1
|
Fisher M, Duhon BH, Nguyen HTN, Tonniges JR, Wu KC, Ren Y. Quantitative Assessment of Collagen Architecture to Determine Role of Tumor Stroma During Vestibular Schwannoma Progression. Otolaryngol Head Neck Surg 2025; 172:614-622. [PMID: 39506612 DOI: 10.1002/ohn.1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE The primary objective was to characterize the abundance and architecture of collagen in the extracellular matrix in vestibular schwannoma (VS). The secondary objective was to investigate the association between collagen architecture and tumor size. STUDY DESIGN Retrospective cohort study. SETTING Academic referral center. METHODS Tumor samples were obtained from patients with sporadic VS undergoing microsurgical resection. Histological analyses were performed including picrosirius red (PSR) staining under polarized light. Collagen architecture was quantified using an automated fiber detection software. Second Harmonic Generation (SHG) microscopy and immunofluorescence (IF) were utilized to characterize collagen architecture. RESULTS Eleven tumor specimens were included (mean tumor diameter = 2.80 cm, range 1.5-4.0 cm), and were divided into large (mean diameter = 3.5 ± 0.4 cm) and small (mean tumor diameter = 2.0 ± 0.4 cm) cohorts based on size. The large VS cohort showed significantly higher collagen density (27.65% vs 12.73%, P = .0043), with more thick fibers (mature Type I, 24.54% vs 12.97%, P = .0022) and thin fibers (immature Type I or mature Type III, 23.55% vs 12.27%, P = .026). Tumor volume correlated with greater degree of collagen fiber disorganization (P = .0413, r2 = 0.298). Specifically, collagen type I intensity was significantly higher in large VS compared to small tumors (P < .001) and peripheral nerve (P = .028). CONCLUSION Larger VS exhibit increased collagen abundance in the tumor stroma, and a more disorganized collagen architecture compared to smaller VS and normal peripheral nerve tissue. This finding indicates that collagen organization may play a significant role in extracellular matrix remodeling and the progression of VS.
Collapse
Affiliation(s)
- Melanie Fisher
- Department of Otolaryngology-Head and Neck Surgery, Division of Otology, Neurotology and Cranial Base Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Bailey H Duhon
- Department of Otolaryngology-Head and Neck Surgery, Division of Otology, Neurotology and Cranial Base Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Han T N Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Division of Otology, Neurotology and Cranial Base Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey R Tonniges
- Campus Microscopy and Imaging Facility, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kyle C Wu
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yin Ren
- Department of Otolaryngology-Head and Neck Surgery, Division of Otology, Neurotology and Cranial Base Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
2
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
3
|
Zhang Q, Zhang P, Zhao Z, Wang J, Zhang H. Exploring the role of differentially expressed metabolic genes and their mechanisms in bone metastatic prostate cancer. PeerJ 2023; 11:e15013. [PMID: 37070095 PMCID: PMC10105558 DOI: 10.7717/peerj.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
Abstract
Background Approximately 10-20% of patients diagnosed with prostate cancer (PCa) evolve into castration-resistant prostate cancer (CRPC), while nearly 90% of patients with metastatic CRPC (mCRPC) exhibit osseous metastases (BM). These BM are intimately correlated with the stability of the tumour microenvironment. Purpose This study aspires to uncover the metabolism-related genes and the underlying mechanisms responsible for bone metastatic prostate cancer (BMPCa). Methods Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets of PCa and BM were analyzed through R Studio software to identify differentially expressed genes (DEGs). The DEGs underwent functional enrichment via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), with key factors screened by a random forest utilized to establish a prognostic model for PCa. The study explored the relationship between DEGs and the stability of the immune microenvironment. The action and specificity of CRISP3 in PCa was validated through western blot analysis, CCK-8 assay, scratch assay, and cellular assay. Results The screening of GEO and TCGA datasets resulted in the identification of 199 co-differential genes. Three DEGs, including DES, HBB, and SLPI, were selected by random forest classification model and cox regression model. Immuno-infiltration analysis disclosed that a higher infiltration of naïve B cells and resting CD4 memory T cells occurred in the high-expression group of DES, whereas infiltration of resting M1 macrophages and NK cells was greater in the low-expression group of DES. A significant infiltration of neutrophils was observed in the high-expression group of HBB, while greater infiltration of gamma delta T cells and M1 macrophages was noted in the low-expression group of HBB. Resting dendritic cells, CD8 T cells, and resting T regulatory cells (Tregs) infiltrated significantly in the high-expression group of SLPI, while only resting mast cells infiltrated significantly in the low-expression group of SLPI. CRISP3 was established as a critical gene in BMPCa linked to DES expression. Targeting CRISP3, d-glucopyranose may impact tumour prognosis. During the mechanistic experiments, it was established that CRISP3 can advance the proliferation and metastatic potential of PCa by advancing epithelial-to-mesenchymal transition (EMT). Conclusion By modulating lipid metabolism and maintaining immunological and microenvironmental balance, DES, HBB, and SLPI suppress prostate cancer cell growth. The presence of DES-associated CRISP3 is a harbinger of unfavorable outcomes in prostate cancer and may escalate tumor proliferation and metastatic capabilities by inducing epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Qingfu Zhang
- Department of Urology, Tai ’an Central Hospital, Tai ’an, Shandong, China
| | - Peng Zhang
- Department of Spine Surgery, Tai ’an Central Hospital, Tai ’an, Shandong, China
| | - Zhongting Zhao
- Department of Spinal Surgery, The Third People’s Hospital of Jinan, Jinan, Shandong, China
| | - Jun Wang
- Department of Emergency, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Hepeng Zhang
- Department of Urology, Tai ’an Central Hospital, Tai ’an, Shandong, China
| |
Collapse
|
4
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
5
|
Chen B, Luo Y, Kang X, Sun Y, Jiang C, Yi B, Yan X, Chen Y, Shi R. Development of a prognostic prediction model based on a combined multi-omics analysis of head and neck squamous cell carcinoma cell pyroptosis-related genes. Front Genet 2022; 13:981222. [PMID: 36246601 PMCID: PMC9557126 DOI: 10.3389/fgene.2022.981222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to understand the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and to develop and validate a prognostic model for HNSCC based on pyroptosis-associated genes (PAGs) in nasopharyngeal carcinoma. The Cancer Genome Atlas database was used to identify differentially expressed PAGs. These genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes functional annotation analyses and Gene Ontology analyses. The NLR family pyrin domain containing 1 (NLRP1) gene, charged multivesicular body protein 7 (CHMP7) gene, and cytochrome C (CYCS) gene were used to create a prognostic model for HNSCC. The results of the Kaplan-Meier (K-M) and Cox regression analyses indicated that the developed model served as an independent risk factor for HNSCC. According to the K-M analysis, the overall survival of high-risk patients was lower than that of low-risk patients. The hazard ratios corresponding to the risk scores determined using the multivariate and univariate Cox regression analyses were 1.646 (95% confidence interval (CI): 1.189–2.278) and 1.724 (95% CI: 1.294–2.298), respectively, and the area under the receiver operator characteristic curve was 0.621. The potential mechanisms associated with the functions of the identified genes were then identified, and the tumor microenvironment and levels of immune cell infiltration achieved were analyzed. The immune infiltration analysis revealed differences in the distribution of Th cells, tumor-infiltrating lymphocytes, regulatory T cells, follicular helper T cells, adipose-derived cells, interdigitating dendritic cells, CD8+ T cells, and B cells. However, validating bioinformatics analyses through biological experiments is still recommended. This study developed a prognostic model for HNSCC that included NLRP1, CHMP7, and CYCS.
Collapse
Affiliation(s)
- Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Runjie Shi,
| |
Collapse
|
6
|
Zheng X, Xu S, Wu J. Cervical Cancer Imaging Features Associated With ADRB1 as a Risk Factor for Cerebral Neurovascular Metastases. Front Neurol 2022; 13:905761. [PMID: 35903112 PMCID: PMC9315067 DOI: 10.3389/fneur.2022.905761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bioinformatics tools are used to create a clinical prediction model for cervical cancer metastasis and to investigate the neurovascular-related genes that are involved in brain metastasis of cervical cancer. One hundred eighteen patients with cervical cancer were divided into two groups based on the presence or absence of metastases, and the clinical data and imaging findings of the two groups were compared retrospectively. The nomogram-based model was successfully constructed by taking into account four clinical characteristics (age, stage, N, and T) as well as one imaging characteristic (original_glszm_GrayLevelVariance Rad-score). In patients with cervical cancer, headaches and vomiting were more often reported in the brain metastasis group than in the other metastasis groups. According to the TCGA data, mRNA differential gene expression analysis of patients with cervical cancer revealed an increase in the expression of neurovascular-related gene Adrenoceptor Beta 1 (ADRB1) in the brain metastasis group. An analysis of the correlation between imaging features and ADRB1 expression revealed that ADRB1 expression was significantly higher in the low Rad-score group compared with the high Rad-score group (P = 0.025). Therefore, ADRB1 expression in cervical cancer was correlated with imaging features and was associated as a risk factor for cerebral neurovascular metastases. This study developed a nomogram prediction model for cervical cancer metastasis using age, stage, N, T and original_glszm_GrayLevelVariance. As a risk factor associated with the development of cerebral neurovascular metastases of cervical cancer, ADRB1 expression was significantly higher in brain metastases from cervical cancer.
Collapse
Affiliation(s)
- Xingju Zheng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shilin Xu
- Department of Oncology, Xichang People's Hospital, Liangshan High-Tech Tumor Hospital, Xichang, China
| | - JiaYing Wu
- Department of Gynaecology and Obstetrics, Zhejiang Xinda Hospital, Huzhou, China
- *Correspondence: JiaYing Wu
| |
Collapse
|
7
|
Luo Q, Ma H, Guo E, Yu L, Jia L, Zhang B, Feng G, Liu R. MicroRNAs Promote the Progression of Sepsis-Induced Cardiomyopathy and Neurovascular Dysfunction Through Upregulation of NF-kappaB Signaling Pathway-Associated HDAC7/ACTN4. Front Neurol 2022; 13:909828. [PMID: 35756932 PMCID: PMC9218607 DOI: 10.3389/fneur.2022.909828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The objective of this study was to determine the NF-kappaB pathway, hub genes, and transcription factors (TFs) in monocytes implicated in the progression of neurovascular-related sepsis-induced cardiomyopathy (SIC) as well as potential miRNAs with regulatory functions. Methods : Sepsis-induced cardiomyopathy—and heart failure (HF)-related differentially expressed genes (DEGs) between SIC and HF groups were identified separately by differential analysis. In addition, DEGs and differentially expressed miRNAs (DEmiRNAs) in monocytes between sepsis and the HC group were identified. Then, common DEGs in SIC, HF, and monocyte groups were identified by intersection analysis. Based on the functional pathways enriched by these DEGs, genes related to the NF-kB-inducing kinase (NIK)/NF-kappaB signaling pathway were selected for further intersection analysis to obtain hub genes. These common DEGs, together with sepsis-related DEmiRNAs, were used to construct a molecular interplay network and to identify core TFs in the network. Results : A total of 153 upregulated genes and 25 downregulated genes were obtained from SIC-, HF-, and monocyte-related DEGs. Functional pathway analysis revealed that the upregulated genes were enriched in NF-κB signaling pathway. A total of eight genes associated with NF-κB signaling pathway were then further identified from the 178 DEGs. In combination with sepsis-related DEmiRNAs, HDAC7/ACTN4 was identified as a key transcriptional regulatory pair in the progression of SIC and in monocyte regulation. hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p can regulate the progression of SIC through the regulation of HDAC7/ACTN4. Finally, gene set enrichment analysis (GSEA) suggested that HDAC7/ACTN4 may be associated with apoptosis in addition to the inflammatory response. Conclusion : hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p are involved in SIC progression by regulating NF-κB signaling signaling pathway-related HDAC7/ACTN4 in monocytes and cardiac tissue cells. These mechanisms may contribute to sepsis-induced neurovascular damage.
Collapse
Affiliation(s)
- Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Hanning Ma
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Ling Jia
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Gang Feng
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
8
|
Feliz Morel ÁJ, Hasanovic A, Morin A, Prunier C, Magnone V, Lebrigand K, Aouad A, Cogoluegnes S, Favier J, Pasquier C, Mus-Veteau I. Persistent Properties of a Subpopulation of Cancer Cells Overexpressing the Hedgehog Receptor Patched. Pharmaceutics 2022; 14:pharmaceutics14050988. [PMID: 35631574 PMCID: PMC9146430 DOI: 10.3390/pharmaceutics14050988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the development of new therapeutic strategies, cancer remains one of the leading causes of mortality worldwide. One of the current major challenges is the resistance of cancers to chemotherapy treatments inducing metastases and relapse of the tumor. The Hedgehog receptor Patched (Ptch1) is overexpressed in many types of cancers. We showed that Ptch1 contributes to the efflux of doxorubicin and plays an important role in the resistance to chemotherapy in adrenocortical carcinoma (ACC), a rare cancer which presents strong resistance to the standard of care chemotherapy treatment. In the present study, we isolated and characterized a subpopulation of the ACC cell line H295R in which Ptch1 is overexpressed and more present at the cell surface. This cell subpopulation is more resistant to doxorubicin, grows as spheroids, and has a greater capability of clonogenicity, migration, and invasion than the parental cells. Xenograft experiments performed in mice and in ovo showed that this cell subpopulation is more tumorigenic and metastatic than the parental cells. These results suggest that this cell subpopulation has cancer stem-like or persistent cell properties which were strengthened by RNA-seq. If present in tumors from ACC patients, these cells could be responsible for therapy resistance, relapse, and metastases.
Collapse
Affiliation(s)
- Álvaro Javier Feliz Morel
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Anida Hasanovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Aurélie Morin
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Chloé Prunier
- INOVOTION, Biopolis-5 Av. du Grand Sablon, 38700 La Tronche, France;
| | - Virginie Magnone
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Kevin Lebrigand
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Amaury Aouad
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Sarah Cogoluegnes
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Claude Pasquier
- Université Côte d’Azur, CNRS-UMR7271, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), 06560 Valbonne, France;
| | - Isabelle Mus-Veteau
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
- Correspondence:
| |
Collapse
|
9
|
Prognostic and Functional Analysis of NPY6R in Uveal Melanoma Using Bioinformatics. DISEASE MARKERS 2022; 2022:4143447. [PMID: 35432628 PMCID: PMC9012612 DOI: 10.1155/2022/4143447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Abstract
Neuropeptides can mediate tumor cell proliferation and differentiation through autocrine, paracrine, neurosecretory, and endocrine mechanisms. This study investigated the expression and prognostic significance of neuropeptide Y receptor Y6 (NPY6R) in uveal melanoma (UVM) and preliminarily investigated the biological function of NPY6R in UVM. NPY6R was poorly expressed in most tumors and was associated with better prognosis in UVM. Among the clinicopathological features of UVM, NPY6R expression was lower in male patients. The area under the curve (AUC) value of NPY6R for the diagnosis of UVM was 0.676 (95% CI: 0.556–0.795). A nomogram including four clinical predictors was constructed. NPY6R expression was significantly associated with features of the UVM immune microenvironment. ESTIMATE and CIBERSORT algorithms were used to calculate the fraction of immune cells and the percentage of infiltration in each patient, respectively. NPY6R expression-related gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses were performed. GO and KEGG enrichment analyses revealed that NPY6R-related genes are mainly enriched in pathways and functions related to visual light perception. Gene set enrichment analysis suggested that NPY6R is associated with tumor progression in UVM. NPY6R is involved in the tumor progression of UVM and has a good predictive value as a prognostic marker of UVM.
Collapse
|
10
|
Chen Y, Luo Z, Sun Y, Zhou Y, Han Z, Yang X, Kang X, Lin J, Qi B, Lin WW, Guo H, Guo C, Go K, Sun C, Li X, Chen J, Chen S. The effect of denture-wearing on physical activity is associated with cognitive impairment in the elderly: A cross-sectional study based on the CHARLS database. Front Neurosci 2022; 16:925398. [PMID: 36051648 PMCID: PMC9425833 DOI: 10.3389/fnins.2022.925398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Currently, only a few studies have examined the link between dental health, cognitive impairment, and physical activity. The current study examined the relationship between denture use and physical activity in elderly patients with different cognitive abilities. METHODS The study data was sourced from the 2018 China Health and Retirement Longitudinal Study (CHARLS) database, which included information on denture use and amount of daily physical activity undertaken by older persons. Physical activity was categorized into three levels using the International Physical Activity General Questionnaire and the International Physical Activity Scale (IPAQ) rubric. The relationship between denture use and physical activity in middle-aged and older persons with varying degrees of cognitive functioning was studied using logistic regression models. RESULTS A total of 5,892 older people with varying cognitive abilities were included. Denture use was linked to physical activity in the cognitively healthy 60 + age group (p = 0.004). Denture use was positively related with moderate physical activity in the population (odds ratio, OR: 1.336, 95% confidence interval: 1.173-1.520, p < 0.001), according to a multivariate logistic regression analysis, a finding that was supported by the calibration curve. Furthermore, the moderate physical activity group was more likely to wear dentures than the mild physical activity group among age-adjusted cognitively unimpaired middle-aged and older persons (OR: 1.213, 95% CI: 1.053-1.397, p < 0.01). In a fully adjusted logistic regression model, moderate physical activity population had increased ORs of 1.163 (95% CI: 1.008-1.341, p < 0.05) of dentures and vigorous physical activity population had not increased ORs of 1.016 (95% CI: 0.853-1.210, p > 0.05), compared with mild physical activity population. CONCLUSION This findings revealed that wearing dentures affects physical activity differently in older persons with different cognitive conditions. In cognitively unimpaired older adults, wearing dentures was associated with an active and appropriate physical activity status.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifan Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Yang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoran Guo
- Chinese PLA Medical School, Beijing, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ken Go
- St. Marianna Hospital, Tokyo, Japan
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shanghai, China
- Xiubin Li,
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Jiwu Chen,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shiyi Chen,
| |
Collapse
|
11
|
Chen Y, Sun Y, Luo Z, Chen X, Wang Y, Qi B, Lin J, Lin WW, Sun C, Zhou Y, Huang J, Xu Y, Chen J, Chen S. Exercise Modifies the Transcriptional Regulatory Features of Monocytes in Alzheimer's Patients: A Multi-Omics Integration Analysis Based on Single Cell Technology. Front Aging Neurosci 2022; 14:881488. [PMID: 35592698 PMCID: PMC9110789 DOI: 10.3389/fnagi.2022.881488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Monocytes have been reported to be important mediators of the protective effect of exercise against the development of Alzheimer's disease (AD). This study aims explored the mechanism by which monocytes achieve this. Using single cell transcriptome analysis, results showed that CD14 + and CD16 + monocytes interacted with other cells in the circulating blood. TNF, CCR1, APP, and AREG, the key ligand-receptor-related genes, were found to be differentially expressed between exercise-treated and AD patients. The SCENIC analysis was performed to identify individual clusters of the key transcription factors (TFs). Nine clusters (M1-M9) were obtained from the co-expression network. Among the identified TFs, MAFB, HES4, and FOSL1 were found to be differentially expressed in AD. Moreover, the M4 cluster to which MAFB, HES4, and FOSL1 belonged was defined as the signature cluster for AD phenotype. Differential analysis by bulkRNA-seq revealed that the expression of TNF, CCR1, and APP were all upregulated after exercise (p < 0.05). And ATF3, MAFB, HES4, and KLF4 that were identified in M4 clusters may be the TFs that regulate TNF, CCR1, and APP in exercise prescription. After that, APP, CCR1, TNF, ATF3, KLF4, HES4, and MAFB formed a regulatory network in the ERADMT gene set, and all of them were mechanistically linked. The ERADMT gene set has been found to be a potential risk marker for the development of AD and can be used as an indicator of compliance to exercise therapy in AD patients. Using single-cell integration analysis, a network of exercise-regulating TFs in monocytes was constructed for AD disease. The constructed network reveals the mechanism by which exercise regulated monocytes to confer therapeutic benefits against AD and its complications. However, this study, as a bioinformatic research, requires further experimental validation.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yi Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yifan Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Putuo People’ s Hospital, Tongji University, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Yuzhen Xu,
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Jiwu Chen,
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China
- Shiyi Chen,
| |
Collapse
|