1
|
Semenova N, Vyrupaeva E, Kolesnikov S, Darenskaya M, Nikitina O, Rychkova L, Kolesnikova L. Persistent Post COVID-19 Endothelial Dysfunction and Oxidative Stress in Women. PATHOPHYSIOLOGY 2024; 31:436-457. [PMID: 39311307 PMCID: PMC11417798 DOI: 10.3390/pathophysiology31030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024] Open
Abstract
The assessment of endothelial dysfunction and free radical homeostasis parameters were performed in 92 women, aged 45 to 69 years, divided into the following groups: women without COVID-19 (unvaccinated, no antibodies, control); women with acute phase of COVID-19 infection (main group, COVID-19+); 12 months post COVID-19+; women with anti-SARS-CoV-2 IgG with no symptoms of COVID-19 in the last 12 months (asymptomatic COVID-19). Compared to the control, patients of the main group had lower glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities, decreased advanced glycation end products (AGEs) level, higher glutathione reductase (GR) activity, and higher glutathione S transferases pi (GSTpi), thiobarbituric acid reactants (TBARs), endothelin (END)-1, and END-2 concentrations (all p ≤ 0.05). The group with asymptomatic COVID-19 had lower 8-OHdG and oxidized glutathione (GSSG) levels, decreased total antioxidant status (TAS), and higher reduced glutathione (GSH) and GSH/GSSG levels (all p ≤ 0.05). In the group COVID-19+, as compared to the group without clinical symptoms, we detected lower GPx and SOD activities, decreased AGEs concentration, a higher TAS, and greater GR activity and GSTpi and TBARs concentrations (all p ≤ 0.05). The high content of lipid peroxidation products 12 months post COVID-19+, despite decrease in ENDs, indicates long-term changes in free radical homeostasis. These data indicate increased levels of lipid peroxidation production contribute, in part, to the development of free radical related pathologies including long-term post COVID syndrome.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk 664003, Russia; (E.V.); (S.K.); (M.D.); (O.N.); (L.R.); (L.K.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Szołtysek-Bołdys I, Zielińska-Danch W, Łoboda D, Gołba KS, Sarecka-Hujar B. Assessment of the Concentrations of Selected Aminothiols in Patients after COVID-19. J Clin Med 2024; 13:4108. [PMID: 39064148 PMCID: PMC11278428 DOI: 10.3390/jcm13144108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Data show that due to endothelial damage and thrombogenic effects, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection may accelerate the development of atherosclerosis and increase the risk of cardiovascular diseases (CVDs). The impaired metabolism of aminothiols increases oxidative stress, as these molecules are involved in antioxidant defense as well as in thiol redox control. In this study, total levels of selected aminothiols (i.e., cysteine (Cys), homocysteine (HCy), and glutathione) in convalescents after coronavirus disease of 2019 (COVID-19) were evaluated. The analyses were made according to the sex of the patients, time from COVID-19 onset, and COVID-19 severity. Methods: The study group consisted of 212 patients after COVID-19. Levels of total aminothiols were assessed in the blood plasma using high-performance liquid chromatography (HPLC). Results: The mean Cys concentrations were higher in men than in women (229.92 µmol/L ± 51.54 vs. 210.35 µmol/L ± 41.90, respectively; p = 0.003). Differences in Cys levels were also noticed in the total study group between patients distinguished due to time from disease onset (226.82 µmol/L ± 40.57 in <12 weeks, 232.23 µmol/L ± 47.99 in patients 12-24 weeks, and 208.08 µmol/L ± 48.43 in patients >24 weeks; p = 0.005). In addition, over 11% of total patients 12-24 weeks from disease onset had Cys levels above 300 µmol/L compared to almost 4% of patients <12 weeks and 2% of patients >24 weeks (p = 0.046). In sex-adjusted subgroups, significant differences due to time from COVID-19 were found in Cys levels in women (p = 0.004) and in glutathione levels in men (p = 0.024). None of the aminothiol levels differed between the subgroups based on the severity of COVID-19. Conclusions: Men had overall higher Cys levels than women. Cys levels were lower >24 weeks after COVID-19 onset than in the earlier period after disease onset. A partial elevation in Cys levels 12-24 weeks after the disease onset may contribute to the increase in CVD risk in the post-COVID-19 period.
Collapse
Affiliation(s)
- Izabela Szołtysek-Bołdys
- Department of General and Inorganic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (I.S.-B.); (W.Z.-D.)
| | - Wioleta Zielińska-Danch
- Department of General and Inorganic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (I.S.-B.); (W.Z.-D.)
| | - Danuta Łoboda
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (D.Ł.); (K.S.G.)
- Department of Electrocardiology, Upper-Silesian Medical Centre in Katowice, 40-635 Katowice, Poland
| | - Krzysztof S. Gołba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (D.Ł.); (K.S.G.)
- Department of Electrocardiology, Upper-Silesian Medical Centre in Katowice, 40-635 Katowice, Poland
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Ivanov AV, Popov MA, Aleksandrin V, Pudova PA, Galdobina MP, Metelkin AA, Kruglova MP, Maslennikov RA, Silina EV, Stupin VA, Kubatiev AA. Simultaneous determination of cystine and other free aminothiols in blood plasma using capillary electrophoresis with pH-mediated stacking. Electrophoresis 2024; 45:411-419. [PMID: 38084469 DOI: 10.1002/elps.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
We developed a method of sensitive capillary electrophoresis using UV detection for the determination of certain free aminothiols (reduced cysteinylglycine (rCysGly), cysteine (rCys), glutathione (rGln), and cystine (CysS) in human blood plasma. The reduced thiols were derivatized with N-ethylmaleimide. The plasma was purified from proteins via ultrafiltration. Electrophoretic separation was performed using 115 mM Na phosphate with 7.5% (v/v) polyethylene glycol 600, pH 2.3. The in-capillary concentration of the analytes was achieved with a pH gradient created via the preinjection of triethanolamine and postinjection of phosphoric acid. The separation was carried out using a silica capillary (50 µm i.d.; total/effective separation length 42/35 cm) at a 25 kV voltage. The total analysis/regeneration time was 18 min. The quantification limits varied from 1.3 µM (rCysGly) to 5.4 µM (CysS). The accuracy was 95%-99%, and the repeatability and reproducibility were approximately 1.8%-3.8% and 1.9%-5.0%, respectively. An analysis of plasma samples from healthy volunteers (N = 41) showed that the mean levels of rCysGly, rCys, rGln, and CysS were 1.64, 10.6, 2.58, and 46.2 µM, respectively.
Collapse
Affiliation(s)
- Alexander Vladimirovich Ivanov
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| | | | - ValeryVasil'evich Aleksandrin
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| | - Polina Alexandrovna Pudova
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| | - Maria Pavlovna Galdobina
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| | - Arkady Andreevich Metelkin
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| | - Maria Petrovna Kruglova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | | | - Ekaterina Vladimirovna Silina
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | | | - Aslan Amirkhanovich Kubatiev
- Department of Molecular and Cell Pathophysiology, Federal State Budgetary Scientific Institution 'Institute of General Pathology and Pathophysiology', Moscow, Russia
| |
Collapse
|
4
|
Ferroptosis, pyroptosis and necroptosis in acute respiratory distress syndrome. Cell Death Discov 2023; 9:91. [PMID: 36898986 PMCID: PMC10000361 DOI: 10.1038/s41420-023-01369-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and uncontrolled pulmonary inflammation caused by various insults. Cell death is a critical mechanism in the pathogenesis of ARDS. Ferroptosis, a novel form of cell death defined as iron-mediated lipid peroxidation, has been shown to play a role in the pathogenesis of ARDS. Additionally, pyroptosis and necroptosis are also involved in the pathophysiological process of ARDS. The crosstalk among ferroptosis, pyroptosis, and necroptosis is getting increasing attention. Therefore, this review will mainly summarize the molecular mechanisms and central pathophysiological role of ferroptosis in ARDS. We will also discuss our understanding of pyroptosis and necroptosis as they pertain to the pathogenesis of ARDS. Furthermore, we also describe the pathological processes that engage crosstalk among ferroptosis, pyroptosis, and necroptosis. We consider that individual pathways of ferroptosis, pyroptosis, and necroptosis are highly interconnected and can compensate for one another to promote cell death.
Collapse
|
5
|
D'Alessandro A, Ciavardelli D, Pastore A, Lupisella S, Cristofaro RC, Di Felice G, Salierno R, Infante M, De Stefano A, Onetti Muda A, Morello M, Porzio O. Contribution of vitamin D 3 and thiols status to the outcome of COVID-19 disease in Italian pediatric and adult patients. Sci Rep 2023; 13:2504. [PMID: 36781931 PMCID: PMC9925220 DOI: 10.1038/s41598-023-29519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), was declared a global pandemic by the World Health Organization (WHO) on March 2020, causing unprecedented disease with million deaths across the globe, mostly adults. Indeed, children accounted for only a few percent of cases. Italy was the first Western country struck by the COVID-19 epidemic. Increasing age, which is one of the principal risk factors for COVID-19 mortality, is associated with declined glutathione (GSH) levels. Over the last decade, several studies demonstrated that both vitamin D (VD) and GSH have immunomodulatory properties. To verify the association between VD, GSH and the outcome of COVID-19 disease, we conducted a multicenter retrospective study in 35 children and 128 adult patients with COVID-19. Our study demonstrated a hypovitaminosis D in COVID-19 patients, suggesting a possible role of low VD status in increasing the risk of COVID-19 infection and subsequent hospitalization. In addition, we find a thiol disturbance with a GSH depletion associated to the disease severity. In children, who fortunately survived, both VD and GSH levels at admission were higher than in adults, suggesting that lower VD and thiols levels upon admission may be a modifiable risk factor for adverse outcomes and mortality in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Annamaria D'Alessandro
- Clinical Biochemistry Laboratory, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Domenico Ciavardelli
- School of Medicine, University "Kore" of Enna, 94100, Enna, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), G. D'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Anna Pastore
- Research Unit of Diagnostical and Management Innovations, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Santina Lupisella
- Clinical Biochemistry Department, Tor Vergata University Hospital (PTV), Rome, Italy
| | - Rosa Carmela Cristofaro
- Clinical Biochemistry Laboratory, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Giovina Di Felice
- Clinical Biochemistry Laboratory, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Roberta Salierno
- Clinical Biochemistry Department, Tor Vergata University Hospital (PTV), Rome, Italy
| | - Marco Infante
- Department of Systems Medicine, Diabetes Research Institute Federation (DRIF), Tor Vergata University, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
| | - Alberto De Stefano
- Psychiatric Unit Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Volunteers Association of Tor Vergata University Hospital (PTV), Rome, Italy
| | - Andrea Onetti Muda
- Research Unit of Diagnostical and Management Innovations, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Maria Morello
- Clinical Biochemistry Department, Tor Vergata University Hospital (PTV), Rome, Italy
- Clinical Biochemistry and Molecular Biology, Department of Experimental Medicine, Faculty of Medicine, Tor Vergata University, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
6
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
7
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
8
|
Ivanov AV, Popov MA, Aleksandrin VV, Kozhevnikova LM, Moskovtsev AA, Kruglova MP, Vladimirovna SE, Aleksandrovich SV, Kubatiev AA. Determination of glutathione in blood via capillary electrophoresis with pH-mediated stacking. Electrophoresis 2022; 43:1859-1870. [PMID: 35833250 DOI: 10.1002/elps.202200119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
A new approach has been developed for the direct determination of reduced (glutathione [GSH]) and oxidized (glutathione disulfide [GSSG]) GSH in whole blood by means of capillary electrophoresis. Its features include GSH-stabilizing sample preparation, the use of an internal standard, and pH-mediated stacking. Blood stabilized with acid citrate and K3 EDTA was treated with acetonitrile with N-ethylmaleimide, and then the analytes were extracted with diethyl ether. The total analysis time was 8 min using a 50-µm (i.d.) by 32.5-cm (eff. length) silica capillary. The background electrolyte was 0.075-M citrate Na pH 5.8 with 200-µM cetyltrimethylammonium bromide and 5-µM sodium dodecyl sulfate, and the separation voltage was -14 kV. The quantification limit (S/N = 15) of the method was 1.5 µM for GSSG. The accuracy levels of GSH and GSSG analysis were 104% and 103%, respectively, and between-run precision levels were 2.6% and 3.2%, respectively. Analysis of blood samples from healthy volunteers (N = 24) showed that the levels of GSH and GSSG and the GSH/GSSG ratio in the whole blood were 1.05 ± 0.14 mM, 3.9 ± 1.25 µM, and 256 ± 94, respectively. Thus, the presented approach can be used in clinical and laboratory practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Petrovna Kruglova
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Silina Ekaterina Vladimirovna
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | | | - Aslan Amirkhanovich Kubatiev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
9
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning. Comput Biol Med 2022; 146:105659. [PMID: 35751188 PMCID: PMC9123826 DOI: 10.1016/j.compbiomed.2022.105659] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. MATERIAL AND METHODS Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG and KNN. RESULTS The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity and fatality of COVID-19 of 93%, 94% and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine and 5,6-dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. CONCLUSION The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients' serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.
Collapse
|
11
|
Fouda EM, Wahba NS, Elsharawy AIM, Ishak SR. Serum homocysteine level in pediatric patients with COVID-19 and its correlation with the disease severity. Pediatr Pulmonol 2022; 57:1701-1708. [PMID: 35420248 PMCID: PMC9088336 DOI: 10.1002/ppul.25920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thrombosis and embolism are possible complications in coronavirus disease 2019 (COVID)-19-positive pediatric patients. Although the risk is lesser in children than it is in adults, it does exist during acute infection and multi-inflammatory syndrome in children. Biomarkers such asd-dimer, prothrombin time, and fibrinogen degradation products are ineffective at detecting disease severity. Homocysteine (Hcy) is a prothrombotic factor that has been reported to be higher in adult COVID-19 patients, leading to speculation that it could be used as a biomarker for disease severity. PURPOSE To detect the correlation between serum total homocysteine (tHcy) level and the severity of COVID-19 in pediatrics. METHODS A cross-sectional study was conducted on 40 children with COVID-19 and 40 healthy control subjects. Serum tHcy was measured by enzyme-linked immunosorbent assay and correlated with the clinical, laboratory, and radiological parameters of the patients. RESULTS The median serum tHcy level in COVID-19 patients was 27.5 (interquartile range [IQR]: 23-31.75) μmol/L, while that in the controls was 1.8 (IQR: 1.6-1.875) μmol/L. There was a statistically significant increase in the tHcy level in cases compared to controls (p < 0.001). There was a statistically significant positive correlation between serum tHcy and d-dimer, ferritin, alanine transaminase, aspartate transaminase, blood urea nitrogen, and a highly significant positive correlation between tHcy and COVID-19 reporting and data system score, pediatric intensive care unit admission, and the disease severity classification. CONCLUSION Hcy could be a biomarker of importance in predicting the severity of COVID-19 in pediatrics.
Collapse
Affiliation(s)
- Eman M Fouda
- Pediatrics Department, Ain Shams University, Cairo, Egypt
| | - Nancy S Wahba
- Clinical Pathology Department, Ain Shams University, Cairo, Egypt
| | | | - Sally R Ishak
- Pediatrics Department, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
COVID-19 and One-Carbon Metabolism. Int J Mol Sci 2022; 23:ijms23084181. [PMID: 35456998 PMCID: PMC9026976 DOI: 10.3390/ijms23084181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease.
Collapse
|
13
|
Singh M, Barrera Adame O, Nickas M, Robison J, Khatchadourian C, Venketaraman V. Type 2 Diabetes Contributes to Altered Adaptive Immune Responses and Vascular Inflammation in Patients With SARS-CoV-2 Infection. Front Immunol 2022; 13:833355. [PMID: 35401518 PMCID: PMC8986985 DOI: 10.3389/fimmu.2022.833355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, which initially emerged in November of 2019, wreaked havoc across the globe by leading to clinical acute respiratory distress syndrome and continues to evade current therapies today due to mutating strains. Diabetes mellitus is considered an important risk factor for progression to severe COVID disease and death, therefore additional research is warranted in this group. Individuals with diabetes at baseline have an underlying inflammatory state with elevated levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines, both of which cause these individuals to have higher susceptibility to SARS- CoV2 infection. The detrimental effects of SARS-CoV-2 has been attributed to its ability to induce a vast cell mediated immune response leading to a surge in the levels of pro-inflammatory cytokines. This paper will be exploring the underlying mechanisms and pathophysiology in individuals with diabetes and insulin resistance making them more prone to have worse outcomes after SARS- CoV2 infection, and to propose an adjunctive therapy to help combat the cytokine surge seen in COVID-19. It will also look at the immunomodulatory effects of glutathione, an antioxidant shown to reduce immune dysregulation in other diseases; Vitamin D, which has been shown to prevent COVID-19 patients from requiring more intensive care time possibly due to its ability to decrease the expression of certain pro-inflammatory cytokines; and steroids, which have been used as immune modulators despite their ability to exacerbate hyperglycemia.
Collapse
Affiliation(s)
- Manpreet Singh
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Obed Barrera Adame
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Michael Nickas
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Jeremiah Robison
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Christopher Khatchadourian
- Western University of Health Sciences College of Osteopathic Medicine of the Pacific-Pomona, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Western University of Health Sciences College of Osteopathic Medicine of the Pacific-Pomona, Pomona, CA, United States
| |
Collapse
|
14
|
Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19. DISEASE MARKERS 2021; 2021:7686374. [PMID: 34956420 PMCID: PMC8702356 DOI: 10.1155/2021/7686374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Objective S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. Methods The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. Results SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = −0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. Conclusions A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.
Collapse
|