1
|
Kolipaka R, Magesh I, Bharathy MA, Karthik S, Saranya I, Selvamurugan N. A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res 2024; 9:687-694. [PMID: 38577015 PMCID: PMC10990750 DOI: 10.1016/j.ncrna.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M.R. Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S. Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - I. Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - N. Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Yu XJ, Bai XF, Qu YK, Wang SX, Zhang J, Yang W, Wang S, Yang Y, Wang YG, Hao DJ, Zhao YT. Unveiling the Therapeutic Potential of hUCMSC-Derived EVs in Intervertebral Disc Degeneration through MALAT1/ miR-138-5p/SLC7A11 Coexpression Regulation. ACS Biomater Sci Eng 2024; 10:4839-4854. [PMID: 39079050 DOI: 10.1021/acsbiomaterials.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Jianwei Zhang
- Department of Orthopedics, the First People's Hospital of Tianshui City, Tianshui 741000, Gansu Province, China
| | - Wenlong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuli Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| |
Collapse
|
3
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:21-32. [PMID: 35790599 DOI: 10.1007/s12094-022-02876-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Detomas M, Pivonello C, Pellegrini B, Landwehr LS, Sbiera S, Pivonello R, Ronchi CL, Colao A, Altieri B, De Martino MC. MicroRNAs and Long Non-Coding RNAs in Adrenocortical Carcinoma. Cells 2022; 11:2234. [PMID: 35883677 PMCID: PMC9324008 DOI: 10.3390/cells11142234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of genetic material that do not encode proteins but regulate the gene expression at an epigenetic level, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The role played by ncRNAs in many physiological and pathological processes has gained attention during the last few decades, as they might be useful in the diagnosis, treatment and management of several human disorders, including endocrine and oncological diseases. Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine cancer, still characterized by high mortality and morbidity due to both endocrine and oncological complications. Despite the rarity of this disease, recently, the role of ncRNA has been quite extensively evaluated in ACC. In order to better explore the role of the ncRNA in human ACC, this review summarizes the current knowledge on ncRNA dysregulation in ACC and its potential role in the diagnosis, treatment, and management of this tumor.
Collapse
Affiliation(s)
- Mario Detomas
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Bianca Pellegrini
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Cristina L. Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| |
Collapse
|
6
|
Wang L, Liu Z, Liu L, Guo C, Jiao D, Li L, Zhao J, Han X, Sun Y. CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis. J Cell Mol Med 2021; 25:7559-7574. [PMID: 34288370 PMCID: PMC8335674 DOI: 10.1111/jcmm.16791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
CUGBP Elav‐like family member 2(CELF2) plays crucial roles in the development and activation of T cell. However, the impacts of CELF2 on tumour‐infiltrating immune cells (TIICs) and clinical outcomes of tumours remain unclear. In this study, we found that elevated CELF2 expression was markedly correlated with prolonged survival in multiple tumours, particularly in breast and lung cancers. Notably, CELF2 only impacted the prognosis of triple‐negative breast cancer (TNBC) with lymph node metastasis. Further investigation showed CELF2 expression was positively correlated with the infiltration abundance of dendritic cells (DCs), CD8+ T cells and neutrophils in breast invasive carcinoma (BRCA) and DCs in lung squamous cell carcinoma (LUSC). CELF2 also had strong correlations with markers of diverse TIICs such as T cells, tumour‐associated macrophages and DCs in BRCA and LUSC. Importantly, CELF2 was significantly associated with plenty of immune checkpoint molecules (ICMs) and outperformed five prevalent biomarkers including PD‐1, PD‐L1, CTLA‐4, CD8 and tumour mutation burden in predicting immunotherapeutic responses. Immunohistochemistry also revealed lower protein levels of CELF2 in TNBC and LUSC compared to normal tissues, and patients with high expression showed significantly prolonged prognosis. In conclusion, we demonstrated that increased CELF2 expression was closely related to better prognosis and superior TIIC infiltration and ICM expression, particularly in BRCA and LUSC. CELF2 also performed well in evaluating the immunotherapeutic efficacy, suggesting CELF2 might be a promising biomarker.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|