1
|
Salahuddin A, Ashraf A, Ahmad K, Hou H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int J Biol Macromol 2024:135803. [PMID: 39419682 DOI: 10.1016/j.ijbiomac.2024.135803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Achieving sustainable and controllable drug delivery is a highly effective disease treatment approach. Chitosan hydrogels, with their unique three-dimensional (3D) porous structures, offer tunable capacity, controllable degradation, various stimuli sensitivities, and the ability to encapsulate therapeutic agents. These characteristics provide chitosan hydrogels with inherent advantages as vehicles for drug delivery systems. In recent years, there has been a notable shift toward embracing the "back-to-nature" ethos, with biomass materials emerging as promising candidates for constructing chitosan hydrogels used in controlled drug release applications. This trend is sustained by their biodegradability, biocompatibility, and non-toxic properties, emphasizing their unique benefits and innovative features. These hydrogels exhibit sensitivity to various factors such as temperature, pH, ion concentration, light, magnetic fields, redox, ultrasound, and multi-responsiveness, offering opportunities for finely tuned drug release mechanisms. This review comprehensively outlines fabrication methods, properties, and biocompatibility of chitosan hydrogel, as well as modification strategies and stimuli-responsive mechanisms. Furthermore, their potential applications in subcutaneous (wound dressing), parental (transdermal drug delivery), oral (gastrointestinal tract), and facial (ophthalmic and brain) drug delivery are briefly discussed. The challenges in clinical application and the future outlook of chitosan-based smart hydrogel are also highlighted.
Collapse
Affiliation(s)
- Aiman Salahuddin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
2
|
Nieto González N, Rassu G, Cossu M, Catenacci L, Sorrenti ML, Cama ES, Serri C, Giunchedi P, Gavini E. A thermosensitive chitosan hydrogel: An attempt for the nasal delivery of dimethyl fumarate. Int J Biol Macromol 2024; 278:134908. [PMID: 39181356 DOI: 10.1016/j.ijbiomac.2024.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Dimethyl fumarate (DMF) is a drug that is orally administered for the treatment of relapsing-remitting multiple sclerosis. However, DMF causes gastrointestinal side effects and flushing in 43 % of patients, which significantly contributes to treatment discontinuation. To reduce side effects and increase patient compliance, the aim of this study was to develop a thermosensitive chitosan/glycerophosphate hydrogel for the nasal administration of DMF. A binary system of DMF with hydroxypropyl-β-cyclodextrin (HP-β-CD) was made and included in the hydrogel precursor solution. The precursor solution (drug content, DMF stability, thermogelling properties, viscosity), and the resulting thermosensitive hydrogel (mucoadhesion, in vitro DMF permeation) were characterized. HP-β-CD was able to interact with DMF and improve its water solubility. The leader thermosensitive nasal solution, G1 solution, was loaded with approximately 92 % DMF, which remained stable for 21 days. The G1 solution formed a hydrogel in approximately 2-1 min; it had a pH of 6.8 ± 0.06 and caused no significant change in the osmolality of the simulated nasal medium. The G1 hydrogel showed good mucoadhesive properties and released DMF that permeated in vitro in a controlled manner. As a result, G1 is a potential new approach to exploit the intranasal administration of DMF for treating multiple sclerosis.
Collapse
Affiliation(s)
- Noelia Nieto González
- PhD Program in Chemical Science and Technology, Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy.
| | - Massimo Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Milena L Sorrenti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Sofia Cama
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| |
Collapse
|
3
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Liu Z, Li S, Xu Z, Li L, Liu Y, Gao X, Diao Y, Chen L, Sun J. Preparation and Characterization of Carboxymethyl Chitosan/Sodium Alginate Composite Hydrogel Scaffolds Carrying Chlorhexidine and Strontium-Doped Hydroxyapatite. ACS OMEGA 2024; 9:22230-22239. [PMID: 38799338 PMCID: PMC11112597 DOI: 10.1021/acsomega.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Herein, we introduce a novel composite hydrogel scaffold designed for addressing infectious jaw defects, a significant challenge in clinical settings caused by the inherent limited self-regenerative capacity of bone tissues. The scaffold was engineered from a blend of carboxymethyl chitosan (CMCS)/sodium alginate (SA) hydrogel (CSH), β-cyclodextrin/chlorhexidine clathrate (β-CD-CHX), and strontium-nanohydroxyapatite nanoparticles (Sr-nHA). The β-CD-CHX and Sr-nHA components were synthesized using a saturated aqueous solution and a coprecipitation method, respectively. Subsequently, these elements were encapsulated within the CSH matrix. Comprehensive characterization of the CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffold via scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy validated the successful synthesis. The swelling and in vitro degradation behaviors proved that the composite hydrogel had good physical properties, while in vitro evaluations demonstrated favorable biocompatibility and osteoinductive properties. Additionally, antibacterial assessments revealed its effectiveness against common pathogens, Staphylococcus aureus and Escherichia coli. Overall, our results indicate that the CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffolds exhibit significant potential for effectively treating infection-prone jaw defects.
Collapse
Affiliation(s)
- Zijian Liu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shangbo Li
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zexian Xu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Li Li
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanshan Liu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
| | - Xiaohan Gao
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yaru Diao
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Liqiang Chen
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
- The
Climbing Peak Discipline Project of Qingdao, Qingdao 266003, China
| | - Jian Sun
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
- The
Climbing Peak Discipline Project of Qingdao, Qingdao 266003, China
| |
Collapse
|
5
|
Wan Y, Lin Y, Tan X, Gong L, Lei F, Wang C, Sun X, Du X, Zhang Z, Jiang J, Liu Z, Wang J, Zhou X, Wang S, Zhou X, Jing P, Zhong Z. Injectable Hydrogel To Deliver Bone Mesenchymal Stem Cells Preloaded with Azithromycin To Promote Spinal Cord Repair. ACS NANO 2024; 18:8934-8951. [PMID: 38483284 DOI: 10.1021/acsnano.3c12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Spinal cord injury is a disease that causes severe damage to the central nervous system. Currently, there is no cure for spinal cord injury. Azithromycin is commonly used as an antibiotic, but it can also exert anti-inflammatory effects by down-regulating M1-type macrophage genes and up-regulating M2-type macrophage genes, which may make it effective for treating spinal cord injury. Bone mesenchymal stem cells possess tissue regenerative capabilities that may help promote the repair of the injured spinal cord. In this study, our objective was to explore the potential of promoting repair in the injured spinal cord by delivering bone mesenchymal stem cells that had internalized nanoparticles preloaded with azithromycin. To achieve this objective, we formulated azithromycin into nanoparticles along with a trans-activating transcriptional activator, which should enhance nanoparticle uptake by bone mesenchymal stem cells. These stem cells were then incorporated into an injectable hydrogel. The therapeutic effects of this formulation were analyzed in vitro using a mouse microglial cell line and a human neuroblastoma cell line, as well as in vivo using a rat model of spinal cord injury. The results showed that the formulation exhibited anti-inflammatory and neuroprotective effects in vitro as well as therapeutic effects in vivo. These results highlight the potential of a hydrogel containing bone mesenchymal stem cells preloaded with azithromycin and trans-activating transcriptional activator to mitigate spinal cord injury and promote tissue repair.
Collapse
Affiliation(s)
- Yujie Wan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Ultrasound Medicine Department, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xie Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lingyi Gong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei Lei
- Department of Spine Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Changguang Wang
- DataRevive USA, LLC, 30 W Gude Drive, Rockville, Maryland 20850, United States
| | - Xiaoduan Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingxuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoling Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shuzao Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| |
Collapse
|
6
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024:e12999. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Bian D, Pilehvar Y, Kousha S, Bi J. Bioactive Wound Healing 3D Structure Based on Chitosan Hydrogel Loaded with Naringin/Cyclodextrin Inclusion Nanocomplex. ACS OMEGA 2024; 9:10566-10576. [PMID: 38463294 PMCID: PMC10918653 DOI: 10.1021/acsomega.3c08785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024]
Abstract
The current assay aimed to fabricate and analyze a potent wound healing structure based on a naringin (Nar)/β-cyclodextrin (β-CD)-loaded chitosan hydrogel. Using the simulation studies, we assessed the interactions among the Nar, β-CD, and the formation of the inclusion complex. Then, the formation of the hydrogel nanocomplex was simulated and evaluated using the in silico methods. The results showed that after optimization of the structures by DMol3 based on DFT-D, the total energies of Nar, GP, CD, and β-CD were calculated at -2100.159, -912.192, -3778.370, and -4273.078 Ha, respectively. The encapsulation energy of Nar on β-CD in the solvent phase was calculated at -93.626 kcal/mol, and the Nar structure was located inside β-CD in solution. The negative interaction energy value for the encapsulation of Nar on β-CD suggests the exothermic adsorption process and a stable structure between Nar and β-CD. Monte Carlo method was applied to obtain adsorption of CS/GP on Nar/β-CD. Its value of the obtained interaction energy was calculated at -1.423 × 103 kcal/mol. The characterization confirmed the formation of a Nar/β-CD inclusion complex. The Zeta potential of the pristine β-CD changed from -4.60 ± 1.1 to -17.60 ± 2.34 mV after interaction with Nar, and the heightened surface negativity can be attributed to the existence of electron-rich naringin molecules, as well as the orientation of the hydroxyl (OH) group of the β-CD toward the surface in an aqueous solution. The porosity of the fabricated hydrogels was in the range of 70-90% and during 14 days around 47.0 ± 3.1% of the pure hydrogel and around 56.4 ± 5.1 of hydrogel nanocomposite was degraded. The MTT assay showed that the hydrogels were biocompatible, and the wound contraction measurement (in an animal model) showed that the closure of the induced wound in the hydrogel nanocomposite treatment was faster than that of the control group (wound without treatment). The results of this study indicate that the developed bioactive wound healing 3D structure, which is composed of a chitosan hydrogel containing a Nar/β-CD inclusion nanocomplex, has potential as an effective material for wound dressing applications.
Collapse
Affiliation(s)
- Donghui Bian
- Department
of Burns and Plastic Surgery, 960 Hospital
of the People’s Liberation Army, Jinan 250031, China
| | - Younes Pilehvar
- Cellular
and Molecular Research Center, Cellular and Molecular Medicine Research
Institute, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Sanaz Kousha
- Department
of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jianhai Bi
- Department
of Plastic and Aesthetic Surgery, Shandong
Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Medical
Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical
Sciences, Jinan 250021, Shandong, China
| |
Collapse
|
8
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Do NHN, Huynh TNA, Le TX, Ha AC, Le PK. Encapsulation of Triphasia trifolia extracts by pH and thermal dual-sensitive chitosan hydrogels for controlled release. Carbohydr Polym 2023; 320:121264. [PMID: 37659803 DOI: 10.1016/j.carbpol.2023.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/04/2023]
Abstract
Recent studies have developed varied delivery systems incorporating natural compounds to improve the limitations of plant extracts for clinical use while enabling their controlled release at treatment sites. For the first time, ethanolic limeberry extract (Triphasia trifolia) has been successfully encapsulated in thermo-sensitive chitosan hydrogels by a facile in situ loading. The extract-incorporated chitosan hydrogels have a pH value of nearly 7.00, gelation temperatures in the range of 37-38 °C, and exhibit an open-cell porous structure, thus allowing them to absorb and retain 756 % of their mass in water. The in vitro extract release from the hydrogels is driven by both temperature and pH, resulting in more than 70 % of the initial extract being released within the first 24 h. Although the release half-life of hydrogels at pH 7.4 is longer, their release capacity is higher than that at pH 6.5. Upon a 2 °C increase in temperature, the time to release 50 % initial extract is sharply reduced by 20-40 %. The release kinetics from the hydrogels mathematically demonstrated that diffusion is a prominent driving force over chitosan relaxation. Consequently, the developed hydrogels encapsulating the limeberry extract show their heat and pH sensitivity in controlled release for treating chronic wounds.
Collapse
Affiliation(s)
- Nga H N Do
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tuan N A Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tien X Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Anh C Ha
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Gherardini L, Vetri Buratti V, Maturi M, Inzalaco G, Locatelli E, Sambri L, Gargiulo S, Barone V, Bonente D, Bertelli E, Tortorella S, Franci L, Fioravanti A, Comes Franchini M, Chiariello M. Loco-regional treatment with temozolomide-loaded thermogels prevents glioblastoma recurrences in orthotopic human xenograft models. Sci Rep 2023; 13:4630. [PMID: 36944737 PMCID: PMC10030813 DOI: 10.1038/s41598-023-31811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects. Here, we aimed at designing new negative temperature-responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan-β-glycerophosphate-based thermogel (THG)-containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2-TMZ and THG@PCL-TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ-silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2-TMZ) and TMZ, spray-dried on PLC and incorporated into the thermogel (THG@PCL-TMZ), induced cell death in vitro. When applied intracranially to a resected U87-MG-Red-FLuc human GBM model, THG@SiO2-TMZ and THG@PCL-TMZ caused a significant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2-TMZ and THG@PCL-TMZ are therefore new promising gel-based local therapy candidates for the treatment of GBM.
Collapse
Affiliation(s)
- Lisa Gherardini
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Giovanni Inzalaco
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy
- University of Siena, Siena, Via Banchi di Sotto 55, 53100, Siena, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Sara Gargiulo
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Denise Bonente
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy
| | | | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy.
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy.
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
11
|
Anti-MUC1 nanobody conjugated by chitosan nanoparticle with enhancement of anti-proliferation activity in breast cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. BIOMATERIALS ADVANCES 2022; 142:213158. [PMID: 36288629 DOI: 10.1016/j.bioadv.2022.213158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Bacteria are recognized as the driving factors of periodontitis. However, excessive reactive oxygen species (ROS) can harm periodontal tissue while also causing an uncontrolled inflammatory response. Hence, eliminating excessive ROS and blocking ROS-induced abnormal inflammatory response by antioxidants are achieving remarkable results in periodontitis therapy. Moreover, influenced by the deep and irregular periodontal pockets, injectable thermo-sensitive chitosan-based hydrogels have attracted a lot of attention. This study aimed to formulate an antibacterial and antioxidant therapeutic regimen by incorporating antimicrobial peptides (Nal-P-113) and/or antioxidants (polydopamine nanoparticles, PDNPs) into chitosan-based hydrogels. The hydrogel was characterized in vitro and finally examined in rats using the experimental periodontitis model. The release kinetics showed that the hydrogel could stably release Nal-P-113 and PDNPs for up to 13 days. The scavenging activity of the hydrogel against DPPH was about 80 % and the antibacterial ratio against Streptococcus gordonii (S. gordonii), Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) was about 99 %. Importantly, it was examined that the hydrogel had the ability to prevent periodontal tissue damage. Thus, chitosan-based hydrogels may provide a basis for designing multifunctional local drug delivery biomaterials for the treatment of periodontitis.
Collapse
|
13
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
14
|
Nguyen TN, Park JS. Intratympanic drug delivery systems to treat inner ear impairments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Significant Interfacial Dielectric Relaxation of Covalently Bonded Ice-Hydrogels. Gels 2022; 8:gels8070409. [PMID: 35877494 PMCID: PMC9322482 DOI: 10.3390/gels8070409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hydrogels are composed of a three-dimensional network of cross-linked hydrophilic polymer chains and large amounts of water. The physicochemical properties of the polymer-water interface in hydrogels draw our attention. Due to the complex structure of hydrogel systems, it is still a challenge to investigate the interfacial layer properties of hydrogels through experiments. In this work, we investigate the properties of the covalently bonded chitosan-based ice-hydrogels interfacial layer by dielectric relaxation spectroscopy (DRS) techniques in the presence of avoided electrode polarization. The DRS data exhibit that the polymer-water interfacial layer has a strong dielectric signal response, which indicates that a large number of polar electric dipoles or polar molecules may be contained in the interfacial layer. The variable temperature dielectric relaxation behavior of a series of chitosan-base ice-hydrogels showed that the value of dielectric activation energy for different water contents is about 180 kJ/mol, which is much larger than that of the polymer and ice phases, suggesting a strong coupling of polar electric dipoles within the interfacial layer. This work demonstrates the important role of the polymer-water interface in covalently bonded hydrogels, which will provide assistance in the design and application of covalently bonded hydrogels.
Collapse
|
16
|
Pudziuvelyte L, Siauruseviciute A, Morkuniene R, Lazauskas R, Bernatoniene J. Influence of Technological Factors on the Quality of Chitosan Microcapsules with Boswellia serata L. Essential Oil. Pharmaceutics 2022; 14:pharmaceutics14061259. [PMID: 35745831 PMCID: PMC9227605 DOI: 10.3390/pharmaceutics14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils contain many volatile compounds that are not stable and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect Boswellia serrata L. essential oil from environmental factors by encapsulation and determine the influence of chitosan concentration and types (2%, 4%; medium and high molecular weights), essential oil concentration, different emulsifiers (Tween and Span), and technological factors (stirring time, launch height, drip rate) on the physical parameters, morphology, texture, and other parameters of the generated gels, emulsions, and microcapsules. For the first time, Boswellia serrata L. essential oil microcapsules with chitosan were prepared by coacervation. Hardness, consistency, stickiness, viscosity, and pH of chitosan gels were tested. Freshly obtained microcapsules were examined for moisture, hardness, resistance to compression, size, and morphology. Results show that different molecular weights and concentrations of chitosan affected gel hardness, consistency, stickiness, viscosity, mobility, and adhesion. An increase in chitosan concentration from 2% to 4% significantly changed the appearance of the microcapsules. It was found that spherical microcapsules were formed when using MMW and HMW 80/1000 chitosan. Chitosan molecular weight, concentration, essential oil concentration, and stirring time all had an impact on the hardness of the microcapsules and their resistance to compression.
Collapse
Affiliation(s)
- Lauryna Pudziuvelyte
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Aiste Siauruseviciute
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Ramune Morkuniene
- Department of Drug Chemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Robertas Lazauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickeviciaus 7, LT-44307 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
17
|
Abu Owida H, Al-Nabulsi JI, Alnaimat F, Al Sharah A, Al-Ayyad M, Turab NM, Abdullah M. Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Adv Pharmacol Pharm Sci 2022; 2022:9073837. [PMID: 35492808 PMCID: PMC9042622 DOI: 10.1155/2022/9073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Electrospinning enables simple and cost-effective production of polymer nanofibers from different polymer materials. Drug delivery systems are capable of achieving maximum drug treatment benefits by significantly reducing adverse complications. Electrospun nanofibers have recently attracted considerable attention owing to their distinctive properties, including flexibility and biocompatibility. The implementation of functional constituents within nanostructure fibers blends is an effective technique for the administration of a variety of drugs in animal research, broadening the nanofiber capability and reliability. The nanofibrous mesh and its various application purposes are discussed in terms of a summary of recent research, emphasizing the ease of streaming and a large number of combinations of this approach, which could lead to a breakthrough in targeted therapy.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mustafa Abdullah
- Civil Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
18
|
Nkanga C, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022; 23:1812-1825. [PMID: 35344365 PMCID: PMC9003890 DOI: 10.1021/acs.biomac.2c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Indexed: 01/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.
Collapse
Affiliation(s)
- Christian
Isalomboto Nkanga
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Oscar A. Ortega-Rivera
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department
of Bioengineering, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Department
of Radiology, University of California San
Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
19
|
Al homsi R, Altahir S, Jagal J, Ali Abdelkareem M, Ghoneim MM, Rawas-Qalaji MM, Greish K, Haider M. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int J Pharm 2022; 621:121786. [DOI: 10.1016/j.ijpharm.2022.121786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
|
20
|
Man K, Brunet MY, Federici AS, Hoey DA, Cox SC. An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:829969. [PMID: 35433655 PMCID: PMC9005798 DOI: 10.3389/fbioe.2022.829969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Mathieu Y. Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Angelica S. Federici
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Sophie C. Cox,
| |
Collapse
|
21
|
Evaluating Non-Conventional Chitosan Sources for Controlled Release of Risperidone. Polymers (Basel) 2022; 14:polym14071355. [PMID: 35406227 PMCID: PMC9002647 DOI: 10.3390/polym14071355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, two chitosan samples from cuttlebone and squid pen are produced and characterized. We studied the formation of thermoresponsive hydrogels with β-glycerol phosphate and found proper formulations that form the hydrogels at 37 °C. Gel formation depended on the chitosan source being possible to produce the thermoresponsive hydrogels at chitosan concentration of 1% with cuttlebone chitosan but 1.5% was needed for squid pen. For the first time, these non-commercial chitosan sources have been used in combination with β-glycerol phosphate to prepare risperidone formulations for controlled drug delivery. Three types of formulations for risperidone-controlled release have been developed, in-situ gelling formulations, hydrogels and xerogels. The release profiles show that in-situ gelling formulations and particularly hydrogels allow an extended control release of risperidone while xerogels are not appropriate formulations for this end since risperidone was completely released in 48 h.
Collapse
|
22
|
Gegel NO, Shipovskaya AB, Khaptsev ZY, Radionov RV, Belyaeva AA, Kharlamov VN. Thermosensitive Chitosan-Containing Hydrogels: Their Formation, Properties, Antibacterial Activity, and Veterinary Usage. Gels 2022; 8:gels8020093. [PMID: 35200474 PMCID: PMC8871199 DOI: 10.3390/gels8020093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Mixtures of aqueous solutions of chitosan hydrochloride (CS·HCl, 1–4 wt.%) and Pluronic F-127 (Pl F-127, 25 wt.%) were studied using vibrational and rotational viscometry; the optimal aminopolysaccharide concentration (3 wt.%) and the CS·HCl:Pl F-127 ratio (30:70) to obtain a thermosensitive hydrogel were found. It was shown that at 4 °C, such mixed compositions were viscous liquids, while at 37 °C for 1–2 min, they undergo a thermally reversible transition to a shape-stable hydrogel with a developed level of structure formation, satisfactory viscosity and high mucoadhesive parameters (maximum pull-off force Fmax = 1.5 kN/m2; work of adhesion W = 66.6 × 10−3 J). Adding D-ascorbic acid to the hydrogel led to orientational ordering of the supramolecular structure of the mixed system and significantly improved mucoadhesion (Fmax = 4.1 kN/m2, W = 145.1 × 10−3 J). A microbiological study revealed the high antibacterial activity of the hydrogel against Gram-negative and Gram-positive bacterial strains. The treatment of mixed bacterial infection in cows demonstrated the possibility of the in situ formation of a viscoelastic gel and revealed its high therapeutic effect. It has been suggested that our thermosensitive mucoadhesive CS·HCl:Pl F-127 hydrogels could be considered as independent veterinary drugs and pharmaceuticals.
Collapse
Affiliation(s)
- Natalia O. Gegel
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| | - Anna B. Shipovskaya
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
- Correspondence: ; Tel.: +7-(8452)-516-957
| | - Zaur Yu. Khaptsev
- Microbiology, Biotechnology and Chemistry, Saratov State Vavilov Agrarian University, Sokolovaya St., 335, 410005 Saratov, Russia;
| | - Roman V. Radionov
- Animal Science and Veterinary, Michurian State Agrarian University, International St., 110, 393760 Michurinsk, Russia;
| | - Anastasia A. Belyaeva
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| | - Vitaly N. Kharlamov
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| |
Collapse
|
23
|
Mansoor S, Kondiah PPD, Choonara YE. Advanced Hydrogels for the Controlled Delivery of Insulin. Pharmaceutics 2021; 13:2113. [PMID: 34959394 PMCID: PMC8703368 DOI: 10.3390/pharmaceutics13122113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone that is key to regulating physiological glucose levels. Its molecular size and susceptibility to conformational change under physiological pH make it challenging to orally administer insulin in diabetes. The most effective route for insulin delivery remains daily injection. Unfortunately, this results in poor patient compliance and increasing the risk of micro- and macro-vascular complications and thus rising morbidity and mortality rates in diabetics. The use of 3D hydrogels has been used with much interest for various biomedical applications. Hydrogels can mimic the extracellular matrix (ECM) and retain large quantities of water with tunable properties, which renders them suitable for administering a wide range of sensitive therapeutics. Several studies have demonstrated the fixation of insulin within the structural mesh of hydrogels as a bio-scaffold for the controlled delivery of insulin. This review provides a concise incursion into recent developments for the safe and effective controlled delivery of insulin using advanced hydrogel platforms with a special focus on sustained release injectable formulations. Various hydrogel platforms in terms of their methods of synthesis, properties, and unique features such as stimuli responsiveness for the treatment of Type 1 diabetes mellitus are critically appraised. Key criteria for classifying hydrogels are also outlined together with future trends in the field.
Collapse
Affiliation(s)
| | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (S.M.); (P.P.D.K.)
| |
Collapse
|