 35796929 DOI: 10.1007/s11356-022-21905-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In this work, untargeted lipidomics was employed to analyze the effects of coal dust exposure on serum metabolite profiles. Furthermore, the potential of differential metabolites as novel biomarkers for diagnosis was investigated by binary logistic classification model. Nineteen differential metabolites were found among the three groups. The compounds were enriched in pathways associated with linoleic acid metabolism and pyrimidine metabolism. Fifty-three differential metabolites were found in coal dust-exposed people and CWP patients, and they were mainly enriched in glycerophospholipid metabolism. Three differential metabolites were correlated with lung function values. The diagnostic model, composed of lysoPI (16:0/0:0), bilirubin, and lysoPC (24:1/0:0), showed strong discrimination ability between dust-exposed people and CWP patients. The sensitivity, specificity, and AUC values of the model were 0.869, 0.600, and 0.750, respectively. The results suggest that coal worker's pneumoconiosis causes abnormal lipid metabolism in the body. A diagnostic model may aid current CWP diagnostic methods, and lysoPI (16:0/0:0), bilirubin, and lysoPC (24:1/0:0) can be used as potential CWP biomarkers. Further study is warranted to validate the findings in larger populations.
Collapse
Affiliation(s)
- Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Jing Dai
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Qingjun Qian
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Xiangfu Cao
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Lifang Wang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Min Zhu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Shujin Han
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Wubin Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yan Li
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Teng Xue
- ZhongYuan BoRui Biotech (Zhuhai Hengqin) Co., Ltd, Zhuhai, 519031, China
| | - Xianyang Chen
- ZhongYuan BoRui Biotech (Zhuhai Hengqin) Co., Ltd, Zhuhai, 519031, China
| | - Xiaoli Yang
- General Hospital of Jingmei Group, Beijing, 102308, China
| | - Jiaolei Wang
- General Hospital of Jingmei Group, Beijing, 102308, China
| | - Huanqiang Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Tao Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratary for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
18
|
Koca-Ünsal RB, Şehirli AÖ, Sayıner S, Aksoy U. Relationship of NLRP3 inflammasome with periodontal, endodontic and related systemic diseases. Mol Biol Rep 2022; 49:11123-11132. [DOI: 10.1007/s11033-022-07894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
19
|
Liu Y, Hou M, Pan Z, Tian X, Zhao Z, Liu T, Yang H, Shi Q, Chen X, Zhang Y, He F, Zhu X. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J Nanobiotechnology 2022; 20:303. [PMID: 35761235 PMCID: PMC9235181 DOI: 10.1186/s12951-022-01505-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Loss of extracellular matrix (ECM) of cartilage due to oxidative stress injury is one of the main characteristics of osteoarthritis (OA). As a bioactive molecule derived from the traditional Chinese Burdock, arctiin exerts robust antioxidant properties to modulate redox balance. However, the potential therapeutic effects of arctiin on OA and the underlying mechanisms involved are still unknown. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) tool, Burdock-extracted small molecule arctiin was identified as a potential anti-arthritic component. In vitro, treatment using arctiin rescued the interleukin (IL)-1β-induced activation of proteinases and promoted the cartilage ECM synthesis in human chondrocytes. In vivo, intraperitoneal injection of arctiin ameliorated cartilage erosion and encountered subchondral bone sclerosis in the post-traumatic OA mice. Transcriptome sequencing uncovered that arctiin-enhanced cartilage matrix deposition was associated with restricted oxidative stress. Mechanistically, inhibition of nuclear factor erythroid 2-related factor 2 (NRF2) abolished arctiin-mediated anti-oxidative and anti-arthritic functions. To further broaden the application prospects, a gellan gum (GG)-based bioactive gel (GG-CD@ARC) encapsulated with arctiin was made to achieve long-term and sustained drug release. Intra-articular injection of GG-CD@ARC counteracted cartilage degeneration in the severe (12 weeks) OA mice model. These findings indicate that arctiin may be a promising anti-arthritic agent. Furthermore, GG-modified bioactive glue loaded with arctiin provides a unique strategy for treating moderate to severe OA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
20
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
21
|
Fan M, Xiao H, Song D, Zhu L, Zhang J, Zhang X, Wang J, Dai H, Wang C. A Novel N-Arylpyridone Compound Alleviates the Inflammatory and Fibrotic Reaction of Silicosis by Inhibiting the ASK1-p38 Pathway and Regulating Macrophage Polarization. Front Pharmacol 2022; 13:848435. [PMID: 35401236 PMCID: PMC8983992 DOI: 10.3389/fphar.2022.848435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Silicosis is one of the potentially fatal occupational diseases characterized by respiratory dysfunction, chronic interstitial inflammation, and fibrosis, for which treatment options are limited. Previous studies showed that a novel N-arylpyridone compound named AKEX0011 exhibited anti-inflammatory and anti-fibrotic effects in bleomycin-induced pulmonary fibrosis; however, it is unknown whether it could also be effective against silicosis. Therefore, we sought to investigate the preventive and therapeutic roles of AKEX0011 in a silicosis rodent model and in a silica-stimulated macrophage cell line. In vivo, our results showed that AKEX0011 ameliorated silica-induced imaging lung damages, respiratory dysfunction, reduced the secretion of inflammatory and fibrotic factors (TNF-α, IL-1β, IL-6, TGF-β, IL-4, and IL-10), and the deposition of fibrosis-related proteins (collagen I, fibronectin, and α-SMA), regardless of early or advanced therapy. Specifically, we found that AKEX0011 attenuated silicosis by inhibiting apoptosis, blocking the ASK1-p38 MAPK signaling pathway, and regulating polarization of macrophages. In vitro, AKEX0011 inhibited macrophages from secreting inflammatory cytokines and inhibited apoptosis of macrophages in pre-treated and post-treated models, concurrent with blocking the ASK1-p38 pathway and inhibiting M1 polarization. Collectively, AKEX0011, as a novel N-arylpyridone compound, exerted protective effects for silica-induced pulmonary inflammation and fibrosis both in vivo and in vitro, and hence, it could be a strong drug candidate for the treatment of silicosis.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China,Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huijuan Xiao
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lili Zhu
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Xinran Zhang
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| | - Chen Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China,Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| |
Collapse
|
22
|
Stockard B, Gauldin C, Truog W, Lewis T. Pharmacometabolomics Profiling of Preterm Infants Validates Patterns of Metabolism Associated With Response to Dexamethasone Treatment for Bronchopulmonary Dysplasia. Front Pediatr 2022; 10:898806. [PMID: 35757122 PMCID: PMC9226475 DOI: 10.3389/fped.2022.898806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most common health complications of premature birth. Corticosteroids are commonly used for treatment of BPD, but their use is challenging due to variability in treatment response. Previous pharmacometabolomics study has established patterns of metabolite levels with response to dexamethasone. We obtained additional patient samples for metabolomics analysis to find associations between the metabolome and dexamethasone response in a validation cohort. A total of 14 infants provided 15 plasma and 12 urine samples. The measure of treatment response was the calculated change in respiratory severity score (deltaRSS) from pre-to-post treatment. Each metabolite was assessed with paired analysis of pre and post-treatment samples using Wilcoxon signed rank test. Correlation analysis was conducted between deltaRSS and pre-to-post change in metabolite level. Paired association analysis identified 20 plasma and 26 urine metabolites with significant level difference comparing pre to post treatment samples (p < 0.05). 4 plasma and 4 urine metabolites were also significant in the original study. Pre-to-post treatment change in metabolite analysis identified 4 plasma and 8 urine metabolites significantly associated with deltaRSS (p < 0.05). Change in urine citrulline levels showed a similar correlation pattern with deltaRSS in the first study, with increasing level associated with improved drug response. These results help validate the first major findings from pharmacometabolomics of BPD including key metabolites within the urea cycle and trans-4-hydroxyproline as a potential marker for lung injury. Ultimately, this study furthers our understanding of the mechanisms of steroid response in BPD patients and helps to design future targeted metabolomics studies in this patient population.
Collapse
Affiliation(s)
- Bradley Stockard
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Cheri Gauldin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - William Truog
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Tamorah Lewis
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States.,Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
23
|
Mao N, Yang H, Yin J, Li Y, Jin F, Li T, Yang X, Sun Y, Liu H, Xu H, Yang F. Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment. Int J Mol Sci 2021; 22:ijms221810063. [PMID: 34576239 PMCID: PMC8465686 DOI: 10.3390/ijms221810063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Glycolytic reprogramming is an important metabolic feature in the development of pulmonary fibrosis. However, the specific mechanism of glycolysis in silicosis is still not clear. In this study, silicotic models and silica-induced macrophage were used to elucidate the mechanism of glycolysis induced by silica. Expression levels of the key enzymes in glycolysis and macrophage activation indicators were analyzed by Western blot, qRT-PCR, IHC, and IF analyses, and by using a lactate assay kit. We found that silica promotes the expression of the key glycolysis enzymes HK2, PKM2, LDHA, and macrophage activation factors iNOS, TNF-α, Arg-1, IL-10, and MCP1 in silicotic rats and silica-induced NR8383 macrophages. The enhancement of glycolysis and macrophage activation induced by silica was reduced by Ac-SDKP or siRNA-Ldha treatment. This study suggests that Ac-SDKP treatment can inhibit glycolytic reprogramming in silica-induced lung macrophages and silicosis.
Collapse
Affiliation(s)
- Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Honghao Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Jie Yin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Tian Li
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Xinyu Yang
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Ying Sun
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Heliang Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
- Correspondence: (H.X.); (F.Y.); Tel.: +86-15133967479 (H.X.); +86-18832571018 (F.Y.); Fax: +86-315-8805522 (F.Y.)
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
- Correspondence: (H.X.); (F.Y.); Tel.: +86-15133967479 (H.X.); +86-18832571018 (F.Y.); Fax: +86-315-8805522 (F.Y.)
| |
Collapse
|