1
|
Jia Q, Zuo A, Song H, Zhang C, Fu X, Hu K, An F. Effects of sodium-glucose cotransporter-2 inhibitors in myocardial infarction patients: A systematic review and meta-analysis. Diabetes Obes Metab 2024. [PMID: 39691984 DOI: 10.1111/dom.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
AIMS Sodium-glucose cotransporter-2 (SGLT2) inhibitors are known to improve cardiovascular outcomes in individuals with heart failure (HF), type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). However, their efficacy following myocardial infarction (MI) remains unclear. MATERIALS AND METHODS A systematic search was conducted using PubMed, Embase, Cochrane Library, Web of Science and ClinicalTrials.gov. Primary outcomes included hospitalization for heart failure (HHF), cardiovascular (CV) death, a composite of HHF or CV death, all-cause death, major cardiovascular events (MACE), recurrent MI, severe arrhythmia, renal injury and stroke. Secondary outcomes targeted improvements in left ventricular ejection fraction (LVEF) and left ventricular end-diastolic volume (LVEDV). RESULTS Thirteen studies comprising 22 370 patients were included. Meta-analysis revealed that SGLT2 inhibitors reduced HHF (RR 0.69, 95% CI 0.61 to 0.78, p < 0.001), combined HHF or CV death (RR 0.87, 95% CI 0.77 to 0.99, p = 0.028), all-cause mortality (RR 0.82, 95% CI 0.73 to 0.93, p = 0.002), MACE (RR 0.68, 95% CI 0.53 to 0.88, p = 0.004), recurrent MI (RR 0.81, 95% CI 0.69 to 0.94, p = 0.007), severe arrhythmia (RR 0.54, 95% CI 0.34 to 0.85, p = 0.009) and renal injury (RR 0.68, 95% CI 0.53 to 0.87, p = 0.002). Improvement in LVEF (MD 3.96%, 95% CI 2.52 to 5.40; p < 0.001) and LVEDV (MD -5.52 mL, 95% CI -10.21 to -0.83; p = 0.021) was notably greater in the SGLT2 inhibitors group. CONCLUSIONS In post-MI patients, we first found that SGLT2 inhibitors significantly lowered the risk of HHF, combined CV death or HHF, all-cause death, MACE, recurrent MI, severe arrhythmias and renal injury. Additionally, SGLT2 inhibitors improved LVEF and LVEDV.
Collapse
Affiliation(s)
- Qiufeng Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ankai Zuo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Song
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengrui Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangrui Fu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Keqing Hu
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengshuang An
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Gohari S, Ismail-Beigi F, Mahjani M, Ghobadi S, Jafari A, Ahangar H, Gohari S. The effect of sodium-glucose co-transporter-2 (SGLT2) inhibitors on blood interleukin-6 concentration: a systematic review and meta-analysis of randomized controlled trials. BMC Endocr Disord 2023; 23:257. [PMID: 37996879 PMCID: PMC10668472 DOI: 10.1186/s12902-023-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The low-grade chronic inflammation in diabetes plays an important role in development of cardiovascular and renal complications. Sodium-glucose co-transporter-2 (SGLT2) inhibitors are recognized as protective agents for cardio-renal complications. Interleukin-6 (IL-6) is positively associated with the pathophysiology of metabolic-related pathologies. The aim of this meta-analysis is to investigate the effect of SGLT2 inhibitors on blood IL-6 concentration in randomized controlled trials (RCTs). METHODS Embase, PubMed, and Scopus were systematically searched up to 1st of November 2023. The eligible studies were RCTs with adult population that had provided blood IL-6 for both control and intervention groups. Cochrane risk-of-bias tool were for study quality assessment. Data were analyzed using random effect model via Stata statistical software. RESULTS Eighteen studies with a total of 5311 patients were included. Of which 3222 and 2052 patients were in intervention and control arm, respectively. Of the total population, 49.7% were men. The study durations ranged from 8 to 52 weeks. The pooled analysis showed a significant association between the use of SGLT2 inhibitors and lower IL-6 levels (standardized mean difference (SMD) = -1.04, Confidence Interval (CI): -1.48; -0.60, I2 = 96.93%). Dapagliflozin was observed to have a higher IL-6-lowering effect (SMD = -1.30, CI: -1.89; -0.71, I2 = 92.52) than empagliflozin or canagliflozin. Sub-group analysis of control groups (SMD = -0.58 (-1.01, -0.15) and -1.35 (-2.00, -0.70 for the placebo and active control sub-groups, respectively) and duration of interventions (SMD = -0.78 (-1.28, -0.28) and -1.20 (-1.86, -0.55) for study duration of ≤ 12 and > 12 weeks, respectively) did not change the results. Meta-regression analysis showed a significant correlation between the level of HbA1c and IL-6-lowering efficacy of SGLT2 inhibitors. CONCLUSION IL-6 levels are significantly reduced with the use of SGLT2 inhibitors with HbA1c as the only marker influencing such reductions, and dapagliflozin had the highest potency. The anti-inflammatory effect of SGLT2 inhibitors supports their broader use to address diabetic complications related to inflammatory responses.
Collapse
Affiliation(s)
- Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mahsa Mahjani
- Endocrine Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Ghobadi
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Ahangar
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sheida Gohari
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
3
|
Saipudinova KM, Uskach TM, Shariya MА, Ustyuzhanin DV, Dobrovolskaya SV, Tereshchenko SN. [Effect of dapagliflozin on the dynamics of magnetic resonance imaging in patients with heart failure and atrial fibrillation]. TERAPEVT ARKH 2023; 95:776-781. [PMID: 38158922 DOI: 10.26442/00403660.2023.09.202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 01/03/2024]
Abstract
AIM To determine the effect of dapagliflozin therapy on myocardial remodeling and fibrosis according to magnetic resonance imaging (MRI) with contrast in patients with chronic heart failure (CHF) and atrial fibrillation (AF). MATERIALS AND METHODS In the group of 22 patients with a combination of CHF and AF we analyzed the dynamics of remodeling parameters and assessed myocardial fibrosis during 6-month therapy with dapagliflozin according to cardiac MRI with contrast. RESULTS After 6 months of dapagliflozin therapy there was a statistically significant increase in LVEF (27 [23-32]-32 [26.5-36.5] p-0.04) and a tendency to decrease volume and linear dimensions of LV, LP. There was no progression of myocardial fibrosis according to the results of cardiac MRI with contrast in patients with HFrFV and AF. CONCLUSIONS Dapagliflozin therapy in patients with HFrEF and AF led to favorable myocardial remodeling changes.
Collapse
Affiliation(s)
| | - T M Uskach
- Chazov National Medical Research Center of Cardiology
- Russian Medical Academy of Continuous Professional Education
| | - M А Shariya
- Chazov National Medical Research Center of Cardiology
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
4
|
Xanthopoulos A, Katsiadas N, Skoularigkis S, Magouliotis DE, Skopeliti N, Patsilinakos S, Briasoulis A, Triposkiadis F, Skoularigis J. Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure. Life (Basel) 2023; 13:1778. [PMID: 37629635 PMCID: PMC10455594 DOI: 10.3390/life13081778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of antidiabetic drugs that have shown favorable effects in heart failure (HF) patients, irrespective of the left ventricular ejection fraction (LVEF). Recent studies have demonstrated the beneficial effects of empagliflozin on cardiac function and structure; however, less is known about dapagliflozin. The purpose of the current work was to investigate the association between the use of dapagliflozin and cardiac biomarkers as well as the cardiac structure in a cohort of patients with HF and diabetes mellitus (DM). The present work was an observational study that included 118 patients (dapagliflozin group n = 60; control group n = 58) with HF and DM. The inclusion criteria included: age > 18 years, a history of DM and HF, regardless of LVEF, and hospitalization for HF exacerbation within the previous 6 months. The exclusion criteria were previous treatment with SGLT2i or glucagon-like peptide-1 receptor agonists, a GFR< 30 and life expectancy < 1 year. The evaluation of patients (at baseline, 6 and 12 months) included a clinical assessment, laboratory blood tests and echocardiography. The Mann-Whitney test was used for the comparison of continuous variables between the two groups, while Friedman's analysis of variance for repeated measures was used for the comparison of continuous variables. Troponin (p < 0.001) and brain natriuretic peptide (BNP) (p < 0.001) decreased significantly throughout the follow-up period in the dapagliflozin group, but not in the control group (p > 0.05 for both). The LV end-diastolic volume index (p < 0.001 for both groups) and LV end-systolic volume index (p < 0.001 for both groups) decreased significantly in the dapagliflozin and the control group, respectively. The LVEF increased significantly (p < 0.001) only in the dapagliflozin group, whereas the global longitudinal strain (GLS) improved in the dapagliflozin group (p < 0.001) and was impaired in the control group (p = 0.021). The left atrial volume index decreased in the dapagliflozin group (p < 0.001) but remained unchanged in the control group (p = 0.114). Lastly, the left ventricular mass index increased significantly both in the dapagliflozin (p = 0.003) and control group (p = 0.001). Dapagliflozin, an SGLT2i, was associated with a reduction in cardiac biomarkers and with reverse cardiac remodeling in patients with HF and DM.
Collapse
Affiliation(s)
- Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (S.S.); (N.S.); (F.T.)
| | - Nikolaos Katsiadas
- Department of Cardiology, Konstantopoulio General Hospital, 14233 Nea Ionia, Greece
| | - Spyridon Skoularigkis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (S.S.); (N.S.); (F.T.)
| | - Dimitrios E. Magouliotis
- Unit of Quality Improvement, Department of Cardiothoracic Surgery, University of Thessaly, 41110 Larissa, Greece;
| | - Niki Skopeliti
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (S.S.); (N.S.); (F.T.)
| | | | - Alexandros Briasoulis
- Department of Therapeutics, Heart Failure and Cardio-Oncology Clinic, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (S.S.); (N.S.); (F.T.)
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (S.S.); (N.S.); (F.T.)
| |
Collapse
|
5
|
Täger T, Rößmann P, Frey N, Estler B, Mäck M, Schlegel P, Beckendorf J, Frankenstein L, Fröhlich H. Long-Term Trajectories of Biomarkers, Functional, and Echocardiographic Parameters in Patients with Chronic Heart Failure from Dilated or Ischaemic Cardiomyopathy. Cardiology 2023; 148:485-496. [PMID: 37517385 DOI: 10.1159/000532070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION The long-term evolution of clinical, echocardiographic, and laboratory parameters of cardiac function in patients with chronic heart failure (HF) with either reduced (HFrEF) or mildly reduced (HFmrEF) left ventricular ejection fraction (LVEF) is incompletely characterised. METHODS We identified patients with chronic stable HF who presented at least twice to a university HF outpatient clinic between 1995 and 2021. Trajectories of NYHA functional class, LVEF, left ventricular internal end-diastolic diameter (LVIDD), NT-proBNP concentrations, and HF treatment over 10 years of follow-up were analysed using fractional polynomials. Analyses were repeated after stratifying patients according to aetiology (ischaemic vs. dilated) or HF category (HFrEF vs. HFmrEF). RESULTS A total of 2,132 patients were included, of whom 51% had ischaemic and 49% had dilated HF. Eighty six percent and 14% were classified as HFrEF and HFmrEF, respectively. Mean LVEF was 28 ± 10%, and median NT-proBNP and estimated glomerular filtration rate values were 1,170 (385-3,176) pmol/L and 81 (62-100) mL/min/1.73 m2, respectively. Median follow-up was 5.2 (2.6-9.2) years. Overall, NYHA functional class and LVIDD trajectories were U-shaped, whereas LVEF and NT-proBNP concentrations markedly improved during the first year and remained stable thereafter. However, the evolution of HF parameters significantly differed with respect to HF category and aetiology, with greater improvements seen in patients with HFrEF of non-ischaemic origin. Improvements in HF variables were associated with optimization of HF therapy, notably with initiation and up-titration of renin-angiotensin-system blockers. CONCLUSION This study provides insights into the natural history of HF in a large cohort of well-treated chronic HF outpatients with respect to subgroups of HF and different aetiologists.
Collapse
Affiliation(s)
- Tobias Täger
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paulina Rößmann
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bent Estler
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Mäck
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Schlegel
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Beckendorf
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lutz Frankenstein
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanna Fröhlich
- Department for Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
and Alternative Medicine EBC. Retracted: Investigating the Effects of Dapagliflozin on Cardiac Function, Inflammatory Response, and Cardiovascular Outcome in Patients with STEMI Complicated with T2DM after PCI. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9830309. [PMID: 37387820 PMCID: PMC10307419 DOI: 10.1155/2023/9830309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
[This retracts the article DOI: 10.1155/2021/9388562.].
Collapse
|
7
|
Nakhal MM, Jayaprakash P, Aburuz S, Sadek B, Akour A. Canagliflozin Ameliorates Oxidative Stress and Autistic-like Features in Valproic-Acid-Induced Autism in Rats: Comparison with Aripiprazole Action. Pharmaceuticals (Basel) 2023; 16:ph16050769. [PMID: 37242552 DOI: 10.3390/ph16050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry and Molecular Biology Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Xiong S, Mo D, Wu Y, Wu P, Hu Y, Gong F. The effect of dapagliflozin on myocardial ischemia-reperfusion injury in diabetic rats. Can J Physiol Pharmacol 2023; 101:80-89. [PMID: 36621925 DOI: 10.1139/cjpp-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The incidence of ischemic heart disease is 2-3 times higher in diabetic patients. However, the effect of dapagliflozin on ischemia-reperfusion myocardial injury in diabetic rats has not been studied. We examined the effects of dapagliflozin on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Rats were divided into four groups (n = 7 in each group): control, control-dapagliflozin, diabetes, and diabetes-dapagliflozin. Dapagliflozin (1.5 mg/kg/day) was administered concomitantly in drinking water for 2 months. The hearts were perfused in a Langendorff's apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expressions, creatine kinase MB (CK-MB) and troponin imyocardial enzyme extravasation, and lactate dehydrogenase. The recovery of LVDP and ±dP/dt in diabetic rats was lower than that in controls but near normal after dapagliflozin treatment. Diabetic rats had decreased eNOS expression and increased iNOS expression at baseline and after IR, whereas dapagliflozin normalized these parameters after IR. Compared with controls, cardiac NOx levels were initially lower in diabetic patients but higher after IR. Baseline MDA levels were higher in diabetic rats after IR, whereas cardiac NOx levels decreased after treatment with dapagliflozin. Dapagliflozin protects the diabetic rat heart from ischemia-reperfusion myocardial injury by regulating the expression of eNOS and iNOS and inhibiting cardiac lipid peroxidation.
Collapse
Affiliation(s)
- Shilong Xiong
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Donghua Mo
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Yingjun Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Peng Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - YuanMing Hu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Fang Gong
- ECG Lab, The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou, Guangdong 511447, People's Republic of China
| |
Collapse
|
9
|
Satyam SM, Bairy LK, Shetty P, Sainath P, Bharati S, Ahmed AZ, Singh VK, Ashwal AJ. Metformin and Dapagliflozin Attenuate Doxorubicin-Induced Acute Cardiotoxicity in Wistar Rats: An Electrocardiographic, Biochemical, and Histopathological Approach. Cardiovasc Toxicol 2023; 23:107-119. [PMID: 36790727 PMCID: PMC9950216 DOI: 10.1007/s12012-023-09784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Doxorubicin is a widely used anticancer drug whose efficacy is limited due to its cardiotoxicity. There is no ideal cardioprotection available against doxorubicin-induced cardiotoxicity. This study aimed to investigate the anticipated cardioprotective potential of metformin and dapagliflozin against doxorubicin-induced acute cardiotoxicity in Wistar rats. At the beginning of the experiment, cardiac screening of experimental animals was done by recording an electrocardiogram (ECG) before allocating them into the groups. Thereafter, a total of thirty healthy adult Wistar rats (150-200 g) were randomly divided into five groups (n = 6) and treated for eight days as follows: group I (normal control), group II (doxorubicin control), group III (metformin 250 mg/kg/day), group IV (metformin 180 mg/kg/day), and group V (dapagliflozin 0.9 mg/kg/day). On the 7th day of the treatment phase, doxorubicin 20 mg/kg was administered intraperitoneal to groups II, III, IV, and V. On the 9th day (immediately after 48 h of doxorubicin administration), blood was collected from anesthetized animals for glucose, lipid profile, CK-MB & AST estimation, and ECG was recorded. Later, animals were sacrificed, and the heart was dissected for histopathological examination. We found that compared to normal control rats, CK-MB, AST, and glucose were significantly increased in doxorubicin control rats. There was a significant reversal of doxorubicin-induced hyperglycemia in the rats treated with metformin 250 mg/kg compared to doxorubicin control rats. Both metformin (180 mg/kg and 250 mg/kg) and dapagliflozin (0.9 mg/kg) significantly altered doxorubicin-induced ECG changes and reduced the levels of cardiac injury biomarkers CK-MB and AST compared to doxorubicin control rats. Metformin and dapagliflozin protected the cellular architecture of the myocardium from doxorubicin-induced myocardial injury. Current study revealed that both metformin and dapagliflozin at the FDA-recommended antidiabetic doses mitigated doxorubicin-induced acute cardiotoxicity in Wistar rats. The obtained data have opened the perspective to perform chronic studies and then to clinical studies to precisely consider metformin and dapagliflozin as potential chemoprotection in the combination of chemotherapy with doxorubicin to limit its cardiotoxicity, especially in patients with comorbid conditions like type II diabetes mellitus.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Prakashchandra Shetty
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - P Sainath
- Department of Perfusion Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akheruz Zaman Ahmed
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Varun Kumar Singh
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - A J Ashwal
- Sahyadri Narayana Multispecialty Hospital, Shimoga, Karnataka, India
| |
Collapse
|
10
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
11
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
12
|
Wu J, Liu Y, Wei X, Zhang X, Ye Y, Li W, Su X. Antiarrhythmic effects and mechanisms of sodium-glucose cotransporter 2 inhibitors: A mini review. Front Cardiovasc Med 2022; 9:915455. [PMID: 36003915 PMCID: PMC9393294 DOI: 10.3389/fcvm.2022.915455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a new type of oral hypoglycaemic agent with good cardiovascular protective effects. There are several lines of clinical evidence suggest that SGLT2i can significantly reduce the risks of heart failure, cardiovascular death, and delay the progression of chronic kidney disease. In addition, recent basic and clinical studies have also reported that SGLT2i also has good anti-arrhythmic effects. However, the exact mechanism is poorly understood. The aim of this review is to summarize recent clinical findings, studies of laboratory animals, and related study about this aspect of the antiarrhythmic effects of SGLT2i, to further explore its underlying mechanisms, safety, and prospects for clinical applications of it.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
- *Correspondence: Jinchun Wu
| | - Yanmin Liu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaojuan Wei
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaofei Zhang
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Yi Ye
- Graduate School of Qinghai University, Qinghai University, Xining, China
| | - Wei Li
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
- Xiaoling Su
| |
Collapse
|
13
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int Immunopharmacol 2022; 111:109080. [PMID: 35908505 DOI: 10.1016/j.intimp.2022.109080] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhibition of sodium-glucose cotransporter-2 (SGLT2) has received remarkable attention due to the beneficial effects observed in diabetes mellitus, heart failure, and kidney disease. Several mechanisms have been proposed for these pleiotropic effects, including anti-inflammatory ones. Our systematic review and meta-analysis aimed to assess the effect of SGLT2 inhibition on inflammatory markers in experimental models. METHODS A literature search was conducted to detect studies examining the effect of SGLT2 inhibitors on inflammatory markers [interleukin-6 (IL-6), C reactive protein (CRP), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1)]. Consequently, a meta-analysis of the included studies was performed, assessing the differences in the levels of the inflammatory markers between the treatment groups as its primary outcome. Moreover, risk of bias, sensitivity analysis and publication bias were evaluated. RESULTS The systematic literature review yielded 30 studies whose meta-analysis suggested that treatment with an SGLT2 inhibitor resulted in decreases of IL-6 [standardized mean difference (SMD): -1.56, 95% CI -2.06 to -1.05), CRP (SMD: -2.17, 95% CI -2.80 to -1.53), TNF-α (SMD: -1.75, 95% CI -2.14 to -1.37), and MCP-1 (SMD: -2.04, 95% CI -2.91 to -1.17). The effect on CRP and TNF-α was of lesser magnitude in cases of empagliflozin use. Moderate-to-substantial heterogeneity and possible publication bias were noted. The findings remained largely unaffected after the sensitivity analyses, the exclusion of outlying studies, and trim-and-fill analyses. CONCLUSION The present meta-analysis suggests that SGLT2 inhibition results in reduction of inflammatory markers in animal models, further validating the suggested anti-inflammatory mechanism of action.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
14
|
Yang L, Li H, Guo G, Du J, Hao Z, Kong L, Shi H, Wang X, Zhang Y. Development and Validation of a Novel Nomogram to Predict Improved Left Ventricular Ejection Fraction in Patients With Heart Failure After Successful Percutaneous Coronary Intervention for Chronic Total Occlusion. Front Cardiovasc Med 2022; 9:864366. [PMID: 35514438 PMCID: PMC9062645 DOI: 10.3389/fcvm.2022.864366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHeart failure with improved left ventricular ejection fraction (HFiEF) is linked to a good clinical outcome. The purpose of this study was to create an easy-to-use model to predict the occurrence of HFiEF in patients with heart failure (HF), 1 year after successful percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) (CTO PCI).MethodsPatients diagnosed with HF who successfully underwent CTO PCI between January 2016 and August 2019 were included. To mitigate the effect of residual stenosis on left ventricular (LV) function, we excluded patients with severe residual stenosis, as quantitatively measured by a residual synergy between PCI with Taxus and Cardiac Surgery score (rSS) of >8. We gathered demographic data, medical history, angiographic and procedural characteristics, echocardiographic parameters, laboratory results, and medication information. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression models were used to identify predictors of HFiEF 1 year after CTO revascularization. A nomogram was established and validated according to the area under the receiver operating characteristic curve (AUC) and calibration curves. Internal validation was performed using bootstrap resampling.ResultsA total of 465 patients were finally included in this study, and 165 (35.5%) patients experienced HFiEF 1 year after successful CTO PCI. According to the LASSO regression and multivariate logistic regression analyses, four variables were selected for the final prediction model: age [odds ratio (OR): 0.969; 95% confidence interval (CI): 0.952–0.988; p = 0.001], previous myocardial infarction (OR: 0.533; 95% CI: 0.357–0.796; p = 0.002), left ventricular end-diastolic dimension (OR: 0.940; 95% CI: 0.910–0.972; p < 0.001), and sodium glucose cotransporter two inhibitors (OR: 5.634; 95% CI: 1.756–18.080; p = 0.004). A nomogram was constructed to present the results. The C-index of the model was 0.666 (95% CI, 0.613–0.719) and 0.656 after validation. The calibration curve demonstrated that the nomogram agreed with the actual observations.ConclusionsWe developed an simple and effective nomogram for predicting the occurrence of HFiEF in patients with HF, 1 year after successful CTO PCI without severe residual stenosis.
Collapse
|
15
|
Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021; 26:7213. [PMID: 34885795 PMCID: PMC8659196 DOI: 10.3390/molecules26237213] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with diabetes are at higher risk of cardiovascular diseases and cognitive impairment. SGLT2 inhibitors (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin, Sotagliflozin) are newer hypoglycemic agents with many pleiotropic effects. In this review, we discuss their neuroprotective potential. SGLT2 inhibitors (SGLT2i) are lipid-soluble and reach the brain/serum ratio from 0.3 to 0.5. SGLT receptors are present in the central nervous system (CNS). Flozins are not fully SGLT2-selective and have an affinity for the SGLT1 receptor, which is associated with protection against ischemia/reperfusion brain damage. SGLT2i show an anti-inflammatory and anti-atherosclerotic effect, including reduction of proinflammatory cytokines, M2 macrophage polarization, JAK2/STAT1 and NLRP3 inflammasome inhibition, as well as cIMT regression. They also mitigate oxidative stress. SGLT2i improve endothelial function, prevent remodeling and exert a protective effect on the neurovascular unit, blood-brain barrier, pericytes, astrocytes, microglia, and oligodendrocytes. Flozins are also able to inhibit AChE, which contributes to cognitive improvement. Empagliflozin significantly increases the level of cerebral BDNF, which modulates neurotransmission and ensures growth, survival, and plasticity of neurons. Moreover, they may be able to restore the circadian rhythm of mTOR activation, which is quite a novel finding in the field of research on metabolic diseases and cognitive impairment. SGLT2i have a great potential to protect against atherosclerosis and cognitive impairment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Marlena Broncel
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland; (A.P.); (E.W.); (P.G.-P.)
| | | | | |
Collapse
|