1
|
Tensaouti F, Courbière N, Cabarrou B, Pollidoro L, Roques M, Sévely A, Péran P, Baudou E, Laprie A. Metabolic Profile of Cerebellum in Posterior Fossa Tumor Survivors: Correlation With Memory Impairment. Clin Oncol (R Coll Radiol) 2024; 36:e439-e447. [PMID: 39107208 DOI: 10.1016/j.clon.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
AIMS The cerebellum is a key structure in working and procedural memory. The aim of the present prospective exploratory study was to investigate, the metabolic characteristics of the cerebellum in posterior fossa tumor (PFT) survivors using 3D proton magnetic resonance spectroscopy imaging (3D MRSI), to determine whether metabolites could be useful biomarkers of memory impairment. MATERIALS AND METHODS Sixty participants were included in the IMPALA study, divided into three groups: 22 irradiated PFT, 17 nonirradiated PFT, and 21 healthy controls matched with irradiated PFT for age, sex, and handedness. PFT survivors were treated at least 5 years ago, either by surgery or a combination of surgery, chemotherapy, and radiotherapy. All participants underwent working and procedural memory tests and multimodal MRI including a 3D MRSI sequence. N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac) metabolite values were extracted from the cerebellum for comparisons between groups, correlations with neurocognitive test scores, and radiotherapy doses. RESULTS Median (range) age at neurocognitive tests was 18 (7-26) years. Median Cho, Cr, NAA, and Lac values, and the ratio of NAA to the sum of metabolites were significantly lower for PFT survivors than for healthy controls (p < 0.05). Scores on working and procedural memory tests were significantly lower for PFT survivors (p < 0.004) and correlated with median and maximum Cho and NAA values (0.28 CONCLUSION Results revealed changes in cerebellar metabolic values in PFT survivors that were closely correlated with memory deficits, suggesting that some metabolites could be used as markers of cognitive decline, but this will require validation on a larger sample size.
Collapse
Affiliation(s)
- F Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - N Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - B Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - L Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - M Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - A Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - E Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - A Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
2
|
Shamsesfandabadi P, Patel A, Liang Y, Shepard MJ, Wegner RE. Radiation-Induced Cognitive Decline: Challenges and Solutions. Cancer Manag Res 2024; 16:1043-1052. [PMID: 39183756 PMCID: PMC11345022 DOI: 10.2147/cmar.s441360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Radiation therapy, a common treatment for central nervous system cancers, can negatively impact cognitive function, resulting in radiation-induced cognitive decline (RICD). RICD involves a decline in cognitive abilities such as memory and attention, likely due to damage to brain white matter, inflammation, and oxidative stress. The multifactorial nature of RICD poses challenges including different mechanisms of injury (neurogenesis, oxidative stress and neuroinflammation, dendritic structure alterations and vascular effects) and confounding factors like advanced age, and pre-existing conditions. Despite these challenges, several potential solutions exist. Neuroprotective agents like antioxidants can mitigate radiation damage, while cognitive rehabilitation techniques such as cognitive training and memory strategies improve cognitive function. Advanced imaging techniques like magnetic resonance imaging (MRI) help identify vulnerable brain areas, and proton therapy offers precise targeting of cancer cells, sparing healthy tissue. Multidisciplinary care teams are crucial for managing RICD's cognitive and psychological effects. Personalized medicine, using genetic and molecular data, can identify high-risk patients and tailor treatments accordingly. Emerging therapies, including stem cell therapy and regenerative medicine, offer hope for repairing or replacing damaged brain tissue. Addressing RICD is vital for cancer survivors, necessitating consideration of cognitive function and provision of appropriate support and resources for those experiencing cognitive decline.
Collapse
Affiliation(s)
| | - Arpeet Patel
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yun Liang
- Radiation Oncology department, Allegheny Health Network, Pittsburgh, PA, USA
| | - Matthew J Shepard
- Neurosurgery Department, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rodney E Wegner
- Radiation Oncology department, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Hojan K, Adamska K, Lewandowska A, Procyk D, Leporowska E, Osztynowicz K, Michalak S. Neural and Onconeural Autoantibodies and Blood-Brain Barrier Disruption Markers in Patients Undergoing Radiotherapy for High-Grade Primary Brain Tumour. Diagnostics (Basel) 2024; 14:307. [PMID: 38337823 PMCID: PMC10855664 DOI: 10.3390/diagnostics14030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Radiotherapy (RT) plays a key role in brain tumours but can negatively impact functional outcomes and quality of life. The aim of this study was to analyse anti-neural and onconeural autoantibodies and markers of blood-brain barrier (BBB) disruption in patients with primary brain cancer undergoing RT. MATERIALS AND METHODS A prospective study was conducted on 45 patients with a brain tumour scheduled for intensity-modulated radiotherapy. Assessments were performed at baseline, post-RT, and at three months. We measured serum levels of BBB disruption biomarkers and anti-neural, onconeural, and organ-specific antibodies. RESULTS Antibodies against nucleosome antigens and neuronal surface antigens were detected in 85% and 3% of cases, respectively; anti-neural and onconeural antibodies were observed in 47% and 5.8%. In 44% patients, ≥2 antibody types were detected. No significant changes in BBB biomarkers were observed. CONCLUSION The findings of this study show that a humoral immune response is common in patients undergoing RT for brain cancer. This response appears to be non-organ specific but rather directed against nucleosome antigens, but onconeural antibodies were uncommon, suggesting a low risk of a neurological paraneoplastic syndrome. Our data suggested that radiotherapy may not affect BBB integrity, but larger studies are needed to better characterise the pathophysiological effects of RT.
Collapse
Affiliation(s)
- Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, 61-781 Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Krystyna Adamska
- Department of Radiotherapy, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (K.A.); (A.L.)
- Department of Elektroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Lewandowska
- Department of Radiotherapy, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (K.A.); (A.L.)
| | - Danuta Procyk
- Laboratory Ward, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (D.P.); (E.L.)
| | - Ewa Leporowska
- Laboratory Ward, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (D.P.); (E.L.)
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Neurology Department, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.O.); (S.M.)
| | - Slawomir Michalak
- Department of Neurochemistry and Neuropathology, Neurology Department, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.O.); (S.M.)
- Department of Neurosurgery and Neurotraumatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
4
|
Zhou W, Xie X, Hu J, Wang M, Hu X, Shi L, Zhou C, Sun X. Relationship Between Microstructural Alterations and Cognitive Decline After Whole-Brain Radiation Therapy for Brain Metastases: An Exploratory Whole-Brain MR Analysis Based on Neurite Orientation Dispersion and Density Imaging. J Magn Reson Imaging 2024; 59:242-252. [PMID: 37183807 DOI: 10.1002/jmri.28781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Cognitive impairment frequently occurs in patients with brain metastases (BM) after whole-brain radiotherapy (WBRT). It is crucial to explore the underlying mechanisms of cognitive impairment in BM patients receiving WBRT. PURPOSE To detect brain microstructural alterations in patients after WBRT by neurite orientation dispersion and density imaging (NODDI), and evaluate the performance of microstructural alterations in predicting cognitive impairment. STUDY TYPE Prospective. POPULATION Twenty-six patients (seven female; mean age, 60.9 years). FIELD STRENGTH/SEQUENCE 3-T, multi-shell diffusion-weighted single-shot echo-planar sequence. Three-dimensional magnetization-prepared rapid acquisition with gradient echo sequence. ASSESSMENT Mini-mental state examination (MMSE) evaluations were conducted prior to, following, 1 and 3 months after WBRT. The diffusion data were collected twice, 1 week before and 1 week after WBRT. NODDI analysis was conducted to assess microstructural alterations in whole brain (orientation dispersion index, neurite density index, volume fraction of isotropic water molecules). Reliable change indices (RCI) of MMSE were used to measure cognitive decline. The performance of support vector machine models based on NODDI parameters and clinical features (prednisone usage, tumor volume, etc.) in predicting MMSE-RCI was evaluated. STATISTICAL TESTS Paired t-test to assess alterations of NODDI measures and MMSE during follow-up. Statistical significance level of P-value <0.05. RESULTS Significantly decreased MMSE score was found at 3 months after WBRT. After WBRT, corpus callosum, medial prefrontal cortex, limbic lobe, occipital lobe, parietal lobe, putamen, globus pallidus lentiform, and thalamus demonstrated damage in NODDI parameters. The predicted MMSE-RCI based on NODDI features was significantly associated with the measured MMSE-RCI at 1 month (R = 0.573; P = 0.003) and 3 months (R = 0.687; P < 0.0001) after WBRT. DATA CONCLUSION Microstructural alterations in several brain regions including the middle prefrontal and limbic cortexes were observed in patients with BM following WBRT, which may contribute to subsequent cognitive decline. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Weiwen Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiamiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjia Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zamanian M, Abedi I, Danazadeh F, Amouheidari A, Shahreza BO. Post-chemo-radiotherapy response and pseudo-progression evaluation on glioma cell types by multi-parametric magnetic resonance imaging: a prospective study. BMC Med Imaging 2023; 23:176. [PMID: 37932656 PMCID: PMC10626695 DOI: 10.1186/s12880-023-01135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND We focused on Differentiated pseudoprogression (PPN) of progression (PN) and the response to radiotherapy (RT) or chemoradiotherapy (CRT) using diffusion and metabolic imaging. METHODS Seventy-five patients with glioma were included in this prospective study (approved by the Iranian Registry of Clinical Trials (IRCT) (IRCT20230904059352N1) in September 2023). Contrast-enhanced lesion volume (CELV), non-enhanced lesion volume (NELV), necrotic tumor volume (NTV), and quantitative values of apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (Cho/Cr, Cho/NAA and NAA/Cr) were calculated by a neuroradiologist using a semi-automatic method. All patients were followed at one and six months after CRT. RESULTS The results of the study showed statistically significant changes before and six months after RT-CRT for M-CELV in all glioma types (𝑝 < 0.05). In glioma cell types, the changes in M-ADC, M-Cho/Cr, and Cho/NAA indices for PN were incremental and greater for PPN patients. M-NAA/Cr ratio decreased after six months which was significant only on PN for GBM, and Epn (𝑝 < 0.05). A significant difference was observed between diffusion indices, metabolic ratios, and CELV changes after six months in all types (𝑝 < 0.05). None of the patients were suspected PPN one month after treatment. The DWI/ADC indices had higher sensitivity and specificity (98.25% and 96.57%, respectively). CONCLUSION The results of the present study showed that ADC values and Cho/Cr and Cho/NAA ratios can be used to differentiate between patients with PPN and PN, although ADC is more sensitive and specific.
Collapse
Affiliation(s)
- Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Danazadeh
- Department of Radiology, School of Paramedicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
6
|
Sheng Y, Yin D, Zeng Q. Using the metabolite alterations monitoring the AEG-1 expression level and cell biological behaviour of U251 cell in vitro. PLoS One 2023; 18:e0291092. [PMID: 37656734 PMCID: PMC10473485 DOI: 10.1371/journal.pone.0291092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) is an important oncogene that overexpresses in gliomas and plays a vital role in their occurrence and progression. However, few reports have shown which biomarkers could reflect the level of AEG-1 expression in vivo so far. In recent years, intracellular metabolites monitored by proton magnetic resonance spectroscopy (1H MRS) as non-invasive imaging biomarkers have been applied to the precise diagnosis and therapy feedback of gliomas. Therefore, understanding the correlation between 1H MRS metabolites and AEG-1 gene expression in U251 cells may help to identify relevant biomarkers. This study constructed three monoclonal AEG-1-knockout U251 cell lines using the clustered regularly interspaced short palindromic repeat (CRISPR) /Cas9 technique and evaluated the biological behaviors and metabolite ratios of these cell lines. With the decline in AEG-1 expression, the apoptosis rate of the AEG-1-knockout cell lines increased. At the same time, the metastatic capacities decreased, and the relative contents of total choline (tCho) and lactate (Lac) were also reduced. In conclusion, deviations in AEG-1 expression influence the apoptosis rate and metastasis capacity of U251 cells, which the 1H MRS metabolite ratio could monitor. The tCho/creatinine(Cr) and Lac/Cr ratios positively correlated with the AEG-1 expression and malignant cell behavior. This study may provide potential biomarkers for accurate preoperative diagnosis and future AEG-1-targeting treatment evaluation of gliomas in vivo.
Collapse
Affiliation(s)
- Yurui Sheng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Di Yin
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|