1
|
Peng J, Sun J, Yu Y, Yuan Q, Zhang Y. Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer. Sci Rep 2025; 15:52. [PMID: 39747201 PMCID: PMC11696379 DOI: 10.1038/s41598-024-84062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer. We collected single-cell expression data from 57,024 cells and transcriptomic data from 945 pancreatic cancer patients, and conducted a series of analyses at both the single-cell and transcriptomic levels. By calculating the TLR pathway score, we clustered pancreatic cancer patients and conducted a series of analyses including metabolic pathways, immune microenvironment, drug sensitivity and so on. In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. We used single cell sequencing to clarify the complex intrinsic relationship between TLR pathway and pancreatic cancer. The strongest TLR signals were observed in macrophages and endothelial cells. With the occurrence of pancreatic cancer, the TLR signal of various cell types gradually increased, but with the increase of the malignant degree of ductal epithelial cells, the TLR signal gradually weakened. Cluster analysis showed that patients with the most active TLR pathway had severe dysregulation of immune microenvironment and the worst prognosis. Finally, we combined a series of machine learning algorithms to build a pancreatic cancer prognosis model that includes four genes (NT5E, TGFBI, ANLN, and FAM83A). The model showed strong performance in predicting the survival state of pancreatic cancer samples. We explored the important role of TLR pathway in pancreatic cancer and established and validated a new prognosis model for pancreatic cancer based on TLR-related genes.
Collapse
Affiliation(s)
- Jie Peng
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Youfeng Yu
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yong Zhang
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China.
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China.
| |
Collapse
|
2
|
Bhaliya KR, Anwer M, Munn A, Wei MQ. New horizons in cancer immunotherapy: The evolving role of R848 and R837 (Review). Mol Clin Oncol 2025; 22:4. [PMID: 39563999 PMCID: PMC11574705 DOI: 10.3892/mco.2024.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 11/21/2024] Open
Abstract
Therapeutic approaches that increase the efficacy and safety of cancer treatments and improve disease outcomes have been developed worldwide. Immunotherapy uses the body's immune system to inhibit cancerous growth in tissues and organs. Various approaches have been developed to effectively control and inhibit cancerous growth, including checkpoint inhibitors, T-cell transfer therapy, monoclonal antibodies, vaccines and immunomodulators. Toll-like receptors (TLRs) target malignant cells by equipping the immune response. In addition, TLR agonists serve a key role in promoting the innate immune system and initiating antigen-specific T-cell responses. Notably, TLRs and TLR agonists have been utilized as monotherapies or in combination for the treatment of cancer. The present study aimed to review the use of R848 and R837 as TLR agonists, and outline their use as key immunomodulators in cancer therapy.
Collapse
Affiliation(s)
- Krupa R Bhaliya
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Muneera Anwer
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Alan Munn
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute, School of Medical Science, Griffith University, Southport, Queensland 4215, Australia
| |
Collapse
|
3
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
4
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2024; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Newman MJ. Invention and characterization of a systemically administered, attenuated and killed bacteria-based multiple immune receptor agonist for anti-tumor immunotherapy. Front Immunol 2024; 15:1462221. [PMID: 39606250 PMCID: PMC11599860 DOI: 10.3389/fimmu.2024.1462221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Activation of immune receptors, such as Toll-like (TLR), NOD-like (NLR) and Stimulator of Interferon Genes (STING) is critical for efficient innate and adaptive immunity. Gram-negative bacteria (G-NB) contain multiple TLR, NOD and STING agonists. Potential utility of G-NB for cancer immunotherapy is supported by observations of tumor regression in the setting of infection and Coley's Toxins. Coley reported that intravenous (i.v.) administration was likely most effective but produced uncontrollable toxicity. The discovery of TLRs and their agonists, particularly the potent TLR4 agonist lipopolysaccharide (LPS)-endotoxin, comprising ~75% of the outer membrane of G-NB, suggests that LPS may be both a critical active ingredient and responsible for dose-limiting i.v. toxicity of G-NB. This communication reports the production of killed, stabilized, intact bacteria products from non-pathogenic G-NB with ~96% reduction of LPS-endotoxin activity. One resulting product candidate, Decoy10, was resistant to standard methods of cell disruption and contained TLR2,4,8,9, NOD2 and STING agonist activity. Decoy10 also exhibited reduced i.v. toxicity in mice and rabbits, and a largely uncompromised ability to induce cytokine and chemokine secretion by human immune cells in vitro, all relative to unprocessed, parental bacterial cells. Decoy10 and a closely related product, Decoy20, produced single agent anti-tumor activity or combination-mediated durable regression of established subcutaneous, metastatic or orthotopic colorectal, hepatocellular (HCC), pancreatic, and non-Hodgkin's lymphoma (NHL) tumors in mice, with induction of both innate and adaptive immunological memory (syngeneic and human tumor xenograft models). Decoy bacteria combination-mediated regressions were observed with a low-dose, oral non-steroidal anti-inflammatory drug (NSAID), anti-PD-1 checkpoint therapy, low-dose cyclophosphamide (LDC), and/or a targeted antibody (rituximab). Efficient tumor eradication was associated with plasma expression of 15-23 cytokines and chemokines, broad induction of cytokine, chemokine, innate and adaptive immune pathway genes in tumors, cold to hot tumor inflammation signature transition, and required NK, CD4+ and CD8+ T cells, collectively demonstrating a role for both innate and adaptive immune activation in the anti-tumor immune response.
Collapse
|
7
|
Shim HB, Lee H, Cho HY, Jo YH, Tarrago L, Kim H, Gladyshev VN, Lee BC. Development and Optimization of a Redox Enzyme-Based Fluorescence Biosensor for the Identification of MsrB1 Inhibitors. Antioxidants (Basel) 2024; 13:1348. [PMID: 39594490 PMCID: PMC11591284 DOI: 10.3390/antiox13111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain. This protein-based biosensor, named RIYsense, efficiently measures protein methionine sulfoxide reduction by ratiometric fluorescence increase. We used it for high-throughput screening of potential MsrB1 inhibitors among 6868 compounds. A total of 192 compounds were selected based on their ability to reduce relative fluorescence intensity by more than 50% compared to the control. Then, we used molecular docking simulations of the compound on MsrB1, affinity assays, and MsrB1 activity measurement to identify compounds with reliable and strong inhibitory effects. Two compounds were selected as MsrB1 inhibitors: 4-[5-(4-ethylphenyl)-3-(4-hydroxyphenyl)-3,4-dihydropyrazol-2-yl]benzenesulfonamide and 6-chloro-10-(4-ethylphenyl)pyrimido[4,5-b]quinoline-2,4-dione. They are heterocyclic, polyaromatic compounds with a substituted phenyl moiety interacting with the MsrB1 active site, as revealed by docking simulation. These compounds were found to decrease the expression of anti-inflammatory cytokines such as IL-10 and IL-1rn, leading to auricular skin swelling and increased thickness in an ear edema model, effectively mimicking the effects observed in MsrB1 knockout mice. In summary, using a novel redox protein-based fluorescence biosensor, we identified potential MsrB1 inhibitors that can regulate the inflammatory response, particularly by influencing the expression of anti-inflammatory cytokines. These compounds are promising tools for understanding MsrB1's role during inflammation and eventually controlling inflammation in therapeutic approaches.
Collapse
Affiliation(s)
- Hyun Bo Shim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Hyunjeong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- College of Engineering, Institute of Green Manufacturing Research Center, Korea University, Seoul 02841, Republic of Korea
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| | - Hwa Yeon Cho
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Young Ho Jo
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Lionel Tarrago
- French National Institute for Agriculture, Food, and Environment (INRAE), Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), 13385 Marseille, France;
| | - Hyunggee Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| |
Collapse
|
8
|
Goswami R, Nabawy A, Jiang M, Cicek YA, Hassan MA, Nagaraj H, Zhang X, Rotello VM. All-Natural Gelatin-Based Nanoemulsion Loaded with TLR 7/8 Agonist for Efficient Modulation of Macrophage Polarization for Immunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1556. [PMID: 39404283 PMCID: PMC11477480 DOI: 10.3390/nano14191556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Macrophages are multifunctional immune cells essential for both innate and adaptive immune responses. Tumor-associated macrophages (TAMs) often adopt a tumor-promoting M2-like phenotype, aiding tumor progression and immune evasion. Reprogramming TAMs to a tumoricidal M1-like phenotype is an emerging target for cancer immunotherapy. Resiquimod, a TLR7/8 agonist, can repolarize macrophages from the M2- to M1-like phenotype but is limited by poor solubility. We developed a gelatin nanoemulsion for the loading and delivery of resiquimod, utilizing eugenol oil as the liquid phase and riboflavin-crosslinked gelatin as a scaffold. These nanoemulsions showed high stability, low toxicity, and effective macrophage repolarization, significantly enhancing pro-inflammatory markers and anticancer activity in co-culture models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA (M.J.); (Y.A.C.); (H.N.)
| |
Collapse
|
9
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
10
|
Gomes FDC, Galhardo DDR, Navegante ACG, dos Santos GS, Dias HAAL, Dias Júnior JRL, Pierre ME, Luz MO, de Melo Neto JS. Bioinformatics analysis to identify the relationship between human papillomavirus-associated cervical cancer, toll-like receptors and exomes: A genetic epidemiology study. PLoS One 2024; 19:e0305760. [PMID: 39208235 PMCID: PMC11361573 DOI: 10.1371/journal.pone.0305760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Genetic variants may influence Toll-like receptor (TLR) signaling in the immune response to human papillomavirus (HPV) infection and lead to cervical cancer. In this study, we investigated the pattern of TLR expression in the transcriptome of HPV-positive and HPV-negative cervical cancer samples and looked for variants potentially related to TLR gene alterations in exomes from different populations. MATERIALS AND METHODS A cervical tissue sample from 28 women, which was obtained from the Gene Expression Omnibus database, was used to examine TLR gene expression. Subsequently, the transcripts related to the TLRs that showed significant gene expression were queried in the Genome Aggregation Database to search for variants in more than 5,728 exomes from different ethnicities. RESULTS Cancer and HPV were found to be associated (p<0.0001). TLR1(p = 0.001), TLR3(p = 0.004), TLR4(221060_s_at)(p = 0.001), TLR7(p = 0.001;p = 0.047), TLR8(p = 0.002) and TLR10(p = 0.008) were negatively regulated, while TLR4(1552798_at)(p<0.0001) and TLR6(p = 0.019) were positively regulated in HPV-positive patients (p<0.05). The clinical significance of the variants was statistically significant for TLR1, TLR3, TLR6 and TLR8 in association with ethnicity. Genetic variants in different TLRs have been found in various ethnic populations. Variants of the TLR gene were of the following types: TLR1(5_prime_UTR), TLR4(start_lost), TLR8(synonymous;missense) and TLR10(3_prime_UTR). The "missense" variant was found to have a risk of its clinical significance being pathogenic in South Asian populations (OR = 56,820[95%CI:40,206,80,299]). CONCLUSION The results of this study suggest that the variants found in the transcriptomes of different populations may lead to impairment of the functional aspect of TLRs that show significant gene expression in cervical cancer samples caused by HPV.
Collapse
Affiliation(s)
- Fabiana de Campos Gomes
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
- Faculty of Medicine CERES (FACERES), São José do Rio Preto, São Paulo, Brazil
| | - Deizyane dos Reis Galhardo
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - Gabriela Sepêda dos Santos
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - José Ribamar Leal Dias Júnior
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Marie Esther Pierre
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Marlucia Oliveira Luz
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - João Simão de Melo Neto
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
11
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
12
|
Wang Y, Qiao SL, Wang J, Yu MZ, Wang NN, Mamuti M, An HW, Lin YX, Wang H. Engineered CpG-Loaded Nanorobots Drive Autophagy-Mediated Immunity for TLR9-Positive Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306248. [PMID: 37897408 DOI: 10.1002/adma.202306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Smart nanorobots have emerged as novel drug delivery platforms in nanomedicine, potentially improving anti-cancer efficacy and reducing side effects. In this study, an intelligent tumor microenvironment-responsive nanorobot is developed that effectively delivers CpG payloads to Toll-like receptor 9 (TLR9)-positive tumors to induce autophagy-mediated cell death for immunotherapy. The nanorobots are fabricated by co-self-assembly of two amphiphilic triblock polymer peptides: one containing the matrix metallopeptidase 2 (MMP2)-cleaved GPLGVRGS motif to control the mechanical opening of the nanorobots and provide targeting capability for TLR-9-positive tumors and the other consisting of an arginine-rich GRRRDRGRS sequence that can condense nuclear acid payloads through electrostatic interactions. Using multiple tumor-bearing mouse models, it is investigated whether the intravenous injection of CpG-loaded nanorobots could effectively deliver CpG payloads to TLR-9-positive tumors and elicit anti-tumor immunity through TLR9 signaling and autophagy. Therefore, besides being a commonly used adjuvant for tumor vaccination, CpG-loaded nanorobots can effectively reprogram the tumor immunosuppressive microenvironment and suppress tumor growth and recurrence. This nanorobot-based CpG immunotherapy can be considered a feasible approach to induce anti-tumor immunity, showing great therapeutic potential for the future treatment of TLR9-positive cancers.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
- Institute of Bioengineering and Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sheng-Lin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Muhetaerjiang Mamuti
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| |
Collapse
|
13
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
14
|
Banesh S, Patil N, Chethireddy VR, Bhukmaria A, Saudagar P. Design and evaluation of a multiepitope vaccine for pancreatic cancer using immune-dominant epitopes derived from the signature proteome in expression datasets. Med Oncol 2024; 41:90. [PMID: 38522058 DOI: 10.1007/s12032-024-02334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Pancreatic cancer is a highly aggressive and often lethal malignancy with limited treatment options. Its late-stage diagnosis and resistance to conventional therapies make it a significant challenge in oncology. Immunotherapy, particularly cancer vaccines, has emerged as a promising avenue for treating pancreatic cancer. Multi-epitope vaccines, designed to target multiple epitopes derived from various antigens associated with pancreatic cancer, have gained attention as potential candidates for improving therapeutic outcomes. In this study, we have explored transcriptomics and protein expression databases to identify potential upregulated proteins in pancreatic cancer cells. After examining a total of 21,054 proteins from various databases, it was discovered that 143 proteins expressed differently in malignant and healthy cells. The CTL, HTL and BCE epitopes were predicted for the shortlisted proteins. 51,840 vaccine constructs were created by concatenating CTL, HTL, and B-cell epitopes in the respective sequences. The best 86 structures were selected from a set of 51,840 designs after they were analyzed for vaxijenicity, allergenicity, toxicity, and antigenicity scores. In further simulation of the immune response using constructs, it was found that 41417, 37961, and 40841 constructs could produce a strong immune response when injected. Further, it was found that construct 37961 showed stronger interaction and stability with TLR-9 as determined from the large-scale molecular dynamics simulations. Moreover, the 37961 construct has shown interactions with TLR-9 suggests its potential in inducing immune response. In addition, construct 37961 has shown 100% predicted solubility in the E. coli expression system. Overall, the study indicates the designed construct 37961 has the potential to induce an anti-tumor immune response and long-standing protection pending further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Vihadhar Reddy Chethireddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Arnav Bhukmaria
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Bhardwaj A, Prasad D, Mukherjee S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 2024; 82:91-105. [PMID: 37853249 DOI: 10.1007/s12013-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Ananya Bhardwaj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Divya Prasad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
16
|
Planz O, Kircheis R. Editorial: The role of toll-like receptors and their related signaling pathways in viral infection and inflammation. Front Immunol 2024; 15:1363958. [PMID: 38312836 PMCID: PMC10835273 DOI: 10.3389/fimmu.2024.1363958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Affiliation(s)
- Oliver Planz
- Institute for Immunology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ralf Kircheis
- Department of R&D, Syntacoll GmbH, Saal an der Donau, Germany
| |
Collapse
|
17
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
18
|
Zhao Q, Yu M, Du X, Li Y, Lv J, Jiang X, Chen X, Wang A, Yang X. The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer. Curr Pharm Biotechnol 2024; 26:132-142. [PMID: 38918976 DOI: 10.2174/0113892010301997240527162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype. METHODS Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity in vivo by the xenograft model. RESULTS FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment. CONCLUSION FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.
Collapse
Affiliation(s)
- Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, 1160 Shengli Street Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Miao Yu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Phase Ⅰ Clinical & Research Ward, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, China
| | - Xueqin Du
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yuan Li
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Juantao Lv
- Department of Pharmacy, Gansu Provincial Hospital, 204 West Donggang Road,Lanzhou 730000, Gansu, China
| | - Xianglai Jiang
- School of Basic Medicine Sciences and Life Sciences Hainan Medical University, 3 College Road, Haikou 571199, Hainan, China
| | - Xiaomei Chen
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Anqi Wang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Xiaojun Yang
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- The First Clinical Medical College of Lanzhou University, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment, National Health and Wellness Commission, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
19
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
21
|
Butkowsky C, Aldor N, Poynter SJ. Toll‑like receptor 3 ligands for breast cancer therapies (Review). Mol Clin Oncol 2023; 19:60. [PMID: 37424627 PMCID: PMC10326562 DOI: 10.3892/mco.2023.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is the most common cause of cancer worldwide and is the leading cause of mortality for women across most of the world. Immunotherapy is a burgeoning area of cancer treatment, including for breast cancer; these are therapies that harness the power of the immune system to clear cancerous cells. Toll-like receptor 3 (TLR3) is an RNA receptor found in the endosome, and ligands that bind to TLR3 are currently being tested for their efficacy as breast cancer immunotherapeutics. The current review introduces TLR3 and the role of this receptor in breast cancer, and summarizes data on the potential use of TLR3 ligands, mainly polyinosinic:polycytidylic acid and its derivatives, as breast cancer monotherapies or, more commonly, as combination therapies with chemotherapies, other immunotherapies and cancer vaccines. The current state of TLR3 ligand breast cancer therapy research is summarized by reporting on past and current clinical trials, and notable preliminary in vitro studies are discussed. In conclusion, TLR3 ligands have robust potential in anticancer applications as innate immune stimulants, and further studies combined with innovative technologies, such as nanoparticles, may contribute to their success.
Collapse
Affiliation(s)
- Carly Butkowsky
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Natalie Aldor
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Sarah J. Poynter
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
22
|
Žilienė E, Inčiūra A, Ugenskienė R, Juozaitytė E. Pathomorphological Manifestations and the Course of the Cervical Cancer Disease Determined by Variations in the TLR4 Gene. Diagnostics (Basel) 2023; 13:1999. [PMID: 37370894 DOI: 10.3390/diagnostics13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Cervical cancer (CC) is often associated with human papillomavirus (HPV). Chronic inflammation has been described as one of the triggers of cancer. The immune system fights diseases, including cancer. The genetic polymorphism of pathogen recognition receptors potentially influences the infectious process, development, and disease progression. Many candidate genes SNPs have been contradictory demonstrated to be associated with cervical cancer by association studies, GWAS. TLR4 gene activation can promote antitumor immunity. It can also result in immunosuppression and tumor growth. Our study aimed to investigate eight selected polymorphisms of the TLR4 gene (rs10759932, rs1927906, rs11536898, rs11536865, rs10983755, rs4986790, rs4986791, rs11536897) and to determine the impact of polymorphisms in genotypes and alleles on the pathomorphological characteristics and progression in a group of 172 cervical cancer subjects with stage I-IV. Genotyping was performed by RT-PCR assay. We detected that the CA genotype and A allele of rs11536898 were significantly more frequent in patients with metastases (p = 0.026; p = 0.008). The multivariate logistic regression analysis confirmed this link to be significant. The effect of rs10759932 and rs11536898 on progression-free survival (PFS) and overall survival (OS) has been identified as important. In univariate and multivariate Cox analyses, AA genotype of rs11536898 was a negative prognostic factor for PFS (p = 0.024; p = 0.057, respectively) and OS (p = 0.008; p = 0.042, respectively). Rs11536898 C allele predisposed for longer PFS (univariate and multivariate: p = 0.025; p = 0.048, respectively) and for better OS (univariate and multivariate: p = 0.010; p = 0.043). The worse prognostic factor of rs10759932 in a univariate and multivariate Cox analysis for survival was CC genotype: shorter PFS (p = 0.032) and increased risk of death (p = 0.048; p = 0.015, respectively). The T allele of rs10759932 increased longer PFS (univariate and multivariate: p = 0.048; p = 0.019, respectively) and longer OS (univariate and multivariate: p = 0.037; p = 0.009, respectively). Our study suggests that SNPs rs10759932 and rs11536898 may have the potential to be markers contributing to the assessment of the cervical cancer prognosis. Further studies, preferably with larger groups of different ethnic backgrounds, are needed to confirm the results of the current study.
Collapse
Affiliation(s)
- Eglė Žilienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Inčiūra
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
23
|
Haroun R, Naasri S, Oweida AJ. Toll-Like Receptors and the Response to Radiotherapy in Solid Tumors: Challenges and Opportunities. Vaccines (Basel) 2023; 11:vaccines11040818. [PMID: 37112730 PMCID: PMC10146579 DOI: 10.3390/vaccines11040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are indispensable for the activation, maintenance and halting of immune responses. TLRs can mediate inflammation by recognizing molecular patterns in microbes (pathogen-associated molecular patterns: PAMPs) and endogenous ligands (danger-associated molecular patterns: DAMPs) released by injured or dead cells. For this reason, TLR ligands have attracted much attention in recent years in many cancer vaccines, alone or in combination with immunotherapy, chemotherapy and radiotherapy (RT). TLRs have been shown to play controversial roles in cancer, depending on various factors that can mediate tumor progression or apoptosis. Several TLR agonists have reached clinical trials and are being evaluated in combination with standard of care therapies, including RT. Despite their prolific and central role in mediating immune responses, the role of TLRs in cancer, particularly in response to radiation, remains poorly understood. Radiation is recognized as either a direct stimulant of TLR pathways, or indirectly through the damage it causes to target cells that subsequently activate TLRs. These effects can mediate pro-tumoral and anti-tumoral effects depending on various factors such as radiation dose and fractionation, as well as host genomic features. In this review, we examine how TLR signaling affects tumor response to RT, and we provide a framework for the design of TLR-based therapies with RT.
Collapse
Affiliation(s)
- Ryma Haroun
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1N 0Y8, Canada
| | - Sahar Naasri
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1N 0Y8, Canada
| | - Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1N 0Y8, Canada
| |
Collapse
|
24
|
Arabian S, Boostan A, Darzi S. The role of toll-like receptors (TLRs) and their therapeutic applications in endometrial cancer. Clin Transl Oncol 2023; 25:859-865. [PMID: 36374404 DOI: 10.1007/s12094-022-02999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Endometrial cancer (EC) is developed nations' most prevalent form of gynecologic cancer. Patients are frequently diagnosed with EC when the tumor is still limited to the uterus. Patients without tumor metastasis have a 5-year survival rate ranging from 80 to 90%; however, almost 16.8% of EC patients develop a metastatic form of the tumor. In the early stages of tumorigenesis, the immune system is able to identify aberrant cells as non-self, therefore providing the optimal pro-inflammatory microenvironment for the elimination of cancer cells. Although, chronic inflammation can be a crucial aspect of tumor development. Toll-like receptors (TLRs), as the main pattern recognition receptors (PRRs) in innate immunity, may stimulate an inflammatory response and provide cell survival in the tumor microenvironment (TME). TLRs are vital immunomodulators that may significantly impact the development of gynecologic malignancies. Therefore, TLR inhibitors are being researched for their possible benefits in treating gynecologic cancers. The aim of this study is to review the current knowledge in this field and provide some insight into the therapeutic potential of TLR inhibitors in EC.
Collapse
Affiliation(s)
- Sahereh Arabian
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Aynaz Boostan
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Satinik Darzi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
25
|
Corey D, Haeseleer F, Hou J, Corey L. Novel engineered chimeric engulfment receptors trigger T cell effector functions against SIV-infected CD4+ T cells. Mol Ther Methods Clin Dev 2023; 28:1-10. [PMID: 36514789 PMCID: PMC9720250 DOI: 10.1016/j.omtm.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Adoptive therapy with genetically engineered T cells offers potential for infectious disease treatment in immunocompromised persons. HIV/simian immunodeficiency virus (SIV)-infected cells express phosphatidylserine (PS) early post infection. We tested whether chimeric engulfment receptor (CER) T cells designed to recognize PS-expressing cells could eliminate SIV-infected cells. Lentiviral CER constructs composed of the extracellular domain of T cell immunoglobulin and mucin domain containing 4 (TIM-4), the PS receptor, and engulfment signaling domains were transduced into primary rhesus macaque (RM) T cells. We measured PS binding and T cell engulfment of RM CD4+ T cells infected with SIV expressing GFP and in vitro, TIM-4 CER CD4+ T cells effectively killed SIV-infected cells, which was dependent on TIM-4 binding to PS. Enhanced killing of SIV-infected CD4+ T cells by CER and chimeric antigen receptor T cell combinations was also observed. This installation of innate immune functions into T cells presents an opportunity to enhance elimination of SIV-infected cells, and studies to evaluate their effect in vivo are warranted.
Collapse
Affiliation(s)
- Daniel Corey
- CERo Therapeutics, 201 Haskins Way, Suite 230, San Francisco, CA 94080, USA
| | - Francoise Haeseleer
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joe Hou
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
26
|
Zhu H, Yang C, Yan A, Qiang W, Ruan R, Ma K, Guan Y, Li J, Yu Q, Zheng H, Tu L, Liu S, Dai Z, Sun Y. Tumor‐targeted nano‐adjuvants to synergize photomediated immunotherapy enhanced antitumor immunity. VIEW 2023. [DOI: 10.1002/viw.20220067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Chaobo Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Kai Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Yeneng Guan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Jing Li
- Hubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and Technology WuhanChina
| | - Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)National “111” Center for Cellular Regulation and Molecular PharmaceuticsSchool of Food and Biological EngineeringHubei University of Technology WuhanChina
| | - Hongmei Zheng
- Hubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and Technology WuhanChina
| | - Le Tu
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University WuhanChina
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMinistry of EducationQingdao University of Science and Technology QingdaoChina
| | - Shuang Liu
- School of Materials Science and EngineeringWuhan University of Technology WuhanChina
| | - Zhu Dai
- Hubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and Technology WuhanChina
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University WuhanChina
| |
Collapse
|
27
|
Liang DS, You WP, Zhu FF, Wang JH, Guo F, Xu JJ, Liu XL, Zhong HJ. Targeted delivery of pexidartinib to tumor-associated macrophages via legumain-sensitive dual-coating nanoparticles for cancer immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113283. [PMID: 37030033 DOI: 10.1016/j.colsurfb.2023.113283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Tumor-associated macrophage (TAM) is regarded as an appealing cell target for cancer immunotherapy. However, it remains challenging to selectively eliminate M2-like TAM in tumor microenvironment. In this work, we employed a legumain-sensitive dual-coating nanosystem (s-Tpep-NPs) to deliver CSF-1R inhibitor pexidartinib (PLX3397) for targeting TAM therapy. The PLX3397-loaded NPs exhibited uniform size of ∼240 nm in diameter, good drug loading capacity and efficiency, as well as sustained drug release profile. Compared to non-sensitive counterpart ns-Tpep-NPs, s-Tpep-NPs showed distinguished selectivity upon M1 and M2 macrophage uptake with relation to incubation time and dose. Besides, the selectivity of anti-proliferation effect was also identified for s-Tpep-NPs against M1 and M2 macrophage. In vivo imaging demonstrated that s-Tpep-NPs exhibited much higher tumoral accumulation and TAM recognition specificity as compared to non-sensitive ns-Tpep-NPs. In vivo efficacy verified that s-Tpep-NPs formulation was much more effective than ns-Tpep-NPs and other PLX3397 formulations to treat B16F10 melanoma via targeting TAM depletion and modulating tumor immune microenvironment. Overall, this study provides a robust and promising nanomedicine strategy for TAM-targeted cancer immunotherapy.
Collapse
|
28
|
Chen F, Li T, Zhang H, Saeed M, Liu X, Huang L, Wang X, Gao J, Hou B, Lai Y, Ding C, Xu Z, Xie Z, Luo M, Yu H. Acid-Ionizable Iron Nanoadjuvant Augments STING Activation for Personalized Vaccination Immunotherapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209910. [PMID: 36576344 DOI: 10.1002/adma.202209910] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The critical challenge for cancer vaccine-induced T-cell immunity is the sustained activation of antigen cross-presentation in antigen-presenting cells (APCs) with innate immune stimulation. In this study, it is first discovered that the clinically used magnetic contrast agents, iron oxide nanoparticles (IONPs), markedly augment the type-I interferon (IFN-I) production profile of the stimulator of interferon genes (STING) agonist MSA-2 and achieve a 16-fold dosage-sparing effect in the human STING haplotype. Acid-ionizable copolymers are coassembled with IONPs and MSA-2 into iron nanoadjuvants to concentrate STING activation in the draining lymph nodes. The top candidate iron nanoadjuvant (PEIM) efficiently delivers the model antigen ovalbumin (OVA) to CD169+ APCs and facilitates antigen cross-presentation to elicit a 55-fold greater frequency of antigen-specific CD8+ cytotoxic T-lymphocyte response than soluble antigen. PEIM@OVA nanovaccine immunization induces potent and durable antitumor immunity to prevent tumor lung metastasis and eliminate established tumors. Moreover, PEIM nanoadjuvant is applicable to deliver autologous tumor antigen and synergizes with immune checkpoint blockade therapy for prevention of postoperative tumor recurrence and distant metastasis in B16-OVA melanoma and MC38 colorectal tumor models. The acid-ionizable iron nanoadjuvant offers a generalizable and readily translatable strategy to augment STING cascade activation and antigen cross-presentation for personalized cancer vaccination immunotherapy.
Collapse
Affiliation(s)
- Fangmin Chen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianliang Li
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Huijuan Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Madiha Saeed
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiaoying Liu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiyuan Wang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jing Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Bo Hou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yi Lai
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200241, P. R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zuoquan Xie
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Min Luo
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
DePalo DK, Zager JS. Advances in Intralesional Therapy for Locoregionally Advanced and Metastatic Melanoma: Five Years of Progress. Cancers (Basel) 2023; 15:cancers15051404. [PMID: 36900196 PMCID: PMC10000422 DOI: 10.3390/cancers15051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Locoregionally advanced and metastatic melanoma are complex diagnoses with a variety of available treatment options. Intralesional therapy for melanoma has been under investigation for decades; however, it has advanced precipitously in recent years. In 2015, the Food and Drug Administration (FDA) approved talimogene laherparepvec (T-VEC), the only FDA-approved intralesional therapy for advanced melanoma. There has been significant progress since that time with other oncolytic viruses, toll-like receptor agonists, cytokines, xanthene dyes, and immune checkpoint inhibitors all under investigation as intralesional agents. Further to this, there has been exploration of numerous combinations of intralesional therapies and systemic therapies as various lines of therapy. Several of these combinations have been abandoned due to their lack of efficacy or safety concerns. This manuscript presents the various types of intralesional therapies that have reached phase 2 or later clinical trials in the past 5 years, including their mechanism of action, therapeutic combinations under investigation, and published results. The intention is to provide an overview of the progress that has been made, discuss ongoing trials worth following, and share our opinions on opportunities for further advancement.
Collapse
Affiliation(s)
- Danielle K. DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jonathan S. Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-745-1085; Fax: +1-(813)-745-5725
| |
Collapse
|
30
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
31
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
33
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
35
|
Hoden B, DeRubeis D, Martinez-Moczygemba M, Ramos KS, Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front Immunol 2022; 13:1033483. [PMID: 36389785 PMCID: PMC9659925 DOI: 10.3389/fimmu.2022.1033483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer-related deaths worldwide. Significant improvements in lung cancer therapeutics have relied on a better understanding of lung cancer immunity and the development of novel immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-based therapies. However, this improvement is limited to lung cancer patients who respond to anti-PD-1 immunotherapy. Further improvements in immunotherapy may benefit from a better understanding of innate immune response mechanisms in the lung. Toll-like receptors (TLRs) are a key component of the innate immune response and mediate the early recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLR signaling modulates the tumor microenvironment from "cold" to "hot" leading to immune sensitization of tumor cells to treatments and improved patient prognosis. In addition, TLR signaling activates the adaptive immune response to improve the response to cancer immunotherapy through the regulation of anti-tumor T cell activity. This review will highlight recent progress in our understanding of the role of TLRs in lung cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Bettina Hoden
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
36
|
Yang X, Wei Y, Zheng L, You J, Li H, Gao L, Gong C, Yi C. Polyethyleneimine-based immunoadjuvants for designing cancer vaccines. J Mater Chem B 2022; 10:8166-8180. [PMID: 36217765 DOI: 10.1039/d2tb01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite extensive efforts to improve the effectiveness of cancer vaccines, the lack of immunogenicity remains an issue. Adjuvants are required to enhance the immunogenicity of antigens and activate the immune response. However, only a few adjuvants with acceptable toxicity have sufficient potency for use in cancer vaccines, necessitating the discovery of potent adjuvants. The most well-known cationic polymer polyethyleneimine (PEI) acts as a carrier for delivering antigens, and as an immunoadjuvant for enhancing the innate and adaptive immunity. In this review, we have summarized PEI-based adjuvants and discussed how to improve and boost the immune response to vaccines. We further focused on PEI-based adjuvants in cancer vaccines. Finally, we have proposed the potential challenges and future issues of PEI-based adjuvants to elicit the effectiveness of cancer vaccines.
Collapse
Affiliation(s)
- Xi Yang
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuanfeng Wei
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Lingnan Zheng
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Health Ward, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changyang Gong
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Plasmacytoid Dendritic Cells as a Novel Cell-Based Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms231911397. [PMID: 36232698 PMCID: PMC9570010 DOI: 10.3390/ijms231911397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells with a wide range of innate and adaptive immunological functions. They constitute the first line of defence against multiple viral infections and have also been reported to actively participate in antitumor immune responses. The clinical implication of the presence of pDCs in the tumor microenvironment (TME) is still ambiguous, but it is clear that pDCs possess the ability to modulate tumor-specific T cell responses and direct cytotoxic functions. Therapeutic strategies designed to exploit these qualities of pDCs to boost tumor-specific immune responses could represent an attractive alternative compared to conventional therapeutic approaches in the future, and promising antitumor effects have already been reported in phase I/II clinical trials. Here, we review the many roles of pDCs in cancer and present current advances in developing pDC-based immunotherapeutic approaches for treating cancer.
Collapse
|
38
|
Pan W, Song K, Zhang Y, Yang C, Zhang Y, Ji F, Zhang J, Shi J, Wang K. The molecular subtypes of triple negative breast cancer were defined and a ligand-receptor pair score model was constructed by comprehensive analysis of ligand-receptor pairs. Front Immunol 2022; 13:982486. [PMID: 36119101 PMCID: PMC9470927 DOI: 10.3389/fimmu.2022.982486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intercellular communication mediated by ligand-receptor interactions in tumor microenvironment (TME) has a profound impact on tumor progression. This study aimed to explore the molecular subtypes mediated by ligand-receptor (LR) pairs in triple negative breast cancer (TNBC), identify the most important LR pairs to construct a prognostic risk model, and study their effect on TNBC immunotherapy. Methods LR pairs subclasses of TNBC were categorized by consensus clustering based on LR Pairs in METABRIC dataset. Least absolute shrinkage and selection operator (LASSO) Cox regression and stepwise Akaike information criterion (stepAIC) were conducted to build a LR pairs score model. The relationship between LR pairs score and immune cell infiltration, stromal score and immune score associated with TME was analyzed, and the prediction of drug therapy and immunotherapy efficacy by LR pairs score was evaluated. Results According to the expression pattern of 145 TNBC prognostic LR pairs, the samples were divided into three subclasses with different survival outcomes, copy number variation (CNV), TME immune cell infiltration, stromal score and immune score. The LR pairs score model constructed in the METABRIC dataset was composed of four LR pairs, and its predictive significance for TNBC prognosis was verified in GSE58812 and GSE21653 cohorts. In addition, LR pairs score was negatively correlated with several immune pathways regulating immunity and immune score, and related to the sensitivity of anti-neoplastic drugs and the effect of anti-PD-L1 therapy. Conclusion Our study confirmed the impact of LR pairs on the molecular heterogeneity of TNBC, characterized three LR pairs subtypes with different survival outcomes and TME patterns, and proposed a LR pairs score system with predictive significance for TNBC prognosis and anti-PD-L1 therapeutic effect, which provides a potential evaluation scheme for TNBC management.
Collapse
Affiliation(s)
- Weijun Pan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yunli Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junsheng Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Kun Wang, ; Jian Shi,
| | - Kun Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Kun Wang, ; Jian Shi,
| |
Collapse
|
39
|
Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. BIOIMPACTS : BI 2022; 12:261-290. [PMID: 35677663 PMCID: PMC9124882 DOI: 10.34172/bi.2022.23896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
![]()
Immunotherapy is considered a promising approach for cancer treatment. An important strategy for cancer immunotherapy is the use of cancer vaccines, which have been widely used for cancer treatment. Despite the great potential of cancer vaccines for cancer treatment, their therapeutic effects in clinical settings have been limited. The main reason behind the lack of significant therapeutic outcomes for cancer vaccines is believed to be the immunosuppressive tumor microenvironment (TME). The TME counteracts the therapeutic effects of immunotherapy and provides a favorable environment for tumor growth and progression. Therefore, overcoming the immunosuppressive TME can potentially augment the therapeutic effects of cancer immunotherapy in general and therapeutic cancer vaccines in particular. Among the strategies developed for overcoming immunosuppression in TME, the use of toll-like receptor (TLR) agonists has been suggested as a promising approach to reverse immunosuppression. In this paper, we will review the application of the four most widely studied TLR agonists including agonists of TLR3, 4, 7, and 9 in cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Rostamizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramazani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanaifar
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
40
|
Lee WS, Kim DS, Kim JH, Heo Y, Yang H, Go EJ, Kim JH, Lee SJ, Ahn BC, Yum JS, Chon HJ, Kim C. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade. J Immunother Cancer 2022; 10:jitc-2022-004799. [PMID: 35764365 PMCID: PMC9240943 DOI: 10.1136/jitc-2022-004799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are critical innate immune sensors that elicit antitumor immune responses in cancer immunotherapy. Although a few TLR agonists have been approved for the treatment of patients with early-stage superficial cancers, their therapeutic efficacy is limited in patient with advanced invasive cancers. Here, we identified the therapeutic role of a TLR2/3 agonist, L-pampo (LP), which promotes antitumor immunity and enhances the immune checkpoint blockade. METHODS We generated LP by combining a TLR2 agonist, Pam3CSK4, with a TLR3 agonist, Poly (I:C). Immune responses to stimulation with various TLR agonists were compared. Tumor-bearing mice were intratumorally treated with LP, and their tumor sizes were measured. The antitumor effects of LP treatment were determined using flow cytometry, multiplexed imaging, and NanoString nCounter immune profiling. The immunotherapeutic potential of LP in combination with α-programmed cell death protein-1 (PD-1) or α-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) was evaluated in syngeneic MC38 colon cancer and B16F10 melanoma. RESULTS The LP treatment induced a potent activation of T helper 1 (Th1) and 2 (Th2)-mediated immunity, tumor cell apoptosis, and immunogenic tumor cell death. Intratumoral LP treatment effectively inhibited tumor progression by activating tumor-specific T cell immunity. LP-induced immune responses were mediated by CD8+ T cells and interferon-γ, but not by CD4+ T cells and CD25+ T cells. LP simultaneously activated TLR2 and TLR3 signaling, thereby extensively changing the immune-related gene signatures within the tumor microenvironment (TME). Moreover, intratumoral LP treatment led to systemic abscopal antitumor effects in non-injected distant tumors. Notably, LP treatment combined with ɑPD-1 and ɑCTLA-4 further enhanced the efficacy of monotherapy, resulting in complete tumor regression and prolonged overall survival. Furthermore, LP-based combination immunotherapy elicited durable antitumor immunity with tumor-specific immune memory in colon cancer and melanoma. CONCLUSIONS Our study demonstrated that intratumoral LP treatment improves the innate and adaptive antitumor immunity within the TME and enhances the efficacy of αPD-1 and αCTLA-4 immune checkpoint blockade.
Collapse
Affiliation(s)
- Won Suk Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Dong Sung Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jeong Hun Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Yoonki Heo
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hannah Yang
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Eun-Jin Go
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jin Hyoung Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Seung Joon Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Byung Cheol Ahn
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jung Sun Yum
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of) .,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of) .,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| |
Collapse
|
41
|
Beiss V, Mao C, Fiering SN, Steinmetz NF. Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy. Mol Pharm 2022; 19:1573-1585. [PMID: 35333531 DOI: 10.1021/acs.molpharmaceut.2c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon β (IFNβ) compared to TRSV and CPSMV; therefore, IFNβ released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.
Collapse
Affiliation(s)
- Veronique Beiss
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Nicole F Steinmetz
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States.,Departments of Radiology, University of California San Diego, La Jolla, California 92093, United States.,Departments of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States.,Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
42
|
Mahajan AS, Stegh AH. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14071615. [PMID: 35406387 PMCID: PMC8996871 DOI: 10.3390/cancers14071615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonucleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of auxiliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent association with cell surface pattern recognition receptors. When composed of gene-regulatory small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence gene expression and induce immune responses superior to those raised by the oligonucleotides in their "free" form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblastoma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating immune responses against tumors. This review focuses on the application of SNAs as precision cancer therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors, describes the most recent preclinical efforts to rationally design next-generation multimodal SNA architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of the SNA platform.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
43
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
44
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
45
|
DePalo DK, Tarhini A, Zager JS. The treatment of advanced melanoma: a review of systemic and local therapies in combination with immune checkpoint inhibitors in phase 1 and 2 clinical trials. Expert Opin Investig Drugs 2022; 31:95-104. [PMID: 34996314 DOI: 10.1080/13543784.2022.2027366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION While the incidence of melanoma continues to rise, the mortality of the disease appears to have stabilized. This may, in part, be due to the development and application of immune checkpoint inhibitors as standard of care in advanced melanoma. However, many patients do not respond to these therapies alone. Combining immune checkpoint inhibitors with other classes of therapeutics appears to be a promising direction to improve response and survival in advanced melanoma. AREAS COVERED This review article aims to discuss phase 1 and 2 clinical trials examining immune checkpoint inhibitors in combination therapy for the treatment of advanced, unresectable melanoma. In particular, these regimens include various kinase inhibitors, tumor-infiltrating lymphocytes, toll-like receptor agonists, cytokines, and oncolytic viral therapies. The combinations under discussion include both systemic and combination systemic/local therapies. EXPERT OPINION Drug combinations discussed here appear to be promising therapeutic regimens for advanced melanoma. Improved understanding of the mechanisms of primary, adaptive, and acquired resistance to immune checkpoint inhibitors may guide the development of future combination regimens.
Collapse
Affiliation(s)
- Danielle K DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ahmad Tarhini
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
46
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
47
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
48
|
Li K, Zhang Z, Mei Y, Li M, Yang Q, WU Q, Yang H, HE LIANGCAN, Liu S. Targeting innate immune system by nanoparticles for cancer immunotherapy. J Mater Chem B 2022; 10:1709-1733. [DOI: 10.1039/d1tb02818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system...
Collapse
|
49
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
50
|
A Combined Adjuvant TF-Al Consisting of TFPR1 and Aluminum Hydroxide Augments Strong Humoral and Cellular Immune Responses in Both C57BL/6 and BALB/c Mice. Vaccines (Basel) 2021; 9:vaccines9121408. [PMID: 34960154 PMCID: PMC8705145 DOI: 10.3390/vaccines9121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF-Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF-Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.
Collapse
|