1
|
Wu B, Xu C, Xu C, Qiu L, Gao JX, Li M, Xiong Y, Xia H, Xia Z, Liu X. Inhibition of Sema4D attenuates pressure overload-induced pathological myocardial hypertrophy via the MAPK/NF-κB/NLRP3 pathways. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166944. [PMID: 37952827 DOI: 10.1016/j.bbadis.2023.166944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Sema4D (CD100) is closely related to pathological and physiological processes, including tumor growth, angiogenesis and cardiac development. Nevertheless, the role and mechanism of Sema4D in cardiac hypertrophy are still unclear to date. To assess the impact of Sema4D on pathological cardiac hypertrophy, TAC surgery was performed on C57BL/6 mice which were transfected with AAV9-mSema4D-shRNA or AAV9-mSema4D adeno-associated virus by tail vein injection. Our results indicated that Sema4D knockdown mitigated cardiac hypertrophy, fibrosis and dysfunction when exposed to pressure overload, and Sema4D downregulation markedly inhibited cardiomyocyte hypertrophy induced by angiotensin II. Meanwhile, Sema4D overexpression had the opposite effect in vitro and in vivo. Furthermore, analysis of signaling pathways showed that Sema4D activated the MAPK pathway during cardiac hypertrophy induced by pressure overload, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed Sema4D overexpression-induced deteriorated phenotype, resulting in improved cardiac function. Further research indicated that myocardial hypertrophy induced by Sema4D was closely related to the expression of the pyroptosis-related proteins PP65, NLRP3, caspase-1, ASC, GSDMD, IL-18 and IL-1β. In conclusion, our study demonstrated that Sema4D regulated the process of pathological myocardial hypertrophy through modulating MAPK/NF-κB/NLRP3 pathway, and Sema4D may be the promising interventional target of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Xu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ji-Xian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuanguo Xiong
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
2
|
Phan Van T, Huyen Ton Nu Bao T, Leya M, Zhou Z, Jeong H, Lim CW, Kim B. Amlexanox attenuates LPS-induced neuroinflammatory responses in microglial cells via inhibition of NF-κB and STAT3 signaling pathways. Sci Rep 2024; 14:2744. [PMID: 38302598 PMCID: PMC10834963 DOI: 10.1038/s41598-024-53235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Amlexanox is an anti-inflammatory and anti-allergic agent used clinically for the treatment of aphthous ulcers, allergic rhinitis, and asthma. Recent studies have demonstrated that amlexanox, a selective inhibitor of IkB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1), suppresses a range of diseases or inflammatory conditions, such as obesity-related metabolic dysfunction and type 2 diabetes. However, the effects of amlexanox on neuroinflammatory responses to amlexanox have not yet been comprehensively studied. In this study, we investigated the novel therapeutic effect of amlexanox on LPS-induced neuroinflammation in vivo, and intraperitoneal injection of amlexanox markedly reduced LPS-induced IKKε levels, proinflammatory cytokines, and microglial activation, as evidenced by ionized calcium-binding adapter molecule 1 (Iba1) immunostaining. Furthermore, amlexanox significantly reduced proinflammatory cytokines and chemokines in LPS-induced bone marrow-derived macrophages (BMDM), murine BV2, and human HMC3 microglial cells. This data provided considerable evidence that amlexanox can be used as a preventive and curative therapy for neuroinflammatory and neurodegenerative diseases. In terms of mechanism aspects, our results demonstrated that the anti-inflammatory action of amlexanox in BV2 microglial cells was through the downregulation of NF-κB and STAT3 signaling pathways. In addition, the combination of amlexanox and SPI (a STAT3 selective inhibitor) showed high efficiency in inhibiting the production of neurotoxic and pro-inflammatory mediators. Overall, our data provide rational insights into the mechanisms of amlexanox as a potential therapeutic strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Thach Phan Van
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Tien Huyen Ton Nu Bao
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Mwense Leya
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Chae-Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea.
| |
Collapse
|
3
|
Lv X, Ren M, Xu T, Gao M, Liu H, Lin H. Selenium alleviates lead-induced CIK cells pyroptosis and inflammation through IRAK1/TAK1/IKK pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109101. [PMID: 37758100 DOI: 10.1016/j.fsi.2023.109101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 μM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1β and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1β and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.
Collapse
Affiliation(s)
- Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Liu Y, Xu Y, Yao Y, Cao Y, Chen G, Cai Y, Chen W, Chen X, Qiu Z. I-κB kinase-ε deficiency improves doxorubicin-induced dilated cardiomyopathy by inhibiting the NF-κB pathway. Front Physiol 2022; 13:934899. [PMID: 35991177 PMCID: PMC9386238 DOI: 10.3389/fphys.2022.934899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) can lead to heart expansion and severe heart failure, but its specific pathogenesis is still elusive. In many cardiovascular diseases, I-κB kinase-ε (IKKε) has been recognized as a pro-inflammatory molecule. In this study, wild-type mice (WT, n = 14) and IKKε knockout mice (IKKε-KO, n = 14) were intraperitoneally injected with a cumulative dose of 25 mg/kg with Dox or Saline five times in 30 days. Finally, the experimental mice were divided into WT + Saline group、WT + DOX group、IKKε-KO + Saline group and IKKε-KO + Dox group. Echocardiography was performed to assess cardiac structure and function. Moreover, the mechanism was validated by immunohistochemistry and western blotting. Our results demonstrated that compared to WT + Dox mice, IKKε-KO + Dox mice exhibited attenuation of dilated cardiomyopathy-related morphological changes and alleviation of heart failure. Additionally, compared to the WT mice after Dox-injected, the expression of fibrosis and proinflammatory were decreased in IKKε-KO mice, and the expression of cardiac gap junction proteins was much higher in IKKε-KO mice. Further testing found that pyroptosis and apoptosis in the myocardium were also ameliorated in IKKε-KO mice compared to WT mice after Dox was injected. Mechanistically, our results showed that deficiency of IKKε might inhibit the phosphorylation of IκBα, p65, RelB, and p100 in mouse heart tissues after Dox stimulation. In summary, our research suggests that IKKε might play an essential role in the development of Dox-induced dilated cardiomyopathy and may be a potential target for the treatment of dilated cardiomyopathy in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Chen
- *Correspondence: Xin Chen, ; Zhibing Qiu,
| | | |
Collapse
|
5
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|