1
|
Ji Y, Tian Y, Zhang H, Ma S, Liu Z, Tian Y, Xu Y. Histone modifications in hypoxic ischemic encephalopathy: Implications for therapeutic interventions. Life Sci 2024; 354:122983. [PMID: 39147319 DOI: 10.1016/j.lfs.2024.122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain injury induced by many causes of cerebral tissue ischemia and hypoxia. Although HIE may occur at many ages, its impact on the neonatal brain is greater because it occurs during the formative stage. Recent research suggests that histone modifications may occur in the human brain in response to acute stress events, resulting in transcriptional changes and HIE development. Because there are no safe and effective therapies for HIE, researchers have focused on HIE treatments that target histone modifications. In this review, four main histone modifications are explored, histone methylation, acetylation, phosphorylation, and crotonylation, as well as their relevance to HIE. The efficacy of histone deacetylase inhibitors in the treatment of HIE is also explored. In conclusion, targeting histone modifications may be a novel strategy for elucidating the mechanism of HIE, as well as a novel approach to HIE treatment.
Collapse
Affiliation(s)
- Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongwei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Su D, Gao H, He M, Hao H, Liao H, Zheng S. The alpha2-adrenoceptor agonist clonidine protects against hypoxic-ischemic brain damage in neonatal mice through the Nrf2/NF-κB signaling pathway. Immunol Lett 2024; 270:106928. [PMID: 39299652 DOI: 10.1016/j.imlet.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a severe condition closely associated with neuroinflammation and oxidative stress. Clonidine, a selective α2-adrenergic receptor agonist, is known for its anti-inflammatory and antioxidant properties. Despite these recognized therapeutic benefits, the exact mechanisms by which clonidine exerts its effects in the context of HIBD are not fully understood. This study was designed to thoroughly investigate the impact of clonidine on HIBD-induced neuronal injury and to clarify its underlying mechanism of action. We employed a neonatal mouse model of HIBD to meticulously assess the effects of clonidine on neuronal injury, apoptosis, inflammation, and oxidative stress markers. In addition, we conducted extensive in vitro studies to evaluate the neuroprotective effects of clonidine on primary hippocampal neuronal cells, utilizing advanced techniques such as the Cell Counting Kit-8 (CCK-8), flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, and western blotting. Furthermore, we explored the regulatory effects of clonidine on the nuclear factor erythroid 2-related factor (Nrf2)/nuclear factor-κB (NF-κB) signaling pathway through a combination of in vivo and in vitro experiments. The results showed that clonidine significantly reduced cerebral infarction, neuronal damage, and apoptosis in HIBD mice. It also alleviated neuroinflammation and oxidative stress, improved cell viability, and reduced neuronal injury following oxygen-glucose deprivation/reoxygenation (OGD/R). The neuroprotective effects of clonidine were linked to the activation of the Nrf2/heme oxygenase-1 (HO-1) pathway and the inhibition of the NF-κB pathway. Overall, clonidine exhibited neuroprotective properties in HIBD by reducing neuroinflammation and oxidative stress, likely through the modulation of the Nrf2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Daojing Su
- Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Huan Gao
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China.
| | - Min He
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hu Hao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Heng Liao
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Su Zheng
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
3
|
Hu Y, Nan Y, Lin H, Zhao Q, Chen T, Tao X, Ding B, Lu L, Chen S, Zhu J, Guo X, Lin Z. Celastrol ameliorates hypoxic-ischemic brain injury in neonatal rats by reducing oxidative stress and inflammation. Pediatr Res 2024:10.1038/s41390-024-03246-9. [PMID: 38763946 DOI: 10.1038/s41390-024-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is caused by perinatal hypoxia and subsequent reductions in cerebral blood flow and is one of the leading causes of severe disability or death in newborns. Despite its prevalence, we currently lack an effective drug therapy to combat HIE. Celastrol (Cel) is a pentacyclic triterpene extracted from Tripterygium Wilfordi that can protect against oxidative stress, inflammation, and cancer. However, whether Cel can alleviate neonatal hypoxic-ischemic (HI) brain damage remains unclear. METHODS Here, we established both in vitro and in vivo models of HI brain damage using CoCl2-treated PC12 cells and neonatal rats, respectively, and explored the neuroprotective effects of Cel in these models. RESULTS Analyses revealed that Cel administration reduced brain infarction size, microglia activation, levels of inflammation factors, and levels of oxidative stress markers by upregulating levels of p-AMPKα, Nrf2, HO-1, and by downregulating levels of TXNIP and NLRP3. Conversely, these beneficial effects of Cel on HI brain damage were largely inhibited by AMPKα inhibitor Compound C and its siRNA. CONCLUSIONS We present compelling evidence that Cel decreases inflammation and oxidative stress through the AMPKα/Nrf2/TXNIP signaling pathway, thereby alleviating neonatal HI brain injury. Cel therefore represents a promising therapeutic agent for treating HIE. IMPACT We firstly report that celastrol can ameliorate neonatal hypoxic-ischemic brain injury both in in vivo and in vitro, which represents a promising therapeutic agent for treating related brain injuries. Celastrol activates the AMPKα/Nrf2/TXNIP signaling pathway to relieve oxidative stress and inflammation and thereby alleviates neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhou Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang X, Li J, Cao C, Liu Z, Chen Q, Gu Z, Wang W, Fang D, Ge Q, Ding L, Pang C, Wang X. Nrf2 activation by neferine mitigates microglial neuroinflammation after subarachnoid hemorrhage through inhibiting TAK1-NF-κB signaling. Int Immunopharmacol 2024; 130:111693. [PMID: 38428144 DOI: 10.1016/j.intimp.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Oxidative stress and neuroinflammation are two major causes leading to early brain injury after subarachnoid hemorrhage (SAH). Nuclear factor E2-related factor 2 (Nrf2) is a critical transcription factor that contributes to antioxidant responses. Additionally, Nrf2 could inhibit transforming growth factor beta-activated kinase 1 (TAK1), which plays a vital role in microglial activation-mediated neuroinflammation. Neferine (NE) exhibits considerable protective effects in diverse disease models. However, the detailed effect and mechanism of NE on SAH remain unknown. Our data showed that NE treatment significantly reduced behavior and cognitive impairment, and brain edema in the early period after SAH. In addition, NE mitigated SAH-induced oxidative damage, neuroinflammation, and neural death. Moreover, NE inhibited M1 microglial polarization and enhanced M2 phenotype microglia both in vivo and in vitro. Further investigations revealed that NE enhanced the Nrf2-antioxidant response element (ARE) signaling pathway and suppressed TAK1-NF-κB signaling. In contrast, depletion of Nrf2 by ML385 suppressed Nrf2-ARE signaling, induced TAK1-NF-κB activation, and further promoted M1 microglial polarization. Additionally, ML385 abated the neuroprotective effects of NE against SAH. Notably, LPS also aggravated TAK1-NF-κB activation and reversed the beneficial effects of NE after SAH. In summary, NE provides protection after SAH by inhibiting oxidative stress and modulating microglial polarization through Nrf2 activation and TAK1-NF-κB suppression.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Jun Li
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Zhichao Liu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Qiushi Chen
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Zhijiang Gu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Weijie Wang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Dazhao Fang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - QianQian Ge
- Department of Gynecology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| | - Xiaodong Wang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| |
Collapse
|
5
|
Nam Y, Prajapati R, Kim S, Shin SJ, Cheong DY, Park YH, Park HH, Lim D, Yoon Y, Lee G, Jung HA, Park I, Kim DH, Choi JS, Moon M. Dual regulatory effects of neferine on amyloid-β and tau aggregation studied by in silico, in vitro, and lab-on-a-chip technology. Biomed Pharmacother 2024; 172:116226. [PMID: 38301421 DOI: 10.1016/j.biopha.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-β (Aβ) and tau. Aβ and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aβ and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aβ or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aβ and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aβ and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aβ42 and tau K18. We verified the effect of neferine on Aβ fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aβ42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aβ and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aβ and tau pathology.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Danyou Lim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Yoojeong Yoon
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea.
| | - Dong-Hyun Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
6
|
Qian H, Chen A, Lin D, Deng J, Gao F, Wei J, Wu X, Huang Y, Cai D, Chen X, Zheng X. Activation of the CD200/CD200R1 axis improves cognitive impairment by enhancing hippocampal neurogenesis via suppression of M1 microglial polarization and neuroinflammation in hypoxic-ischemic neonatal rats. Int Immunopharmacol 2024; 128:111532. [PMID: 38237226 DOI: 10.1016/j.intimp.2024.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1β, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1β proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haitao Qian
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Daoyi Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianjie Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongxin Huang
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Dingliang Cai
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China.
| |
Collapse
|
7
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z, Lin W. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol 2024; 372:114641. [PMID: 38065231 DOI: 10.1016/j.expneurol.2023.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.
Collapse
Affiliation(s)
- Jinyu Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Min Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qiqi Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jianshun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao Yuan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Wenwen Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Guo S, Lei Q, Yang Q, Chen R. Sinigrin improves cerebral ischaemia-reperfusion injury by inhibiting the TLR4 pathway-mediated oxidative stress. Chem Biol Drug Des 2024; 103:e14480. [PMID: 38369620 DOI: 10.1111/cbdd.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Cerebral ischaemia-reperfusion (CIR) injury occurs in stroke patients after the restoration of cerebral perfusion. Sinigrin, a phytochemical found in cruciferous vegetables, exhibits strong antioxidant activity. This study investigated the role of sinigrin in oxidative stress using a CIR injury model. The effects of sinigrin were studied in middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells. Sinigrin treatment improved brain injury and neurological deficits induced by MCAO surgery in rats. Sinigrin inhibited apoptosis in brain tissues and SH-SY5Y cells following OGD/R induction. Additionally, sinigrin elevated the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) while reducing malondialdehyde (MDA) levels. Furthermore, sinigrin inhibited the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signalling pathway. The anti-apoptotic and antioxidant activities of sinigrin in OGD/R-injured SH-SY5Y cells were reversed by TLR4 overexpression. In conclusion, sinigrin inhibits oxidative stress in CIR injury by suppressing the TLR4/MyD88 signalling pathway.
Collapse
Affiliation(s)
- Shenglong Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Qi Lei
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Qian Yang
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Ruili Chen
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
9
|
Lu H, Shen H, Mao L, Mussap M, Song L. A ferroptosis-related ceRNA network for investigating the molecular mechanisms and the treatment of neonatal hypoxic-ischemic encephalopathy. Transl Pediatr 2024; 13:119-136. [PMID: 38323182 PMCID: PMC10839276 DOI: 10.21037/tp-23-596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Background Neonatal hypoxic-ischemic brain damage (HIBD) is a clinical syndrome causing brain injury in newborns with obscure etiology. Increasing evidence suggests that ferroptosis plays a role in HIBD. This study aimed to clarify the key ferroptosis-related genes (FRGs) of HIBD, construct a long non-coding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network, and further investigate the pathogenesis of HIBD. Methods Gene expression data were downloaded from the Gene Expression Omnibus and FerrDb databases. The differentially expressed lncRNAs and FRGs were screened, and the related miRNAs and mRNAs were predicted. The obtained mRNA was intersected with the differentially expressed FRGs (DE-FRGs) to identify the key DE-FRGs. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts method was applied to analyze the immune cell infiltration level and the relationship between key genes and immune cells. Results Gene differential expression analysis revealed that 1,178 lncRNAs, 207 miRNAs, and 647 mRNAs were differentially expressed in the blood of HIBD patients in comparison to healthy controls. The correlations of the lncRNAs, miRNAs, and mRNAs lead to the establishment of a competing endogenous RNA (ceRNA) network associated with ferroptosis in HIBD. Further validation using an external dataset and quantitative real-time polymerase chain reaction (PCR) analysis of brain tissues from hypoxic-ischemic encephalopathy rats confirmed the expression patterns of three key genes, including HMOX1, MYCN, and QSOX1. Meanwhile, the three key genes were closely correlated with the infiltration of multiple immune cells and might affect the function of HIBD regulatory genes such as CPT2 and GCK. In addition, drug prediction suggested that four drugs, including cephaeline, emetine, mestranol, and sulmazole, might alleviate HIBD. Conclusions Our study established a ceRNA network, identified three key genes, and predicted four drugs that are associated with ferroptosis in HIBD, which provides new ideas for the investigation of the disease mechanisms and might facilitate the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Hongyi Lu
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| | - Haiyan Shen
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Lei Song
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| |
Collapse
|
10
|
Gao M, Ge X, Li Y, Zheng G, Cai J, Yao J, Wang T, Gao Y, Yan Y, Chen Y, Pan Y, Hu P. Lysosomal dysfunction in carbon black-induced lung disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167200. [PMID: 37742976 DOI: 10.1016/j.scitotenv.2023.167200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.
Collapse
Affiliation(s)
- Mingtong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xiao Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Gege Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jiani Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tianyi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yichang Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuchen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yinming Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
11
|
Meng XL, Xue JS, Su SJ, Gou JM, Lu J, Chen CL, Xu CB. Total alkaloids from the seed embryo of Nelumbo nucifera Gaertn. improve cognitive impairment in APP/PS1 mice and protect Aβ-damaged PC12 cells. Nutr Neurosci 2023; 26:1243-1257. [PMID: 36370050 DOI: 10.1080/1028415x.2022.2145426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The seed embryo of Nelumbo nucifera Gaertn. is a famous traditional Chinese medicine and food which is considered conducive to the prevention of Alzheimer's disease (AD). In this study, the effect and mechanism of TASENN (total alkaloids from the seed embryo of Nelumbo nucifera Gaertn.) on AD mice and amyloid-β (Aβ) injured PC12 cells were evaluated. HPLC-UV analysis showed that the extracted TASENN (purity = 95.6%) mainly contains Liensinine, Isoliensinine, and Neferine (purity was 23.01, 28.02, and 44.57%, respectively). In vivo, oral treatment with TASENN (50 mg/kg/day for 28 days) improved the learning and memory functions of APP/PS1 transgenic mice, ameliorated the histopathological changes of cortical and hippocampal neurons, and inhibited neuronal apoptosis. We found that TASENN reduced the phosphorylation of Tau and the formation of neurofibrillary tangles (NFTs) in APP/PS1 mouse brain. Moreover, TASENN down-regulated the expression of APP and BACE1, ameliorated Aβ deposition, and inhibited microglial proliferation and aggregation. The elevated protein expression of CaM and p-CaMKII in APP/PS1 mouse brain was also reduced by TASENN. In vitro, TASENN inhibited the apoptosis of PC12 cells injured by Aβ25-35 and increased the cell viability. Aβ25-35-induced increase of cytosolic free Ca2+ level and high expression of CaM, p-CaMKII, and p-Tau were decreased by TASENN. Our findings indicate that TASENN has a potential therapeutic effect on AD mice and a protective effect on PC12 cells. The anti-AD activity of TASENN may be closely related to its negative regulation of the CaM pathway.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
- Research Center for Natural Product Pharmacy of Liaoning Province, Shenyang, People's Republic of China
| | - Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Shu-Jie Su
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Jing Lu
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
- Research Center for Natural Product Pharmacy of Liaoning Province, Shenyang, People's Republic of China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, People's Republic of China
| |
Collapse
|
12
|
Zhang M, Liu Z, Zhou W, Shen M, Mao N, Xu H, Wang Y, Xu Z, Li M, Jiang H, Chen Y, Zhu J, Lin W, Yuan J, Lin Z. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis. Transl Pediatr 2023; 12:1944-1970. [PMID: 38130589 PMCID: PMC10730959 DOI: 10.21037/tp-23-189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background Hypoxic-ischemic brain damage (HIBD) is a type of brain damage that is caused by perinatal asphyxia and serious damages the central nervous system. At present, there is no effective drug for the treatment of this disease. Besides, the pathogenesis of HIBD remains elusive. While studies have shown that ferroptosis plays an important role in HIBD, its role and mechanism in HIBD are yet to be fully understood. Methods The HIBD model of neonatal rats was established using the Rice-Vannucci method. A complete medium of PC12 cells was adjusted to a low-sugar medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 12 h. Laser Doppler blood flow imaging was used to detect the blood flow intensity after modeling. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining and transmission electron microscopy were used to observe brain injury and mitochondrial damage. Immunofluorescence was applied to monitor the expression of GFAP. Real-time quantitative polymerase chain reaction, western blot, and immunofluorescence were utilized to detect the expression of messenger RNA and protein. The level of reactive oxygen species (ROS) in cells was detected using the ROS detection kit. Results The results showed that ferrostatin-1 (Fer-1) significantly alleviated the brain injury caused by hypoxia and ischemia. Fer-1 significantly increased the expression of SLC3A2, SLC7A11, ACSL3, GSS, and GPX4 (P<0.05) and dramatically decreased the expressions of GFAP, ACSL4, TFRC, FHC, FLC, 4-HNE, HIF-1α, and ROS (P<0.05). Conclusions Fer-1 inhibits ferroptosis and alleviates HIBD by potentially targeting the GPX4/ACSL3/ACSL4 axis; however, its specific mechanism warrants further exploration.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Shen
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Niping Mao
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Chen X, Ning Y, Wang B, Qin J, Li C, Gao R, Ma Z, Zhou Y, Li P, Zhao Y, Peng Y, Chen X, Yang N, Shu S. HET0016 inhibits neuronal pyroptosis in the immature brain post-TBI via the p38 MAPK signaling pathway. Neuropharmacology 2023; 239:109687. [PMID: 37579871 DOI: 10.1016/j.neuropharm.2023.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Traumatic brain injury (TBI) is a serious health threat worldwide, especially for the younger demographic. Our previous study demonstrated that HET0016 (a specific inhibitor of 20-hydroxyeicosatetraenoic acid synthesis) can decrease the lesion volume in the immature brain post-TBI; however, its mechanism of action and its association with pyroptosis post-TBI are unclear. In this study, we established a controlled cortical impact (CCI) injury rat model (postnatal day 9-10) and observed that increased expression of indicators for pyroptosis, including NLR family pyrin domain containing 3 (NLRP3), caspase-1 and gasdermin D (GSDMD) proteins and interleukin (IL)-18/IL-1β mRNA during the acute phase of TBI, especially on post-injury day (PID) 1. Additionally, we found that caspase-1 was primarily expressed in the neurons and microglia. HET0016 (1 mg/kg/d, ip, 3 consecutive days since TBI) reduced the lesion volume; neuronal death; expression of NLRP3, caspase-1, and GSDMD; and expression of IL-18/IL-1β mRNA. Bioinformatics analysis suggested involvement of mitogen-activated protein kinase (MAPK) signaling pathway in the HET0016-mediated neuroprotective role against TBI in the immature brain. Western blot analysis revealed reduced expression of p-p38 MAPK and nuclear factor-kappa B (NF-κB) p65 in the neurons and microglia upon HET0016 treatment in TBI rats. In cultured primary cortical neurons subjected to oxygen-glucose deprivation/re-oxygenation (OGD) + (lipopolysaccharide) LPS, HET0016-induced the reduction of p-p38 MAPK, NLRP3, cleaved-caspase-1, GSDMD, IL-18, and IL-1β was reversed by co-treatment with p38 MAPK activator as well as NLRP3 agonist. Therefore, we conclude that pyroptosis is involved in neuronal death in the immature brains post-TBI and that HET0016 administration can alleviate neuronal pyroptosis possibly via inhibiting the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jun Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ruobing Gao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhihui Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
14
|
Zhong PC, Liu ZW, Xing QC, Chen J, Yang RP. Neferine inhibits the development of lung cancer cells by downregulating TGF-β to regulate MST1/ROS-induced pyroptosis. Kaohsiung J Med Sci 2023; 39:1106-1118. [PMID: 37698291 DOI: 10.1002/kjm2.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Neferine is used as a traditional Chinese medicine with many pharmacological effects, including antitumor properties; however, it has not been reported whether neferine plays an anticancer role by causing pyroptosis in NSCLC cells. We used two typical lung cancer cell lines, A549 and H1299, and 42 lung cancer tissue samples to investigate the regulatory effects of neferine on TGF-β and MST1. We also treated lung cancer cells with different concentrations of neferine to study its effects on lung cancer cell survival, migration, invasion, and epithelial-mesenchymal transition (EMT) as well as on pyroptosis. Lentivirus-mediated gain-of-function studies of TGF-β and MST1 were applied to validate the roles of TGF-β and MST1 in lung cancer. Next, we used murine transplanted tumor models to evaluate the effect of neferine treatment on the metastatic capacity of lung cancer tissues. With increasing neferine concentration, the viability, migration, invasion, and EMT capacity of A549 and H1299 cells decreased, whereas pyroptosis increased. Neferine repressed TGF-β expression to modulate the induction of reactive oxygen species (ROS) by MST1. Overexpression of TGF-β in either in vitro or mouse-transplanted A549 cells restored the inhibitory effect of neferine on tumor development. Overexpression of MST1 clearly enhanced pyroptosis. Neferine contributed to pyroptosis by regulating MST1 expression through downregulation of TGF-β to induce ROS formation. Therefore, our study shows that neferine can serve as an adjuvant therapy for NSCLC patients.
Collapse
Affiliation(s)
- Peng-Cheng Zhong
- Department of Integrated Traditional Chinese and Western Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Zhi-Wen Liu
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Qi-Chang Xing
- Department of Pharmaceutical, Xiangtan Central Hospital, Xiangtan, China
| | - Jia Chen
- Department of Pharmaceutical, Xiangtan Central Hospital, Xiangtan, China
| | - Rui-Pei Yang
- Laboratory of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
15
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
16
|
Galaz J, Motomura K, Romero R, Liu Z, Garcia-Flores V, Tao L, Xu Y, Done B, Arenas-Hernandez M, Kanninen T, Farias-Jofre M, Miller D, Tarca AL, Gomez-Lopez N. A key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B. Transl Res 2023; 259:46-61. [PMID: 37121539 PMCID: PMC10524625 DOI: 10.1016/j.trsl.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
17
|
Chen Y, Li X, Xiong Q, Du Y, Luo M, Yi L, Pang Y, Shi X, Wang YT, Dong Z. Inhibiting NLRP3 inflammasome signaling pathway promotes neurological recovery following hypoxic-ischemic brain damage by increasing p97-mediated surface GluA1-containing AMPA receptors. J Transl Med 2023; 21:567. [PMID: 37620837 PMCID: PMC10463885 DOI: 10.1186/s12967-023-04452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is believed to be a key mediator of neuroinflammation and subsequent secondary brain injury induced by ischemic stroke. However, the role and underlying mechanism of the NLRP3 inflammasome in neonates with hypoxic-ischemic encephalopathy (HIE) are still unclear. METHODS The protein expressions of the NLRP3 inflammasome including NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1) and interleukin-1β (IL-1β), the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) subunit, and the ATPase valosin-containing protein (VCP/p97), were determined by Western blotting. The interaction between p97 and AMPA glutamate receptor 1 (GluA1) was determined by co-immunoprecipitation. The histopathological level of hypoxic-ischemic brain damage (HIBD) was determined by triphenyltetrazolium chloride (TTC) staining. Polymerase chain reaction (PCR) and Western blotting were used to confirm the genotype of the knockout mice. Motor functions, including myodynamia and coordination, were evaluated by using grasping and rotarod tests. Hippocampus-dependent spatial cognitive function was measured by using the Morris-water maze (MWM). RESULTS We reported that the NLRP3 inflammasome signaling pathway, such as NLRP3, caspase-1 and IL-1β, was activated in rats with HIBD and oxygen-glucose deprivation (OGD)-treated cultured primary neurons. Further studies showed that the protein level of the AMPAR GluA1 subunit on the hippocampal postsynaptic membrane was significantly decreased in rats with HIBD, and it could be restored to control levels after treatment with the specific caspase-1 inhibitor AC-YVAD-CMK. Similarly, in vitro studies showed that OGD reduced GluA1 protein levels on the plasma membrane in cultured primary neurons, whereas AC-YVAD-CMK treatment restored this reduction. Importantly, we showed that OGD treatment obviously enhanced the interaction between p97 and GluA1, while AC-YVAD-CMK treatment promoted the dissociation of p97 from the GluA1 complex and consequently facilitated the localization of GluA1 on the plasma membrane of cultured primary neurons. Finally, we reported that the deficits in motor function, learning and memory in animals with HIBD, were ameliorated by pharmacological intervention or genetic ablation of caspase-1. CONCLUSION Inhibiting the NLRP3 inflammasome signaling pathway promotes neurological recovery in animals with HIBD by increasing p97-mediated surface GluA1 expression, thereby providing new insight into HIE therapy.
Collapse
Affiliation(s)
- Yuxin Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qian Xiong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Tian Wang
- Department of Medicine, Brain Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
18
|
Zhang M, Lin W, Tao X, Zhou W, Liu Z, Zhang Z, Jin S, Zhang H, Teng C, Zhu J, Guo X, Lin Z. Ginsenoside Rb1 inhibits ferroptosis to ameliorate hypoxic-ischemic brain damage in neonatal rats. Int Immunopharmacol 2023; 121:110503. [PMID: 37364327 DOI: 10.1016/j.intimp.2023.110503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Hypoxic ischemic encephalopathy (HIE) is among the leading causes of neonatal mortality, and currently there is no effective treatment. Ginsenoside Rb1 (GsRb1) is one of the principal active components of ginseng, and has protective benefits against oxidative stress, inflammation, hypoxic injury, and so on. However, the role and underlying mechanism of GsRb1 on HIE are unclear. Here, we established the neonatal rat hypoxic-ischemic brain damage (HIBD) model in vivo and the PC12 cell oxygen-glucose deprivation (OGD) model in vitro to investigate the neuroprotective effects of GsRb1 on HIE, and illuminate the potential mechanism. Our results showed that GsRb1 and the ferroptosis inhibitor liproxstatin-1 (Lip-1) could significantly restore System Xc activity and antioxidant levels as well as inhibit lipid oxidation levels and inflammatory index levels of HIBD and OGD models. Taken together, GsRb1 might inhibit ferroptosis to exert neuroprotective effects on HIE through alleviating oxidative stress and inflammation, which will set the foundation for future research on ferroptosis by reducing hypoxic-ischemic brain injury and suggest that GsRb1 might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zhou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Orthopaedics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuqing Jin
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haojie Zhang
- Department of Orthopaedics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Teng
- Department of Orthopaedics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
20
|
Jing X, Luo X, Fang C, Zhang B. N-acetylserotonin inhibits oxidized mitochondrial DNA-induced neuroinflammation by activating the AMPK/PGC-1α/TFAM pathway in neonatal hypoxic-ischemic brain injury model. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Zhang N, Yang L, Wen J, Cui H. miR-200b-3p antagomir inhibits neuronal apoptosis in oxygen-glucose deprivation (OGD) model through regulating β-TrCP. Brain Res 2023; 1800:148192. [PMID: 36463959 DOI: 10.1016/j.brainres.2022.148192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hypoxia-ischemic brain damage (HIBD) is a primary cause of morbidity and disability in survivors of preterm infants. We previously discovered that miR-200b-3p plays an important role in HIBD via targeting Slit2. This study was designed to identify novel targets of miR-200b-3p and investigate the relationship between miR-200b-3p and its downstream effectors. METHODS AND RESULTS Cultured primary rat hippocampal neurons were used in the model of oxygen-glucose deprivation (OGD) and RT-qPCR was utilized to detect the alterations of miR-200b-3p in these cells following the OGD. Our study found that the expression of miR-200b-3p was up-regulated in neurons post OGD. Bioinformatics analysis identified that β transducin repeat-containing protein (β-TrCP) is a target gene of miR-200b-3p, and our luciferase reporter gene assay confirmed that miR-200b-3p can interact with β-TrCP mRNA. Hypoxia-ischemic brain damage was induced in three-day-old SD rats and inhibition of miR-200b-3p by injection of antagomir into bilateral lateral ventricles enhanced β-TrCP expression at both the mRNA and protein levels in rats' brains. TUNEL staining and CCK-8 assays found that the survival of hippocampal neurons in the miR-200b-3p antagomir group was improved significantly (p<0.05), whereas apoptosis of neurons in the miR-200b-3p antagomir group was significantly decreased (p<0.05), as compared with the OGD group. However, silencing of β-TrCP by β-TrCP siRNA impaired the neuroprotective effect of miR-200b-3p antagomir. H&E staining showed that miR-200b-3p attenuated the pathological changes in the hippocampal region of rats with HIBD. CONCLUSION Our study has demonstrated that β-TrCP is a target gene of miR-200b-3p and that inhibition of miR-200b-3p by antagomir attenuates hypoxia-ischemic brain damage via β-TrCP.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialin Wen
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Green EA, Garrick SP, Peterson B, Berger PJ, Galinsky R, Hunt RW, Cho SX, Bourke JE, Nold MF, Nold-Petry CA. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci 2023; 24:2795. [PMID: 36769133 PMCID: PMC9918069 DOI: 10.3390/ijms24032795] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.
Collapse
Affiliation(s)
- Elys A. Green
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Briana Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Robert Galinsky
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Rod W. Hunt
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven X. Cho
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3168, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
23
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
24
|
He Y, Ying J, Tang J, Zhou R, Qu H, Qu Y, Mu D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr Neuropharmacol 2022; 20:2248-2266. [PMID: 35193484 PMCID: PMC9890291 DOI: 10.2174/1570159x20666220222144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
25
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
26
|
Zhao Q, Chen T, Ni C, Hu Y, Nan Y, Lin W, Liu Y, Zheng F, Shi X, Lin Z, Zhu J, Lin Z. Indole-3-propionic Acid Attenuates HI-Related Blood-Brain Barrier Injury in Neonatal Rats by Modulating the PXR Signaling Pathway. ACS Chem Neurosci 2022; 13:2897-2912. [PMID: 36129348 DOI: 10.1021/acschemneuro.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) is an important physiological barrier of the human body contributing to maintaining brain homeostasis and normal function. Hypoxic-ischemic (HI)-related brain injury is one of the main causes of neonatal acute morbidity and chronic disability. The previous research of our group confirmed that there was serious BBB destruction during HI brain injury. However, at present, the protection strategy of BBB is very limited, and further research on the protection mechanism is warranted. Indole-3-propionic acid (IPA) is a bacterial metabolism with anti-inflammatory and antioxidant properties, having neuroprotective effects and protective effects on the mucosal barrier. However, the role of IPA in BBB is not clear. In this research, we demonstrated the protective effect of IPA on BBB disruption from HI brain injury and hypothesized that it involves the amelioration of inflammation, oxidative stress, and MMP activation, thereby inhibiting apoptosis of rat brain microvascular endothelial cells (rBMECs). We demonstrated that expression levels of several inflammatory markers, including iNOS, TNF-α, IL-6, and IL-1β, were significantly increased from HI damage or OGD injury. However, IPA treatment inhibited the increase significantly. Moreover, we demonstrated that IPA reduced intracellular ROS levels and MMP activation in rBMECs from OGD injury. Further research on the underlying detailed molecular mechanisms suggested that IPA attenuates inflammation by inhibiting NF-κB signaling. Finally, we investigated the mechanism of the relationship between PXR activation and NF-κB inhibition. The results suggested overexpression of PXR in rBMECs could significantly counteract the decrease of junction proteins and downregulate the increased p-IκB-α and p-NF-κB from OGD injury. However, the protective effects of IPA were reversed by antagonists of the PXR. Taken together, IPA might mitigate HI-induced damage of the BBB and the protective effect may be exerted through modulating the PXR signaling pathway.
Collapse
Affiliation(s)
- Qianlei Zhao
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chao Ni
- Department of Pediatric Cardiovascular, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wei Lin
- Department of PICU, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanli Liu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feixia Zheng
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xulai Shi
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
27
|
Meng XL, Liu SY, Xue JS, Gou JM, Wang D, Liu HS, Chen CL, Xu CB. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-β. J Food Biochem 2022; 46:e14303. [PMID: 35762411 DOI: 10.1111/jfbc.14303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of amyloid-β (Aβ) is the leading cause of Alzheimer's disease (AD). Liensinine, Isoliensinine, and Neferine are main alkaloids in lotus seed embryos. In this paper, the protective effects of Liensinine, Isoliensinine, and Neferine on Aβ25-35 -injured PC12 cells were studied. It was found that Liensinine, Isoliensinine, and Neferine could improve the viability and reduce the apoptosis of PC12 cell induced by Aβ25-35 . These three alkaloids could also reduce the level of intracellular free Ca2+ and CaM expression in Aβ25-35 -treated cells, thereby inhibiting the phosphorylation of CaMKII and tau. In addition, these three compounds can inhibit the production of ROS in PC12 cells injured by Aβ25-35 . Our results suggest for the first time that Liensinine, Isoliensinine, and Neferine can inhibit hyperphosphorylation of tau protein by inhibiting the Ca2+ -CaM/CaMKII pathway, thereby reducing the apoptosis and death of PC12 cells damaged by Aβ25-35 . PRACTICAL APPLICATIONS: This study highlighted the protective effects and mechanisms of three main active ingredients (Liensinine, Isoliensinine, and Neferine) in the lotus embryo on a typical cell model of Alzheimer's disease (AD). The results revealed that three alkaloids in this healthy food might exert therapeutic potential for AD.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Song-Yao Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, China
| |
Collapse
|
28
|
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW, Wang SJ. Neferine, an Alkaloid from Lotus Seed Embryos, Exerts Antiseizure and Neuroprotective Effects in a Kainic Acid-Induced Seizure Model in Rats. Int J Mol Sci 2022; 23:ijms23084130. [PMID: 35456948 PMCID: PMC9027762 DOI: 10.3390/ijms23084130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of neferine, an alkaloid from the lotus seed embryos of Nelumbo nucifera, in a kainic acid (KA)-induced seizure rat model and its underlying mechanisms. Rats were intraperitoneally (i.p.) administrated neferine (10 and 50 mg/kg) 30 min before KA injection (15 mg/kg, i.p.). Neferine pretreatment increased seizure latency and reduced seizure scores, prevented glutamate elevation and neuronal loss, and increased presynaptic protein synaptophysin and postsynaptic density protein 95 expression in the hippocampi of rats with KA. Neferine pretreatment also decreased glial cell activation and proinflammatory cytokine (interleukin-1β, interleukin-6, tumor necrosis factor-α) expression in the hippocampi of rats with KA. In addition, NOD-like receptor 3 (NLRP3) inflammasome, caspase-1, and interleukin-18 expression levels were decreased in the hippocampi of seizure rats pretreated with neferine. These results indicated that neferine reduced seizure severity, exerted neuroprotective effects, and ameliorated neuroinflammation in the hippocampi of KA-treated rats, possibly by inhibiting NLRP3 inflammasome activation and decreasing inflammatory cytokine secretion. Our findings highlight the potential of neferine as a therapeutic option in the treatment of epilepsy.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chih-Yu Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kuan-Ming Chiu
- Cardiovascular Center, Division of Cardiovascular Surgery, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Cardiovascular Center, Division of Cardiovascular Surgery, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
- Correspondence: (C.-W.L.); (S.-J.W.)
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (C.-W.L.); (S.-J.W.)
| |
Collapse
|
29
|
Glycyrrhizin Attenuates Hypoxic-Ischemic Brain Damage by Inhibiting Ferroptosis and Neuroinflammation in Neonatal Rats via the HMGB1/GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8438528. [PMID: 35432719 PMCID: PMC9010207 DOI: 10.1155/2022/8438528] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
With unknown etiology and limited treatment options, neonatal hypoxic-ischemic brain damage (HIBD) remains a major cause of mortality in newborns. Ferroptosis, a recently discovered type of cell death triggered by lipid peroxidation, is closely associated with HIBD. High-mobility group box 1 (HMGB1), a molecule associated with inflammation damage, can induce neuronal death in HIBD. However, it remains unknown whether HMGB1 contributes to neuronal ferroptosis in patients with HIBD. Herein, glycyrrhizin (GL), an HMGB1 inhibitor, was used to investigate the relationship between ferroptosis and HMGB1. RAS-selective lethal 3(RSL3), a ferroptosis agonist, was administered to further confirm the changes in the signaling pathway between HMGB1 and ferroptosis. Western blot analysis revealed that GL markedly suppressed the expression of HMGB1 and increased the level of GPX4 in the context of HIBD. We observed changes in neuronal ultrastructure via transmission electron microscopy to further confirm the occurrence of ferroptosis. Real-time PCR indicated that GL inhibited the expression of ferroptosis-related genes and inflammatory factors. Immunofluorescence and immunohistochemistry staining confirmed GL inhibition of neuronal damage and ferroptosis in HIBD associated with GPX4 and ROS. GL not only inhibited ferroptosis induced by RSL3 and oxygen-glucose deprivation in vitro but also inhibited ferroptosis induced by HIBD in vivo. More importantly, GL may improve oxidative stress imbalance and mitochondrial damage, alleviate the downstream production of inflammatory factors, and ultimately reduce ferroptosis and damage to cortical neurons following HIBD via the HMGB1/GPX4 pathway. In conclusion, we showed for the first time that GL could suppress the occurrence of neuronal ferroptosis and reduce neuronal loss in HIBD via the HMGB1/GPX4 pathway. These findings highlight the potential of HMGB1 signaling antagonists to treat neuronal damage by suppressing ferroptosis, provide new and unique insights into GL as a neuroprotective agent, and suggest new prevention and treatment strategies for HIBD.
Collapse
|